H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

Similar documents
d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

第86回日本感染症学会総会学術集会後抄録(I)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

TOP URL 1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

本文/目次(裏白)

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

プログラム


変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

量子力学 問題

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

73

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

構造と連続体の力学基礎

201711grade1ouyou.pdf

TOP URL 1

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

chap9.dvi

( )


Note.tex 2008/09/19( )

: , 2.0, 3.0, 2.0, (%) ( 2.

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

TOP URL 1

meiji_resume_1.PDF

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

nsg02-13/ky045059301600033210

日本内科学会雑誌第102巻第4号

I

LLG-R8.Nisus.pdf


x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

基礎数学I

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

untitled

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

gr09.dvi

Part () () Γ Part ,

30

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

数学の基礎訓練I

A

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a



m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

GJG160842_O.QXD


5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l


2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

19 /


1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

pdf

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

支持力計算法.PDF

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds


Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

QMII_10.dvi

Transcription:

3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e iht = gµ B α (t)b e e iωt 44

Φ ν (t) = [ t ] i dt V H (t ) + Φ ν () t = t gµ B β (t) = gµb Ψ(t) β Ψ(t) = gµ B Φ(t)e ih t β e iht Φ(t) [ t ] [ t ] = gµ B Φ() + i dt V H (t ) + (t) β i dt V H (t ) + Φ() t igµ B dt [V H (t ), (t)] β t = i(gµ B ) B e dt e iωt [ (t α ), (t)] β = (gµ B ) χ(, ω)b e e iωt χ βα (, ω) = i t dt e iω(t t) [ β (t), α (t )] χ βα (, ω) = i t dt e iω(t t) { β (t), α (t )} 3.. Random Phase Approximation (RPA) H = kσ ε kσ c kσ c kσ + U i n i n i + gµ B H e e iωt ε kσ = h k m + σ χ(, ω iδ) χ (, ω iδ) χ(, ω iδ) = χ (, ω iδ) Iχ (, ω iδ) I I = U/N 3..3 χ (, ω iδ) χ χ(, ω iδ) = (, ω) + iχ (, ω) Iχ (, ω) iiχ (, ω) = χ (, ω) + iχ (, ω) Iχ (, ω) iω/γ(, ω) 45

Γ(, ω) [ ( )] ω Γ(, ω) = Iχ (, ω)[ Iχ (, ω)] = ωχ (, ) Iχ (, ω) χ I + I χ (, ω) (, ) χ (, ) [ ( )] = ωχ (, ) Iχ (, ω) χ (, ) + I χ (, ω) χ, χ (, ω) = χ (, ω) (, ) Iχ (, ω) Imχ(, ω) = χ (, ω) Iχ (, ω) ωγ(, ω) ω + Γ (, ω) ω Γ(, ω) ω Γ = Γ(, ) Imχ(, ω) = χ (, ) Γ ω Iχ (, ) Iχ (, ) ω + Γ = χ(, ) ωγ (, ) ω + Γ Reχ(, ) = dω π Imχ(, ω) ω (3.) /Iχ (, ) Iχ (3.) ωγ Imχ(, ω) = Reχ(, ) ω + Γ (3.) Q Reχ(Q +, ) = Reχ(Q, ) + A ij i j + N Γ = { Γ (κ + ) Γ (κ + ) i,j κ χ (Q) A ij Γ (3.3) 3. i αβ j = 3 dω N coth(βω/)imχ(, ω) (3.4) π (3.4) 46

3.. (3.4) ω coth(βω/) n(ω) coth(βω/) = eβω + e βω = + e βω = + n(ω) (3.4) (3.4) i = + Z T i Z = 3 N i T = 6 N dω Imχ(, ω) π dω π e βω Imχ(, ω) D(T, ω) πn (3.5) Imχ(, ω) (3.6) n(ω) κ CR (3.5) Imχ(, ω) (3.) Lorentz Q Q, ω = ωγ Imχ(Q +, ω) = χ(q +, ) ω + Γ 47

Γ - (F) (AF) N /χ(q +, ) = N /χ(q, ) + A + (3.7) ( ) N = A Aχ(Q, ) + + = A(κ + + ) { Γ (κ + ) (F ) Γ = (3.8) Γ (κ + ) (AF ) κ = N Aχ(Q, ) κ κ κ κ B B 4πB 3 N Ω = (π) 3 3 = Ω (π) π B (π) B (3D ) (D ) (D ) Ω B x = / B χ(q +, ) Γ (3.8) χ(q +, ) = N T A y + x Γ = πt x α (y + x ) = πt u(x) = πt v(x) u = x α (y + x )/t, v = x α (y + x ) T T A y t T = Γ α+ B /π, T A = A B, χ(q, )κ / B = N /T A y = κ / B, t = T/T T, T A Γ χ(q +, ) T T A J 48

α d N = d x d dx Imχ(, ω) = = π T ξx α πt T A ξ + u π T ζx α πt T A ζ + v ξ = ω/πt, ζ = ω/πt 3.3 y y (3.) = 6T d x d +α ξ dx dξ T T A e πξ ξ + u = 3dT A(y, t) T A [ A(y, t) = x d +α dx ln u ] u ψ(u), (u = x(y + x )/t) (3.9) ξ digamma ψ(u) (A.) (Appendix A. ) (3.9) y t 3.3. y x (3.9) x x = [ x d +α ln u ] u ψ(u) xd +α u x d = t y + x y = x d 3 d > y = d y = d t > y 49

d T A T /(3T d) 3 C(ν, t c ) πt y/ (t/4) ln(t /3 /y) πt/(y / ) 4: y C(ν, t c ) Appendix Appendix y 4 3.3. d > y = (3.9) y = u = x +α /t x u x d +α dx = (tu) ν du + α u = + α tν u ν du, ν = (d + α)/( + α) (3.) t T = 3T d T A A(, t) /t A(, t) = t ν duu ν [ln u /u ψ(u)], ν = (d + α)/( + α) u t A(, t) = C(ν) = + α tν C(ν), ν = (d + α)/( + α) (3.) πζ(α)γ(α) (π) α sin(απ/) (3.) C(ν) (A.3) (Appendix A. ) d = 3 (F) (AF) t T = { 3T T A C(4/3)t 4/3 9T T A C(3/)t 3/ (F ) (AF ) (3.3) y t A(y, t) = 3 C(4/3)t4/3 πt y + (F ) C(3/)t3/ πt (3.4) y + (AF ) 5

3.3.3 (3.9) digamma A(y, t) = dx xd +α u t = t dx xd α (y + x ) 4 y( + y), 3 t ( y tan ), 3 4 y + y 3.4 y CR (3.) Z = 3T T A d = 3T T A d v = x α (y + x ) ζc x d +α dx ζ dζ ζ + v x d +α dx [ ln(ζ c + v ) ln v ] Lorentz Lorentz (ω) ω ω y = x y Z(y) Z (y) = Z () 3T d T A Z(y) (3.5) Z(y) y- dxx d +α ln [ x α (y + x ) ] = α α = (d + α) + dxx d +α ln x + dxx d +α ln(y + x ) dxx d +α ln(y + x ) x y β = d + α 5

y y 4 ln( + y) /8 + y/4 4 ln( + /y) y/ β = 3 dxx β ln(y + x ) = 3 ln( + y) /9 + y/3 3 y3/ tan (/y / ) y β = [y ln( + /y) + ln( + y) ] y [ln(/y) + ] β = ln( + y) + y / tan πy / β = y Z(y) d + α y + d > α Z(y) = y[ln(/y) + ] + d = α πy / d = α y y y Z (y) = 3 { dω ω N [χ()γ(, ω)] π y ω + Γ (, ω) } ωγ(, ω) Γ(, ω) [χ()γ(, ω)] [ω + Γ (, ω)] y 3 N χ() Γ dω ωγ y π [ω + Γ ] = 3 N χ() Γ y χ()γ(, ω) y y, ω y y ω /ω 3 ω y t=t c 3.5 T c 3 T c /T J kt c J T T A J/k T c J/k kt c i = Z 3 N i T 6 N dω Imχ(, ω) π dω π kt ω Imχ(, ω) 5

i T O() i T i Z i Z O() T c /T T c /T T c /T 5: T = T c kt/ω T > T c T c /T 5 CR Hartee-Fock 3.6 (, ω) (, ω) Imχ(, ω) e βω () = ωc ω c dω(, ω) () () = = ωc ωc dω[ + n(ω)]imχ(, ω) dω[ + n(ω)]imχ(, ω) = ω c dωn( ω)imχ(, ω) ωc dω coth(βω/)imχ(, ω) 53

() () kt Mni Imχ(, ω) dω = Reχ(, ) ω Mni Ishikawa et al. (985) Γ (κ + ) Γ 5 mevå 3 (7 K 6.8 mevå 3 ) B =.3575Å T T = Γ 3 B /π = 9.9 mev (3 K) κ κ = κ (T/T c ), (κ =.35Å ) (gµ B ) χ = N p eff 3g (T T c ), T c = 3 K, p eff =.9 T A (g = ) T A = A B = N B χκ Ni 3 Al = 3g T c B p eff κ =.8 3 [K] Ni 3 Al Bernhoeft et al. (983, 985) Γ c, γ c =.5 5 Å, γ = 3.3 µ evå χ () = χ + c +, Γ = γχ () = γ(χ + c + ) Γ = γc Γ = 4.5 mevå 3 (5.74 3 KÅ 3 ) T B =.578 Å T = 3.59 3 K c κ κ = (χ obs c) χ obs T A χ χ = χ obs /(gµ B ) A A = N χ obs κ /(gµ B ) = c N (gµ B ) = cg d N A µ B w A [cc] d [g] d/w A N = dn A /w A (N A ) d = 7.465, w A = 67.74, N A µ B =.375 [erg K/G ] A A =.375.5 5 7.465 67.74 T A = A B = 3.9 4 [K] =.4 4 Å 3.6. ω ω = (gain) 54

(, ω)dω = n(ω)imχ(, ω)dω Mni Ishikawa NMR T 55