カルマン渦列の消滅と再生成のメカニズム

Size: px
Start display at page:

Download "カルマン渦列の消滅と再生成のメカニズム"

Transcription

1 (Jiro Mizushima) (Hiroshi Akamine) Department of Mechanical Engineering, Doshisha University 1. [1,2]. Taneda[3] Taneda 100 ( d) $50d\sim 100d$ $100d$ Taneda Durgin and Karlsson[4] $h$ 2 $a$ $a/h>0.366$ Sato and Kuriki[5] ( ) 2 Cimbala, Nagib and Rosho[6] 2 1 Karasudani and Funakoshi[7] $a$ $h$ $a/h$ 2 Okude and Matsui[8, 9] [6]

2 Inasawa and Asai [10] $w$, $A=w/d$ 1 $d$ $A$ $A=0.4$ $A$ : $U$ $O$ $y$ ( 1). $h$ $d$, $A=h/d$ 1 Pl P $U$ 2 $d$ $(x^{*},y^{*})=(x/d, y/d)$, $(u^{*},v^{*})=(u/u, v/u)$ $*$ 2

3 99 $\psi(x, y, t)$ $\omega(x, y, t)$ $\psi$ $\omega$ $(u=\partial\psi/\partial y, v=-\partial\psi/\partial x)$. $\frac{\partial\omega}{\partial t}=j(\psi, \omega)+\frac{1}{re}\triangle\omega$, (1) $\Delta\psi=-\omega$, (2) $J(f,g)= \frac{\partial f}{\partial x}\frac{\partial g}{\partial y}-\frac{\partial f}{\partial y}\frac{\partial g}{\partial x}, \Delta=(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}})$ $Re$ $\nu$ $Re\equiv Ud/\nu$ $W$ 1 $L_{1}+L_{2}$, $ABCD$ $\psi=0, \frac{\partial\psi}{\partial n}=0$ (3) $n$ ( $AD$ ) $U$ $u=1)$ ( $\psi=y, \omega=0$ (4) ($AB,DC$ ) $\psi=\psi_{1}$ (AB), $\psi=\psi_{2}$ (DC), $\omega=0$ (AB, DC) (5) ($BC$ ) $\frac{\partial\psi}{\partial t}+c\frac{\partial\psi}{\partial x}=0, \frac{\partial\omega}{\partial t}+c\frac{\partial\omega}{\partial x}=0$ (6) $(\psi,\omega)$ (1) (2) (3) $-(6)$ 2.2 ( (1) 0 ) (2) $(\overline{\psi},\overline{\omega})$ (3) $-(6)$ $J( \overline{\psi},\overline{\omega})+\frac{1}{{\rm Re}}\Delta\overline{\omega}=0$, (7) $\overline{\omega}=-\delta\overline{\psi}$ (8) ( 1 ) $($ (3)$-(6))$ 1 $100d$ 2 2 1

4 $\lambda_{r}$ $(\overline{\psi},\overline{\omega})$ $\lambda_{i}$ $\omega$ $(\langle\psi\rangle, \langle\omega\rangle)$ 2.3 $\omega $ $\psi,$ $\psi$ $(\overline{\psi},\overline{\omega})$ $\psi=\overline{\psi}+\psi, \omega=\overline{\omega}+\omega $ (9) (1) $\frac{\partial\omega }{\partial t}=\frac{1}{re}\delta\omega +J(\psi,\overline{\omega})+J(\overline{\psi},\omega )+J(\psi,\omega )$ (10) $(\psi =\hat{\psi}(x,y)e^{\lambda t},$ (10) (10) $\omega =$ $(X, y)e^{\lambda t})$ $= \frac{1}{re}\delta\hat{\omega}+j(\hat{\psi},\overline{\omega})+j(\overline{\psi},\hat{\omega})$ $\lambda$. (11) (11) $\hat{\omega}=-\delta\hat{\psi}$ (12) $\lambda$ ( ) $(\hat{\psi},\hat{\omega})$ : $\hat{u}=\frac{\partial\hat{\psi}}{\partial y}=0, \hat{v}=-\frac{\partial\hat{\psi}}{\partial x}=0$ (13) $\hat{\psi}=\hat{\omega}=0$ $\frac{\partial^{2}\hat{\psi}}{\partial x^{2}}=0, \frac{\partial\hat{\omega}}{\partial x}=0$ (14) $(\langle\psi\rangle, \langle\omega\rangle)$ 2.4 (1) (2) $y$ $\Delta x$ $\Delta y$ $(\Delta x=\delta y)$ (1) 1 2 (2) 2 $SOR$ (Succsessive Over Relaxation Method)

5 101 $( x,j\delta y)$ $n\delta t$ $\psi(i\delta x,j\delta y, n\delta t)$ $10^{-6}$ $k-1$ $\psi_{i}^{n_{j}(k-1)}$ $k$ $\psi_{i}^{n_{j}(k)}$ $\Delta t=$ $\Delta x=\delta y=0.1$ $\Delta x=\delta y=0.05$ 2% $0$ $\omega $ (10) (1) (2) (1) (2) $(\overline{\psi}, \overline{\omega})$ $(\psi, \omega)$ $\psi =0$ $\omega =0$ (11) (12) 2 $SOR$ $SOR$ $k-1$ $\psi_{i,j}^{(k)}$ $10^{-8}$ $\psi_{i,j}^{(k-1)}$ $k$ $A$ $(A=5.0,4.0,3.0,0.5,0.2)$ $A=0.2$ $A=0.2$ $Re=30$ $($ $2(a), Re=30)$. $Re=40$ $($ $2(b))$. $Re=80$ $x=30d$ $($ $2(c))$. 2(c) 2 $Re=100$ 2 $y$ 2(d) $x=80d$ 1/ $Re\sim 40$ 1 2 $Re\sim 90$ Taneda Taneda

6 102 (a) (b) (c) (d) : ( $Re=80$, ), $A=0.2.$ $(a)$ $Re=30,$ $(b)$ (b) $Re=100.$ $Re=40,$ $(c)$ Pl $((x,y)=(20,0)$ P2 $((x,y)=(100,0)$ $y$ $a_{2}$ $P_{1}$ $v_{1}$ $v_{2}$ $a_{1}$ P2 2 1 $a_{1}$ $a_{2}$ $Re$ 4 4 Pl $v_{1}$ $a_{1}$, $v_{2}$ P2 $a_{2}$ $a_{1}\propto(re-re_{c})^{1/2},$ $(Re_{c}=35.5)$ $Re_{c}=35.5$ $P_{1}$ $Re_{c}$ P2 $y$ $0$ $Re_{c}$ $y$ $x_{2}$ 1 $Re_{c}$ $v_{2}$ $a_{2}$ 1 $Re>Re_{c}$ $a_{2}$ $Re$ $Re\sim 60$ $a_{2}$ $0$ $60<(Re<90$ 0 P2 $Re\sim 90$ $a_{2}$ 2 4 $Re_{c}=35.5$

7 103 3: 1 2 $A=0.2.$ $Re=90$ ( ) 2 4: $a_{2}$ $0 50$Re$ 100$ $( a_{1}, a_{2})$. $A=0.2$. $(P2, (x, y)=(100,0))$ : $a_{1}(p_{1}, (x, y)=(20,0))$ : $Re=100$ $P_{1}$ $(Pl=(20,0), P_{2}=(100,0))$ P2 $y$ $v$

8 104 (a) $t$ (b) $t$ 5: $P_{1}$ P2 $y$ $v_{1}$ $v_{2}.$ $Re=100.$ Pl P $=5.92$ $(fi=0.169),$ $T_{2}=12.5(f_{2}=0.080)$ Pl P2 $fi$ $f_{2}$ $(\blacksquare)$ 6 $P_{1}$ $fi$ $(+)$ $P_{1}$ $f_{2}$ 2 $Re=90$ 2 $fi$ 1 $f_{2}$ $f_{2}$ $*$ $*\cdot$ 0.12 $ ^{ }$ $fi, f_{2} ++++_{+}$ 0.06 $f_{1}$ (DNs) $f2(dns)$ $(b_{0} $ $Re$ 6: ( ). $P_{1}$ $fi$ P2 $f_{2}.$ $(20,0)),$ $+:f_{2}(p_{2}, (x,y)=(100,0))$. $\blacksquare:fi(p_{1}, (x, y)=$

9 $\lambda$ 105 (a) (b) $Re Re$ 7: 4. $\lambda_{r}.$ (a) $(b)$ $\lambda_{i}/2\pi.$ 4.1 $(\overline{\psi}, \overline{\omega})$ (11) (12) $(\hat{\psi},\hat{\omega})$ $\lambda$ $\lambda_{r}$ $\lambda_{j}$ $2\pi$ $\lambda_{i}/2\pi$ $f$ 7(a) 7(b) 7(a) $Re_{c}=35.6$ $Re_{c}=35.5$ ( 4) $Re_{c}=46.7[11]$ 7(b) $Re_{c}=35.6$ $f_{c}=0.1054$ $Re_{c}=35.6$ $f_{c}=0.109$ $Re=40,80,100$ $8(a)-8(f)$ 40 $Re=80$ 100 $2(b)-2(d)$ 1 1 $\Delta x=5\sim 6$ 2 2 (11) (12) 1 ( 8) Verma and Mittal[12] ). (

10 106 (a) (b) (c) $ $ (d) (e) $ $ (f) : ( ). $A=0.2.$ $(a),$ $(b)re=40$. (c), (d) $Re=80.$ (e), (f) $Re=100.$ $(a),$ $(c),$ $(e)$ (b), (d), (f) $T_{2}$ 1 2 $T_{3}$ $T_{3}$ $(\psi, \omega)$ 5 $(\langle\psi\rangle, \langle\omega\rangle)$ 90 2 $Re=95$ 9(a) $Re=95$ 9(b) $(\psi,\omega )$ $(\psi,\omega)$ $(\langle\psi\rangle, \langle\omega\rangle)$ $(\psi, \omega)-(\langle\psi\rangle, \langle\omega\rangle)$

11 107 (a) (b) (c) $ $ $ $ 9: ( $ $ ). $Re=95$. (a) 2 (b) (c) 9(c) 9 $x=85$ $90$ 2 1 ( ) 5. $100d$ 2 1 [1] B\ ENARD, $H$ Formation des centres de giration \ a l arri\ ere d un obstacle en mouvement. C. R. Acad. Sci. Paris. 147,

12 108 [2] VON K\ ARM\ AN, $T$ \"Uber den Mechanismus des Widerstandes, den einen bewegter K\"orper in einer FlSsigkeit erzeugt. Nachr. $Ges$. Wiss. G\"ottingen, Math.-phys. Kl, $S$ [3] TANEDA, Downstream development of the wakes behind cylinders. J. Phys. Soc. Japan 14, [4] DURGIN, W. $W$., KARLSSON, S. K. $F$ On the phenomenon of vortex street breakdown. J. Fluid Mech. 48, [5] SATO, $H$., KURIKI, $K$ The mechanism of transision in the wake of a thin flat plate placed parallel to a uniform flow. J. Fluid Mech. 11, [6] CIMBALA, J. $M$., NAGIB, H. $M$., ROSHKO, $A$ Large structure in the far wakes of two-dimensional bluff bodies. J. Fluid Mech. 190, [7] KARASUDANI, $T$., FUNAKOSHI, $M$ Evolution of a vortex street in the far wake of a cylinder. Fluid $Dyn$. Res. 14, [8] OKUDE, $M$ Rearrangement of Karman s vortex street. nans. Japan Soc. Aero. Space Sci 24, [9] OKUDE, $M$., MATSUI, $T$ Vorticity distribution of vortex street in the wake of a circular cylinder. $\pi ans$. Japan Soc. Aero. Space Sci 33, [10] INASAWA, $A$., NAKANO, $T$., ASAI, $M$ Development of wake vortices and the associated sound radiation in the flow past a rectangular cylinder of various aspect ratios. Proc. Seventh Int. Symposium on $h$rbulence and Shear Flow Phenomena, (Ottawa, 2011) in press. [11] JACKSON,C. $P$ $A$ finite-element study of the onset of vortex shedding in flow past variously shaped bodies. J. Fluid Mech. 182, $A$ $S$ [12] VERMA,. & MITTAL, new unstable mode in the wake of a circular cylinder. $A$ Phys. Fluids 23,

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年) 1776 2012 28-42 28 (Yukio Takemoto) (Syunsuke Ohashi) (Hiroshi Akamine) (Jiro Mizushima) Department of Mechanical Engineering, Doshisha University 1 (Theodore von Ka rma n, l881-1963) 1911 100 [1]. 3 (B\

More information

カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて)

カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて) 1771 2011 34-42 34 Annihilation and reincamation of Karan s vortex street (Hiroshi Al anine) (Jiro Mizushima) (Shunsuke Ohashi) (Kakeru Sugita) 1 1 1 2 2 $h$ 100 B\ enard[1] $a$ $a/h>0.366$ Kirm$4n[2]$

More information

(Hiroshi Okamoto) (Jiro Mizushima) (Hiroshi Yamaguchi) 1,.,,,,.,,.,.,,,.. $-$,,. -i.,,..,, Fearn, Mullin&Cliffe (1990),,.,,.,, $E

(Hiroshi Okamoto) (Jiro Mizushima) (Hiroshi Yamaguchi) 1,.,,,,.,,.,.,,,.. $-$,,. -i.,,..,, Fearn, Mullin&Cliffe (1990),,.,,.,, $E 949 1996 128-138 128 (Hiroshi Okamoto) (Jiro Mizushima) (Hiroshi Yamaguchi) 1 $-$ -i Fearn Mullin&Cliffe (1990) $E=3$ $Re_{C}=4045\pm 015\%$ ( $Re=U_{\max}h/2\nu$ $U_{\max}$ $h$ ) $-t$ Ghaddar Korczak&Mikic

More information

4 2016 3 8 2.,. 2. Arakawa Jacobin., 2 Adams-Bashforth. Re = 80, 90, 100.. h l, h/l, Kármán, h/l 0.28,, h/l.., (2010), 46.2., t = 100 t = 2000 46.2 < Re 46.5. 1 1 4 2 6 2.1............................

More information

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math $\mathrm{r}\mathrm{m}\mathrm{s}$ 1226 2001 76-85 76 1 (Mamoru Tanahashi) (Shiki Iwase) (Toru Ymagawa) (Toshio Miyauchi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology

More information

Flow Around a Circular Cylinder with Tangential Blowing near a Plane Boundary (2nd Report, A Study on Unsteady Characteristics) Shimpei OKAYASU, Kotar

Flow Around a Circular Cylinder with Tangential Blowing near a Plane Boundary (2nd Report, A Study on Unsteady Characteristics) Shimpei OKAYASU, Kotar Flow Around a Circular Cylinder with Tangential Blowing near a Plane Boundary (2nd Report, A Study on Unsteady Characteristics) Shimpei OKAYASU, Kotaro SATO*4, Toshihiko SHAKOUCHI and Okitsugu FURUYA Department

More information

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t 1601 2008 19-27 19 (Kentaro Kanatani) (Takeshi Ogasawara) (Sadayoshi Toh) Graduate School of Science, Kyoto University 1 ( ) $2 $ [1, ( ) 2 2 [3, 4] 1 $dt$ $dp$ $dp= \frac{dt}{\tau(r)}=(\frac{r_{0}}{r})^{\beta}\frac{dt}{\tau_{0}}$

More information

(2005) (2005) 1 2 ( 1 ) 20km 2 4km 20km 40km 400km 10 1km 2km Ruscher and Deardroff (1982) Dempsey and Rotunno (1988) Smolarkiewcz et al. (1988) Smola

(2005) (2005) 1 2 ( 1 ) 20km 2 4km 20km 40km 400km 10 1km 2km Ruscher and Deardroff (1982) Dempsey and Rotunno (1988) Smolarkiewcz et al. (1988) Smola (2005) (2005) 1 2 ( 1 ) 20km 2 4km 20km 40km 400km 10 1km 2km Ruscher and Deardroff (1982) Dempsey and Rotunno (1988) Smolarkiewcz et al. (1988) Smolarkiwicz and Rotunno (1989) F r = 0.15 0.5 ( F r = u/nh,

More information

Title 渦度場の特異性 ( 流体力学におけるトポロジーの問題 ) Author(s) 福湯, 章夫 Citation 数理解析研究所講究録 (1992), 817: Issue Date URL R

Title 渦度場の特異性 ( 流体力学におけるトポロジーの問題 ) Author(s) 福湯, 章夫 Citation 数理解析研究所講究録 (1992), 817: Issue Date URL   R Title 渦度場の特異性 ( 流体力学におけるトポロジーの問題 ) Author(s) 福湯, 章夫 Citation 数理解析研究所講究録 (1992), 817: 114-125 Issue Date 1992-12 URL http://hdl.handle.net/2433/83117 Right Type Departmental Bulletin Paper Textversion publisher

More information

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing The Hydrodynamic Force Acting on the Ship in a Following Sea (1 St Report) Summary by Yutaka Terao, Member Broaching phenomena are most likely to occur in a following sea to relative small and fast craft

More information

140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11

More information

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$ 1075 1999 127-142 127 (Shintaro Yamashita) 7 (Takashi Watanabe) $\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{m}\mathrm{u}\mathrm{f}\mathrm{a}\rangle$ (Ikuo 1 1 $90^{\mathrm{o}}$ ( 1 ) ( / \rangle (

More information

工学的な設計のための流れと熱の数値シミュレーション

工学的な設計のための流れと熱の数値シミュレーション 247 Introduction of Computational Simulation Methods of Flow and Heat Transfer for Engineering Design Minoru SHIRAZAKI Masako IWATA Ryutaro HIMENO PC CAD CAD 248 Voxel CAD Navier-Stokes v 1 + ( v ) v =

More information

合併後の交付税について

合併後の交付税について (1) (2) 1 0.9 0.7 0.5 0.3 0.1 2 3 (1) (a), 4 (b) (a), (c) (a) 0.9 0.7 0.5 0.3 0.1 (b) (d),(e) (f) (g) (h) (a) (i) (g) (h) (j) (i) 5 (2) 6 (3) (A) (B) (A)+(B) n 1,000 1,000 2,000 n+1 970 970 1,940 3.0%

More information

(Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology ,,., ,, $\sim$,,

(Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology ,,., ,, $\sim$,, 1601 2008 69-79 69 (Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology 1 100 1950 1960 $\sim$ 1990 1) 2) 3) (DNS) 1 290 DNS DNS 8 8 $(\eta)$ 8 (ud 12 Fig

More information

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2]. 1483 2006 112-121 112 (Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science Osaka University 1 [1] 30 (Rott) [2] $-1/2$ [3] [4] -\mbox{\boldmath $\pi$}/4 - \mbox{\boldmath $\pi$}/2

More information

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析) 1748 2011 48-57 48 (Hiroshi Iwasaki) Faculty of Mathematics and Physics Kanazawa University quasi-static Biot 1 : ( ) (coup iniury) (contrecoup injury) 49 [9]. 2 2.1 Navier-Stokes $\rho(\frac{\partial

More information

PSCHG000.PS

PSCHG000.PS a b c a ac bc ab bc a b c a c a b bc a b c a ac bc ab bc a b c a ac bc ab bc a b c a ac bc ab bc de df d d d d df d d d d d d d a a b c a b b a b c a b c b a a a a b a b a

More information

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,, 836 1993 132-146 132 Navier-Stokes Numerical Simulations for the Navier-Stokes Equations in Incompressible Viscous Fluid Flows (Nobuyoshi Tosaka) (Kazuhiko Kakuda) SUMMARY A coupling approach of the boundary

More information

平板翼の後流に形成される定在波とコヒーレント構造

平板翼の後流に形成される定在波とコヒーレント構造 35 Ω Ω r 'w' r 'w' The Standing Wae Formed in the Wake of a Flat Plate Blade and the Coherent Structure Souichi SASAKI and Yoshio KODAMA, Dept. of Mechanical Sstems Engineering, Nagasaki Uniersit Receied

More information

$arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ ?,,?,., (1),, (, ).,, $\langle$2),, (3),.., (4),,,., CFD ( ),,., CFD,.,,,

$arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ ?,,?,., (1),, (, ).,, $\langle$2),, (3),.., (4),,,., CFD ( ),,., CFD,.,,, 892 1995 105-116 105 $arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ - 1 7?,,?,, (1),, (, ),, $\langle$2),, (3),, (4),,,, CFD ( ),,, CFD,,,,,,,,, (3), $\overline{uv}$ 106 (a) (b) $=$ 1 - (5), 2,,,,,

More information

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( ) 71 特集 オープンソースの大きな流れ Nonlinear Sloshing Analysis in a Three-dimensional Rectangular Pool Ken UZAWA, The Center for Computational Sciences and E-systems, Japan Atomic Energy Agency 1 1.1 ( ) (RIST) (ORNL/RSICC)

More information

~ ~.86 ~.02 ~.08 ~.01 ~.01 ~.1 6 ~.1 3 ~.01 ~.ω ~.09 ~.1 7 ~.05 ~.03 ~.01 ~.23 ~.1 6 ~.01 ~.1 2 ~.03 ~.04 ~.01 ~.1 0 ~.1 5 ~.ω ~.02 ~.29 ~.01 ~.01 ~.11 ~.03 ~.02 ~.ω 本 ~.02 ~.1 7 ~.1 4 ~.02 ~.21 ~.I

More information

U Fig. : Physical state Navier-Stokes u t +(u grad)u = ρ gradp + ν u, () divu =. () u p ρ ν ω =(,,ω) b ω t +(u grad) ω = ν ω. (3) u Biot-Savart u = ω(

U Fig. : Physical state Navier-Stokes u t +(u grad)u = ρ gradp + ν u, () divu =. () u p ρ ν ω =(,,ω) b ω t +(u grad) ω = ν ω. (3) u Biot-Savart u = ω( B- Transient Flows around an Impulsively Started Rectangular Cylinder by a Hybrid Vortex Method (Combination with Remeshing Method) 99 83 E-mail: noda@fluid.energy.osakafu-u.ac.jp 99 83 E-mail: ueda@fluid.energy.osakafu-u.ac.jp

More information

Numerical Simulation for Abrupt Contraction Flow of Fiber Suspensions in Polymeric Fluid Kazunori Yasuda, Taro Nishimura* and Kiyoji Nakamura Departme

Numerical Simulation for Abrupt Contraction Flow of Fiber Suspensions in Polymeric Fluid Kazunori Yasuda, Taro Nishimura* and Kiyoji Nakamura Departme Numerical Simulation for Abrupt Contraction Flow of Fiber Suspensions in Polymeric Fluid Kazunori Yasuda, Taro Nishimura* and Kiyoji Nakamura Department of Mechanical Engineering, Osaka University, Suita,

More information

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$ 1051 1998 59-69 59 Reynolds (SUSUMU GOTO) (SHIGEO KIDA) Navier-Stokes $\langle$ Reynolds 2 1 (direct-interaction approximation DIA) Kraichnan [1] (\S 31 ) Navier-Stokes Navier-Stokes [2] 2 Navier-Stokes

More information

ed. by M. E. Szabo, North-Holland, 1969). [4] K. Godel, Uber eine bisher noch nicht benutzte Erweiterung des finiten Standpunktes, Dialectica, 12(1958), 280-287. (Coll. Works II, [5] G. Takeuti, Consistency

More information

teionkogaku43_527

teionkogaku43_527 特集 : 振動流によるエネルギー変換 熱輸送現象と応用技術 * Oscillatory Flow in a Thermoacoustic Sound-wave Generator - Flow around the Resonance Tube Outlet - Masayasu HATAZAWA * Synopsis: This research describes the oscillatory

More information

取扱説明書[L-02E]

取扱説明書[L-02E] L-02E 13.6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 a a a 35 a a a 36 37 a 38 b c 39 d 40 f ab c de g h i a b c d e f g h i j j q r s t u v k l mn op

More information

1 1 Emmons (1) 2 (2) 102

1 1 Emmons (1) 2 (2) 102 1075 1999 101-116 101 (Yutaka Miyake) 1. ( ) 1 1 Emmons (1) 2 (2) 102 103 1 2 ( ) : $w/r\omega$ $\text{ }$ 104 (3) $ $ $=-$ 2- - $\mathrm{n}$ 2. $\xi_{1}(=\xi),$ $\xi 2(=\eta),$ $\xi 3(=()$ $x,$ $y,$ $z$

More information

Taro10-名張1審無罪判決.PDF

Taro10-名張1審無罪判決.PDF -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- -1- 39 12 23 36 4 11 36 47 15 5 13 14318-2-

More information

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川 正行 Citation 数理解析研究所講究録 (1993) 830: 244-253 Issue Date 1993-04 URL http://hdlhandlenet/2433/83338 Right Type Departmental Bulletin Paper

More information

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd: *1 *2 *3 PIV Measurement of Field of the Wind Turbine with a med Diffuser Kazuhiko TOSHIMITSU *4, Koutarou NISHIKAWA and Yuji OHYA *4 Department of Mechanical Engineering, Matsue National Collage of Technology,

More information

薄板プレス成形の高精度変形解析手法と割れ予測

薄板プレス成形の高精度変形解析手法と割れ予測 Finite Element Simulation of Deformation and Breakage in Sheet Metal Forming Noritoshi Iwata, Masao Matui 3 4J2G Stören & Rice FEM In the analysis of sheet metal forming, constitutive equations are examined

More information

12~

12~ R A C D B F E H I J K A A A A A A A A A A AD B C BD AD E A DB DB ADB D D DB BD A C D B F E AD B B B B BF AD B B DB B B B B DB B DB D D ADB D D D D D AB AD D DB AB B B B F D D B B D D BF DBF B B B FD

More information

高密度荷電粒子ビームの自己組織化と安定性

高密度荷電粒子ビームの自己組織化と安定性 1885 2014 1-11 1 1 Hiromi Okamoto Graduate School of Advanced Sciences ofmatter, Hiroshima University ( ( ) $)$ ( ) ( ) [1],, $*1$ 2 ( $m,$ q) $*1$ ; $\kappa_{x}$ $\kappa_{y}$ 2 $H_{t}=c\sqrt{(p-qA)^{2}+m^{2}c^{2}}+q\Phi$

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

Vortex Structure Behind Highly Heated Two Cylinders in Parallel Arrangements Vortex structures behind twin, highly heated cylinders in parallel arrang

Vortex Structure Behind Highly Heated Two Cylinders in Parallel Arrangements Vortex structures behind twin, highly heated cylinders in parallel arrang Vortex Structure Behind Highly Heated Two Cylinders in Parallel Arrangements Vortex structures behind twin, highly heated cylinders in parallel arrangements have been investigated experimentally. The experiments

More information

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applied Heat Technology Division, Japan Atomic Energy Agency,

More information

取扱説明書 [F-12C]

取扱説明書 [F-12C] F-12C 11.7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 a bc b c d d a 15 a b cd e a b c d e 16 17 18 de a b 19 c d 20 a b a b c a d e k l m e b c d f g h i j p q r c d e f g h i j n o s 21 k l m n o p q r s a X

More information

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar 1413 2005 36-44 36 MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennard-Jones [2] % 1 ( ) *yukawa@ap.t.u-tokyo.ac.jp ( )

More information

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

Study of the Vortex of Naruto through multilevel remote sensing. Abstract Hydrodynamic characteristics of the Vortex of Naruto were investigated b Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated based on the remotely sensed data. Small scale vortices

More information

untitled

untitled 20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -

More information

untitled

untitled 19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X

More information

数理解析研究所講究録 第1940巻

数理解析研究所講究録 第1940巻 1940 2015 101-109 101 Formation mechanism and dynamics of localized bioconvection by photosensitive microorganisms $A$, $A$ Erika Shoji, Nobuhiko $Suematsu^{A}$, Shunsuke Izumi, Hiraku Nishimori, Akinori

More information

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting

More information

6 1873 6 6 6 2

6 1873 6 6 6 2 140 2012 12 12 140 140 140 140 140 1 6 1873 6 6 6 2 3 4 6 6 19 10 39 5 140 7 262 24 6 50 140 7 13 =1880 8 40 9 108 31 7 1904 20 140 30 10 39 =1906 3 =1914 11 6 12 20 1945.3.10 16 1941 71 13 B29 10 14 14

More information

315 * An Experimental Study on the Characteristic of Mean Flow in Supersonic Boundary Layer Transition Shoji SAKAUE, Department of Aerospace Engineeri

315 * An Experimental Study on the Characteristic of Mean Flow in Supersonic Boundary Layer Transition Shoji SAKAUE, Department of Aerospace Engineeri 35 * An Experimental Study on the Characteristic of ean Flow in Supersonic Boundary Layer Transition Shoji SAKAUE, Department of Aerospace Engineering, Osaka Prefecture University ichio NISHIOKA, Department

More information

2002.N.x.h.L.......g9/20

2002.N.x.h.L.......g9/20 1 2 3 4 5 6 1 2 3 4 5 8 9 1 11 11 12 13 k 14 l 16 m 17 n 18 o 19 k 2 l 2 m 21 n 21 o 22 p 23 q 23 r 24 24 25 26 27 28 k 28 l 29 m 29 3 31 34 42 44 1, 8, 6, 4, 2, 1,2 1, 8 6 4 2 1, 8, 6, 4, 2, 1,2 1, 8

More information

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539 43-50 Issue Date 2007-02 URL http//hdlhandlenet/2433/59070 Right Type Departmental

More information

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m} 1209 2001 223-232 223 (Kazuo Iida) (Youichi Murakami) 1 ( ) ( ) ( ) (Taylor $)$ [1] $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}\mathrm{m}$ $02\mathrm{m}\mathrm{m}$ Whitehead and Luther[3] $\mathrm{a}1[2]$

More information

28 27 8 4 10 17 2 27 8 7 14 00 1 27 8 14 15 00 2 27 8 21 15 00 1 4 5 2 6 1 27 ABCD 6 2 2 5 5 8% 108 100 49 2 13 140 22 12 7 153-8501 19 23 03-5478-1225 27 8 4 (1) (2) (3) (1) (2) (3) (4) (5) (6) (7) (8)

More information

01

01 2 0 0 7 0 3 2 2 i n d e x 0 7. 0 2. 0 3. 0 4. 0 8. 0 9. 1 0. 1 1. 0 5. 1 2. 1 3. 1 4. 1 5. 1 6. 1 7. 1 8. 1 9. 2 0. 2 1. 2 3. 2 4. 2 5. 2 6. O k h o t s k H a m a n a s u B e e f 0 2 http://clione-beef.n43.jp

More information

Computer Simulation in Thermoplastic Injection Molding Takaaki Matsuoka Toyota Central Research and Development Laboratories, Inc. 41-1, Yokomichi, Na

Computer Simulation in Thermoplastic Injection Molding Takaaki Matsuoka Toyota Central Research and Development Laboratories, Inc. 41-1, Yokomichi, Na Computer Simulation in Thermoplastic Injection Molding Takaaki Matsuoka Toyota Central Research and Development Laboratories, Inc. 41-1, Yokomichi, Nagakute, Aichi 480-11, Japan A package of computer programs

More information

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Summary Previously, the authors developed the plastic

More information

252

252 251 252 253 254 40 50 65 75 100 125 150 200 48.5 0.3 60.5 0.3 76.6 0.3 89.6 0.3 114.8 0.4 140.9 0.4 166.1 0.5 217.300.55 47.5 0.3 59.5 0.3 75.4 0.3 88.3 0.3 113.2 0.4 139.1 0.4 163.9 0.5 214.700.55 30

More information

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:- 1413 2005 60-69 60 (Namiko Mitarai) Frontier Research System, RIKEN (Hiizu Nakanishi) Department of Physics, Faculty of Science, Kyushu University 1 : [1] $[2, 3]$ 1 $[3, 4]$.$\text{ }$ [5] 2 (collisional

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 0 1 2 3 4 5 6 1964 1978 7 0.0015+0.013 8 1 π 2 2 2 1 2 2 ( r 1 + r3 ) + π ( r2 + r3 ) 2 = +1,2100 9 10 11 1.9m 3 0.64m 3 12 13 14 15 16 17 () 0.095% 0.019% 1.29% (0.348%) 0.024% 0.0048% 0.32% (0.0864%)

More information

圧縮性LESを用いたエアリード楽器の発音機構の数値解析 (数値解析と数値計算アルゴリズムの最近の展開)

圧縮性LESを用いたエアリード楽器の発音機構の数値解析 (数値解析と数値計算アルゴリズムの最近の展開) 1719 2010 26-36 26 LES Numerical study on sounding mechanism of air-reed instruments (Kin ya Takahashi) * (Masataka Miyamoto) * (Yasunori Ito) * (Toshiya Takami), (Taizo Kobayashi), (Akira Nishida), (Mutsumi

More information

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsutomu * 1/Mori, Hideki * 1 Ishikawa, Satoshi * 1/Shin,

More information

DS II 方程式で小振幅周期ソリトンが関わる共鳴相互作用

DS II 方程式で小振幅周期ソリトンが関わる共鳴相互作用 1847 2013 157-168 157 $DS$ II (Takahito Arai) Research Institute for Science and Technology Kinki University (Masayoshi Tajiri) Osaka Prefecture University $DS$ II 2 2 1 2 $D$avey-Stewartson $(DS)$ $\{\begin{array}{l}iu_{t}+pu_{xx}+u_{yy}+r

More information

1 44

1 44 16 SMBC 1 44 2 44 3 44 1 1,000 2,000 4 44 16 16 5 44 6 44 7 44 8 44 9 44 10 44 11 44 12 44 13 44 14 44 15 44 16 44 17 44 SMBC 18 44 19 44 3 20 44 PL IPO M&A 21 44 8 22 44 1 23 44 2 DES 24 44 25 44 3 3

More information

$\Downarrow$ $\Downarrow$ Cahn-Hilliard (Daisuke Furihata) (Tomohiko Onda) 1 (Masatake Mori) Cahn-Hilliard Cahn-Hilliard ( ) $[1]^{1

$\Downarrow$ $\Downarrow$ Cahn-Hilliard (Daisuke Furihata) (Tomohiko Onda) 1 (Masatake Mori) Cahn-Hilliard Cahn-Hilliard ( ) $[1]^{1 $\Downarrow$ $\Downarrow$ 812 1992 67-93 67 Cahn-Hilliard (Daisuke Furihata (Tomohiko Onda 1 (Masatake Mori Cahn-Hilliard Cahn-Hilliard ( $[1]^{1}$ reduce ( Cahn-Hilliard ( Cahn- Hilliard Cahn-Hilliard

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

89 91 93 95 97 99 101 103 105 107 109 111 113 115 H 117 119 l l 121 l l 123 125 127 129 l l l l 131 kl kl kl kl 133 135 137 139 141 143 145 147 149 151 153 155 157 159

More information

株式会社日清製粉グループ本社 第158期中間事業報告書

株式会社日清製粉グループ本社 第158期中間事業報告書 C O N T E N T S...1...3...5...7...9...11...12...13...14 1 2 3 4 3.7% 5.8% 8.5% 70,100kL 81.2% 0.8% 25 20 15 10 5 0 9.18 9.54 9.74 9.62 9.65 9.71 21.04 21.97 22.44 22.23 8.54 22.31 22.45 20.41 15 12 9 6

More information

112 Landau Table 1 Poiseuille Rayleigh-Benard Rayleigh-Benard Figure 1; 3 19 Poiseuille $R_{c}^{-1}-R^{-1}$ $ z ^{2}$ 3 $\epsilon^{2}=r_{\mathrm{c}}^{

112 Landau Table 1 Poiseuille Rayleigh-Benard Rayleigh-Benard Figure 1; 3 19 Poiseuille $R_{c}^{-1}-R^{-1}$ $ z ^{2}$ 3 $\epsilon^{2}=r_{\mathrm{c}}^{ 1454 2005 111-124 111 Rayleigh-Benard (Kaoru Fujimura) Department of Appiied Mathematics and Physics Tottori University 1 Euclid Rayleigh-B\ enard Marangoni 6 4 6 4 ( ) 3 Boussinesq 1 Rayleigh-Benard Boussinesq

More information

Microsoft Word - GrCadSymp1999.doc

Microsoft Word - GrCadSymp1999.doc u u Ê É Îf ÈÉ uõòñõçí uõòñõëêi oy * ÎÏ Ó ÏÕ( ) **Ï ÓÐ ÕÖ *** ÎÏ Ó ÏÕ( ) APÑÖÕ ÑÕ { itot, inoue, furuhata} @trl.ibm.co.jp shimada@cmu.edu Automated Conversion of Triangular Mesh to Quadrilateral Mesh with

More information

untitled

untitled /, S=1/2 S=0 S=1/2 - S// m H m H = S G e + + G Z (t) 1 0 t G Z (t) 1 0 t G Z (t) 1 0 t SR G Z (t) = 1/3 + (2/3)(1-2 t 2 )exp(- 2 t 2 /2) G Z (t) 1-1/3 1/3 0 3/ 3/ t G Z (t)

More information

Fig. 1 Experimental apparatus.

Fig. 1 Experimental apparatus. Effects of Concentration of Surfactant Solutions on Drag-Reducing Turbulent Boundary Layer In this study, the influence of a drag-reducing surfactant on the turbulent boundary layer was extensively investigated

More information

NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat

NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculation techniques of turbulent shear flows are classified

More information

(11-5) Abstract : An ultrasonic air pump utilizing acoustic streaming is discussed and its efficient simulation method using finite element analysis (

(11-5) Abstract : An ultrasonic air pump utilizing acoustic streaming is discussed and its efficient simulation method using finite element analysis ( (11-5) Abstract : An ultrasonic air pump utilizing acoustic streaming is discussed and its efficient simulation method using finite element analysis (FEA) is suggested in this report. The pump induces

More information

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi ODA Department of Human and Mechanical Systems Engineering,

More information

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm Neutron Visual Sensing Techniques Making Good Use of Computer Science J-PARC CT CT-PET TB IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm cm cm barn cm thn/ cm s n/ cm

More information

1. 2001 10 2 480 2003 8 1.6 5 2. 90 3. 4. 5. 5 60 6. 1 2 2 2 4 5 5 6 6 6 7 10 10 10 12 12 12 14 14 15 15 60 15 17 17 18 2001 10 2 480 2003 8 1.6 5 1 1.8 3.6 1 6.8 1.5 3 3 5 6065 70 5 1.22004 1 1 2002 4

More information

IPSJ SIG Technical Report Vol.2014-DPS-158 No.27 Vol.2014-CSEC-64 No /3/6 1,a) 2,b) 3,c) 1,d) 3 Cappelli Bazen Cappelli Bazen Cappelli 1.,,.,.,

IPSJ SIG Technical Report Vol.2014-DPS-158 No.27 Vol.2014-CSEC-64 No /3/6 1,a) 2,b) 3,c) 1,d) 3 Cappelli Bazen Cappelli Bazen Cappelli 1.,,.,., 1,a),b) 3,c) 1,d) 3 Cappelli Bazen Cappelli Bazen Cappelli 1.,,,,,.,,,,.,,.,,,,.,, 1 Department of Electrical Electronic and Communication Engineering Faculty of Science and Engineering Chuo University

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

fx-3650P_fx-3950P_J

fx-3650P_fx-3950P_J SA1109-E J fx-3650p fx-3950p http://edu.casio.jp RCA500002-001V04 AB2 Mode

More information

2.

2. 2. 10 2. 2. 1995/12006/111995/42006/12 2. 10 1995120061119954200612 02505 025 05 025 02505 0303 02505 250100 250 200 100200 5010050 100200 100 100 50100 100200 50100 10 75100100 0250512 02505 1 025051205

More information