315 * An Experimental Study on the Characteristic of Mean Flow in Supersonic Boundary Layer Transition Shoji SAKAUE, Department of Aerospace Engineeri

Similar documents
TM

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

Fig. 1 Experimental apparatus.

NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

JFE.dvi

Journal of the Combustion Society of Japan Vol.58 No.185 (2016) ORIGINAL PAPER 火災旋風近傍の流れに関する研究 Flow Around a Fire Whirl *

013858,繊維学会誌ファイバー1月/報文-02-古金谷

KENZOU Karman) x

Flow Around a Circular Cylinder with Tangential Blowing near a Plane Boundary (2nd Report, A Study on Unsteady Characteristics) Shimpei OKAYASU, Kotar

<4D F736F F D208F4390B38DC58F49938A8D6595A CA90858D48985F95B F8F43959C82B382EA82BD B5F2E646F6378>

A2, Vol. 69, No. 2 Vol. 16, I_237-I_246, Analytical Investigation of Shear Force Distribution of Perfobond Strip with Plural Perforations * ** *

$arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ ?,,?,., (1),, (, ).,, $\langle$2),, (3),.., (4),,,., CFD ( ),,., CFD,.,,,

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

J. Jpn. Inst. Light Met. 65(6): (2015)

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

空力騒音シミュレータの開発

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

空間多次元 Navier-Stokes 方程式に対する無反射境界条件

日立金属技報 Vol.34

teionkogaku43_527

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

obtained for the liniarization, and was found to have a remarkably wider dynamic range (order of approximately 103) than that of conventional screen/f

浜松医科大学紀要

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

[2] , [3] 2. 2 [4] 2. 3 BABOK BABOK(Business Analysis Body of Knowledge) BABOK IIBA(International Institute of Business Analysis) BABOK 7

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member


1..FEM FEM 3. 4.


untitled

untitled

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

LOL ONNRION RRISIS OF RQUK RSPONS OF KO ROUN akashi kiyoshi, ept. o ivil ngrg., Kumamoto Univ., Kunihiko Fuchida, ept.

橡最終原稿.PDF


Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

工学的な設計のための流れと熱の数値シミュレーション

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

カルマン渦列の消滅と再生成のメカニズム

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

ODA NGO NGO JICA JICA NGO JICA JBIC SCP

[ 30 p. 1-8 (2012)] / ** *** Numerical Analysis of Metal Transfer Phenomena - critical condition between globular and spray transfer mode - by KADOTA

光学

Numerical Simulation for Abrupt Contraction Flow of Fiber Suspensions in Polymeric Fluid Kazunori Yasuda, Taro Nishimura* and Kiyoji Nakamura Departme

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

チャネル乱流における流体線の伸長

渡辺(2309)_渡辺(2309)

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ

国土技術政策総合研究所 研究資料

, 3, STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive


(1) 2

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

Stress Singularity Analysis at an Interfacial Corner Between Anisotropic Bimaterials Under Thermal Stress Yoshiaki NOMURA, Toru IKEDA*4 and Noriyuki M

process of understanding everyday language is similar, finally as far as word production is concerned, individual variations seem to be greater at an

2 ( ) i

116,/ / - /-, /1 /2 0 / ,, / 3 ing / , 2, 3, , 3,,. ISO. /.. 0 -,. ISO., 0-

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

76_01ver3.p65


Accuracy check of grading of XCT Report Accuracy check of grading and calibration of CT value on the micro-focus XCT system Tetsuro Hirono Masahiro Ni

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

知能と情報, Vol.30, No.5, pp


平板翼の後流に形成される定在波とコヒーレント構造

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

食品工学.indb

udc-2.dvi

untitled

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

Fig. 1. Active faults in the Kanto district (after Coordinating Committee for Earthquake Prediction, 1980). A-A' PROFILE DOUGUER ANOMALY RESIDUAL ANOM

ON STRENGTH AND DEFORMATION OF REINFORCED CONCRETE SHEAR WALLS By Shigeru Mochizuki Concrete Journal, Vol. 18, No. 4, April 1980, pp. 1 `13 Synopsis A

技術研究所 研究所報 No.80

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

IPSJ SIG Technical Report Vol.2011-MUS-91 No /7/ , 3 1 Design and Implementation on a System for Learning Songs by Presenting Musical St

RTM RTM Risk terrain terrain RTM RTM 48

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

„´™Ÿ/’£flö

Microsoft Excelを用いた分子軌道の描画の実習

Tetsu-to-Hagane Vol. 87 (2001) No. 1 Fig. 1. Experimental apparatus for PIV measurement. Fig. 2. Detail of A.

_念3)医療2009_夏.indd

0401489‐工芸‐医用画像22‐1/12[論文]柳田

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

Transcription:

35 * An Experimental Study on the Characteristic of ean Flow in Supersonic Boundary Layer Transition Shoji SAKAUE, Department of Aerospace Engineering, Osaka Prefecture University ichio NISHIOKA, Department of Aerospace Engineering, Osaka Prefecture University (Received 3 September, 8; in revised form 9 arch, 9 To obtain a better understanding of the mechanism for supersonic boundary layer transition, we examine a ach.86 supersonic boundary layer along a small tunnel nozzle wall with rectangular cross section using Pitot-tube and quantitative schlieren optical system calibrated by wedge prism method. ean flow profiles in transition process are obtained by measuring distributions of density gradients. The results clearly show that near-wall density gradients start to increase at the beginning of transition, suggesting the occurrence and growth of disturbances which carry the mainstream fluid to the wall neighborhood and the near-wall fluid to the outer edge. It is also shown that inclined vortical structures our schlieren system visualizes are similar to the structures observed in supersonic turbulent boundary layers. Furthermore, the result obtained by the quantitative schlieren method indicates the transition to occur earlier compared with the corresponding obtained at the span center of the tunnel. It is suggested that the transition occurs near the nozzle corner region first and the turbulence is spread by a process of transverse contamination. (KEY WORDS: Supersonic boundary layer, Boundary layer transition, Quantitative schlieren method, Transverse contamination *599-853 E-mail: sakaue@aero.osakafu-u.ac.jp

36 Re = TS TS.3 ~ % e N TS e N N = e N TS TS TS Re = Re = 3,3 4-6 7-9 Coles.97 Re = 94 Re = 39 Re <. Re -4 x y z x = 3 mm 3 mm.7 mm x = 67 mm 8 mm x = 6 mm

37 (mm ach number y (mm - 4 6 8.5 8. (c 6 4..5 ach number Re θ. - 4 6 8 Re θ (mm. mm.8 mm Flash lamp Concave mirror Flash lamp controller Pulse generator irror Test section (c Re x irror Camera Concave mirror Knife-edge Camera controller.6 kpa9 K U x = 67 mm =.98U = 56 m/s x = 6 mm =.96U = 5 m/s Re = 574x = 67 mm~ 94 x = 6 mmx = 6 mm Coles Re. mm y. mm.8 mm x = 7 mm ~ 6 mm z = mm uy p/y = Pr = u u U 3 5.3 3 8 ns. mm f = mm 56 BP PC.86 mm.86 mm PC (

38 4 /y I f y y y f y fkd 6-8 K Gladstone -Dale.59 4 m 3 /kg = 67.4 nmd /fkd 7,8 y f y /y 6~8 3 3. 4 x = 7 mm ~ mm u y U.995 U x = 9 mm x = mm 5 Re 4 x = 9 mmre = 684 x mm u Van Driest 9 U c u / U c Tw T du A A U A T w T U ( u sin (3 w Reichardt inner layer profile Finley wake function 4 x y Re θ..5 U c x = 7mm...4.8...5 u/u x = 9mm...4.8. 3 5 5 5 u/u 5 x ln y y C e y Simulation results for laminar flow / y 3 y e...4.8. b y y 6 3 y 4 C C ln, =.4, C = 4.9, =, b =.33 u.6..5..5 x = 8mm...4.8. u/u x = mm u/u Simulation results for laminar flow 4 6 8 4 6 (4

39 3 6 x = mm ~ 6 mm Van Driest U c (4 x = 6 mm =.53 mm Re = 59 u c f c f Re 4 c f inc sin A c (5 f, Re inc Re w c f inc, Re inc 7 Karman-Schoenherr Blasius Uc + Uc + 6 x Van Driest U c (4 c 5 5 5 f inc 7.8 log Re 5. log Re inc inc / 4.6 Re f inc x = mm y + x = 4mm y + inc Uc + 5 5 5 Reichardt & Finley Uc + 6. U + c = y + U + c = κ ln y + + C x = mm (6 c (7 4 x = 9 mm 5 5 5 5 5 5 y + x = 6mm y + cf inc 6 5 4 3 mm mm mm Karman-Schoenherr Blasius 3mm 4mm 5mm 6mm 7mm 8mm 9mm 5 5 Reθ inc 7 Karman-Schoenherr(6 Blasius(7 Re = 684x = mmre = 448 x = 4 mmre = 98 x = 7 mm =.U = 58 m/s x = 6 mm =.86U = 49 m/s 3. 8 6 x = 6 mm 8 (c Pr = ( U f y y/ >.36y > mm ( /fkd (c y/ >.36 u (4 y mm y.5 mm

3. Quantitative schlieren. Simulation results for laminar flow Reichardt & Finley...8.. (c.8.8.6.6.6.4.4.4......5. ( y / δ..6.8.....4.6.8.. ρ / ρ u/u 8 x = 6 mm y (c u (4 3 4 5 6 7 8.... y (mm y (mm 9 4 /y 4.. y (mm. 8 9 3 4 5 6.. y (mm 4 /y 8 y mm 3.3 /y u/y (

3..8 Quantitative schlieren Simulation results for laminar flow.. x = mm.8 x = mm.8 x = 3mm y (mm.6.4 y (mm.6.4 y (mm.6.4... y (mm y (mm....8.6.4....5.4.8. x = 4mm. x = 5mm x = 6mm.4.8. y (mm x = 7mm x = 8mm x = 9mm. y (mm...8.6.4...5.4.8..4.8. y (mm y (mm...5....5.4.8..4.8...4.8...4.8...4.8. x y ˆ uˆ m ˆ uˆ y y uˆ u U, ˆ, m y/.3 8. y/.6 (8 9, 4 /y /y 9 y x = 9 mm x = mm ~ mm mm

3. Quantitative schlieren.5 3. y (mm..5 x = mm y (mm...5 x = mm y (mm.. x = mm. 3....4.6.8. (/mm. 3....4.6.8. (/mm. 3....4.6.8 (/mm y (mm.. x = 3mm y (mm.. x = 4mm y (mm.. x = 5mm....4.6.8 (/mm.....3.4.5 (/mm.....3.4.5 (/mm 3.4 4 x 9 mm 9 f y /y y mm 8 /y x = 9 mm /y =.336 3 kg/m 4 /y.43 3 kg/m 4 x.86 mm x 3 mm 6 x = mm =.9 mm y y x 9 mm 4 x 9 mm x 4 mm 9 x = 8 mm

33.. y (mm 4.. y (mm (c 3 8 9 3 4 5 6.. y (mm 3 v mm x 5 mm f y /fkd 8 x = 4 mm, 5 mm x = mm 5 mm 3 y ~ (c x 4 mm 5,6 (8 (8 (8 3 mm x 3 mm 3 x = 5 mm x = 8 mm (c x = 85 mm x = mm 4 y y / y / x.86 mm y x x = 9 mm Re = 684 x = mm Re = 448 / x = 4 mm x = 6 mm Re = 54

34 yρ' (mm y ρ' (mm δ / y.6.5.4.3.. x x = 9 mm x = 6 mm 8 4. 4 8 6...5 Linear growth Non-linear growth. 4 8 6 y δ/ Quantitative schlieren Simulation results for laminar flow Linear growth Non-linear growth 4 y / y TS 956788,,,, 5-39 (99. Asai,. Nishioka, Boundary layer transition triggered by hairpin eddies at subcritical Reynolds numbers, J. Fluid ech., 97, - (995. 3,,,,, 8, 4-45 (999. 4 J. Laufer, T. Vrebalovich, Stability and transition of a supersonic laminar boundary layer on an insulated flat plate, J. Fluid ech., 9, 57-99 (96. 5 J.. Kendall, Wind tunnel experiments relating to supersonic and hypersonic boundary-layer transition, AIAA J., 3, 9-99 (975. 6 P. Graziosi, G. L. Brown, Experiments on stability and

35 transition at ach 3, J. Fluid ech., 47, 83-4 (. 7 A. Thumm, W. Wolz, H. Fasel, Numerical simulation of spacially growing three-dimensional waves in compressible boundary layers, Laminar-Turbulent Transition, Springer, 33-38 (99. 8 C-L. Chang,. R. alik, Oblique-mode breakdown and secondary instability in supersonic boundary layers, J. Fluid ech., 73, 33-36 (994. 9 N. A. Adams, L. Kleiser, Subharmonic transition to turbulence in a flat-plate boundary layer at ach number 4.5, J. Fluid ech., 37, 3-335 (996. D. Coles, easurements of turbulent friction on a smooth flat plate in supersonic flow, J. Aero. Sciences,, 433-448 (954. E. Rechotko, Boundary layer instability, transition and control, AIAA paper 94- (994.,,, 5, 6-3 (996. 3 S. Sakaue,. Nishioka, On the Receptivity Process of Supersonic Laminar Boundary Layer, Laminar- Turbulent Transition, Springer-Verlag, 48-486 (. 4 S. Sakaue,. Nishioka, On the Receptivity of Supersonic Boundary Layer to Oscillating ach Waves, Proc. 4th Congress of the International Council of the Aeronautical Sciences, 44 (CD-RO (4. 5,,,,, 3, 47-56 (4. 6,,, 8, 39-47 (9. 7,,, 8, 4-48 (9. 8,,, 8, 49-56 (9. 9 E. R. Van Driest, Turbulent boundary layer in compressible fluids, J. Aero. Sci., 8, 45-6 (95. H. Reichardt, Complete representation of the turbulent velocity distribution in smooth pipe, Z. Angew ath., 3, 8-9 (95. T. Cebeci, P. Bradshaw, omentum Transfer in Boundary Layers, Hemisphere (997. S. E. Guarini, R. D. oser, K. Shariff, A. Wray, Direct numerical simulation of a supersonic turbulent boundary layer at ach.5, J. Fluid ech., 44, -33 (,. 3 A. J. Smits, J-P. Dussauge, Turbulent Shear layers in Supersonic Flow, AIP Press (996. 4 S. P. Pirozzoli, F. Grasso, T. B. Gatski, Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at =.5, Physics of Fluids, 6, 3, 53-545 (4. 5 E. F. Spina, A. J. Smits, Organized structures in a compressible, turbulent boundary layer, J. Fluid ech., 8, 86-9 (987. 6. W. Smith, A. J. Smits, Visualization of the structure of supersonic turbulent boundary layers, Experiments in Fluids, 8, 88-3 (995.