素粒子物理学2 素粒子物理学序論B 2010年度講義第10回

Similar documents
素粒子物理学2 素粒子物理学序論B 2010年度講義第4回

,,..,. 1

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

余剰次元のモデルとLHC

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

TOP URL 1

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

PowerPoint プレゼンテーション

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

Kaluza-Klein(KK) SO(11) KK 1 2 1

SO(2)

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回

極めて軽いダークマターの 新しい検出方法 In preparation

TOP URL 1

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

TOP URL 1

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

W Z Large Hadron Collider LHC ATLAS LHC ATLAS Higgs 1

素粒子物理学2 素粒子物理学序論B 2010年度講義第11回

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

超対称模型におけるレプトンフレーバーの破れ

0406_total.pdf

浜松医科大学紀要

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

( )

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

inflation.key

QMI_10.dvi

LHC-ATLAS Hà WWà lνlν A A A A A A

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ =

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

Slide 1

I

(1) (2) (3) (4) 1

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

2012専門分科会_new_4.pptx

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

nenmatsu5c19_web.key

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

FPWS2018講義千代

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2


[ ]藤原武男

Electron Ion Collider と ILC-N 宮地義之 山形大学

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

Tsuken Technical Information 1

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ


A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

km_atami09.ppt

TeV b,c,τ KEK/ ) ICEPP

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

TOP URL 1

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

untitled

main.dvi

Mott散乱によるParity対称性の破れを検証

meiji_resume_1.PDF

Gmech08.dvi

126 学習院大学人文科学論集 ⅩⅩⅡ(2013) 1 2

基礎数学I

Slide 1

28 Horizontal angle correction using straight line detection in an equirectangular image

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a

数学の基礎訓練I

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

..,,...,..,...,,.,....,,,.,.,,.,.,,,.,.,.,.,,.,,,.,,,,.,,, Becker., Becker,,,,,, Becker,.,,,,.,,.,.,,

L1 What Can You Blood Type Tell Us? Part 1 Can you guess/ my blood type? Well,/ you re very serious person/ so/ I think/ your blood type is A. Wow!/ G

τ-→K-π-π+ν τ崩壊における CP対称性の破れの探索

\615L\625\761\621\745\615\750\617\743\623\6075\614\616\615\606.PS


B

PowerPoint Presentation

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

抄録/抄録1    (1)V

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

untitled

QMII_10.dvi


05Mar2001_tune.dvi

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

Corrections of the Results of Airborne Monitoring Surveys by MEXT and Ibaraki Prefecture

輻射シーソー模型での ヒッグスインフレーションとその ILC での検証 松井俊憲 ( 富山大学 ) 共同研究者 : 兼村晋哉 鍋島偉宏 S.Kanemura, T.Matsui, T.Nabeshima, Phys. Le9. B 723, 126(2013) 2013 年 7 月 20 日 ILC

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.


64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

量子力学 問題

Transcription:

素粒子物理学2 素粒子物理学序論B 2010年度講義第10回

L = ν(i / m ν )ν + l(i / m l )l + 1 2 ( µχ µ χ µ 2 χ 2 ) 1 4 F i µνf iµν + m 2 W W +µ W µ + 1 4 G µνg µν + m2 Z 2 Z µz µ + ea µ ( lγ µ l) g 2 [ W µ + ( νγ µ P L l)+c.c. ] ḡz µ [ νγ µ (s νl P L + s νr P R )ν + lγ µ (s ll P L + s lr P R )l ] 2aχ + χ2 ( + g 2 W 4 +µ W + µ + ḡ2 2 Z µz µ) m l a χ( ll) m ν a χ( νν),

ḡ 2 g 2 2 v = gm W = e sin θ W m W 4 v = gm Z cos θ W = H 2e sin(2θ W ) m Z V µ V ν 2 H h f Y f = v m f f f

ḡ 2 g 2 2 v = gm W = e sin θ W m W 4 v = gm Z cos θ W = H 2e sin(2θ W ) m Z V µ V ν 2 H h f Y f = v m f f f

σ s W - W + W - W + γ Z e - e + e - e + W - W + ν e - e +

σ s W - W + W - W + γ Z e - e + e - e + W - W + ν e - e +

σ s W - W + W - W + γ Z e - e + e - e + W - W + ν e - e +

σ s W - W + W - W + γ Z e - e + e - e + W - W + ν W - W + H e - e + e - e +

σ s W - W + W - W + γ e - e + W - W + Z e - e + W - W + ν H e - e + e - e +

σ s W - W + W - W + γ e - e + W - W + Z e - e + W - W + ν H e - e + e - e +

M = ig 8m 2 W (u νµ γ µ (1 γ 5 )u µ )(u e γ µ (1 γ 5 )u νe )

where s, t are the Mandelstam variables [the c.m. energy s is the square of the sum of the momenta of the initial or final states, while t is the square of the difference between the momenta of one initial and one final state]. In fact, this contribution is coming from longitudinal W bosons which, at high energy, are equivalent to the would be Goldstone bosons as discussed in 1.1.3. One can then use the potential of eq. (1.58) which gives the interactions of the Goldstone bosons and write in a very simple way the three individual amplitudes for the scattering of longitudinal W bosons [ A(w + w w + w )= 2 M ( ) H 2 M 2 2 ( ) ] + H 1 M 2 2 + H 1 (1.150) v 2 v s MH 2 v t MH 2 which after some manipulations, can be cast into the result of eq. (1.149) given previously. W + W W H W + H Figure 1.15: Some Feynman diagrams for the scattering of W bosons at high energy. These amplitudes will lead to cross sections σ(w + W W + W ) σ(w + w w + w ) which could violate their unitarity bounds. To see this explicitly, we first decompose the scattering amplitude A into partial waves a l of orbital angular momentum l A =16π (2l +1)P l (cos θ) a l (1.151) l=0 where P l are the Legendre polynomials and θ the scattering angle. Since for a 2 2 process, the cross section is given by dσ/dω = A 2 /(64π 2 s) with dω =2πdcos θ, one obtains σ = 8π s = 16π s l=0 l =0 (2l +1)(2l +1)a l a l 1 1 dcosθp l (cos θ)p l (cos θ) (2l +1) a l 2 (1.152) l=0 where the orthogonality property of the Legendre polynomials, dcosθp l P l = δ ll, has been used. The optical theorem tells us also that the cross section is proportional to the imaginary part of the amplitude in the forward direction, and one has the identity σ = 1 s Im [ A(θ =0)] = 16π s (2l +1) a l 2 (1.153) l=0

ヒッグス質量に対する理論的制限 WW散乱断面積 GF m2h m2h m2h s A(W W W W ) = [2 + ln(1 + 2 ] 2 s mh s mh 8 2π mh 1 TeV ヒッグスの自己結合定数 v= V = µ φ φ + λ φ φ 2 2 Triviality 1 1 3 Q2 = ln 2 2 λ(v) λ(q) 4π v λ(q) = µ2 /λ λ(v) 1 Q2 3 4π 2 λ(v) ln( v 2 ) 真空の安定性 λ>0が必要 11

実験からの制約 R0(+R.,+S#&-T+'&55 "#$%&'($)&*+,&-&'()(-+./+)0(+1)&$%&-%+2.%(* 80.70 experimental errors 90% CL: LEP2/Tevatron (today) Tevatron/LHC MW [GeV] 80.60 不確定性原理の範囲内でvirtualな 3//(4)5+,-(%64)6.$5+./++12+76&+-&%6&)67( 4.--(4)6.$5 ILC/GigaZ USY ( light S 中間状態が可能 ;9+).+)0(+<6==5+'&55+!%* # % ) & "#$%!') 4&$+8(+-(*&)(%9+:6)0+'! MSSM' 80.50 80.40 80.30 heav 114 MH = SM MH = GeV SM MSSM both models ev 400 G 80.20 量子補正 SY y SU Heinemeyer, Hollik, Stockinger, Weber, Weiglein 08 160 165 170 175 180 185 mt [GeV] ') 65+-.#=0*>+?+)0( 7&4##'+(@,(4)&)6.$ 量子補正には直接観測されない ヒッグスボソン 粒子 7&*#(./+)0(+<6==5+/6(*% の影響も含まれる!,-.86$=+)0(+A;1B '(40&$65'+C$(:+,0>5645DE ヒッグス以外の種々の精密測定からヒッグスの質量を!"##$%&'()&*&+,-'(.&/&#,00 予測可能 F-(4656.$+'(&5#-('($)+! GCHE+/8IJ,-.K(4)6.$L+"')MJNOCJE+P(QN! 12

600 500 M H [GeV/c 2 ] 400 300 200 EW Precision Triviality 100 EW vacuum is absolute minimum 0 3 5 7 9 11 13 15 17 19 log 10! [GeV]

! [fb] 10 5 10 4 qq! qqh SM Higgs production gg! h LHC q V V q q V H 10 3 q H q V q qq! Wh 10 2 bb! h qb! qth TeV4LHC Higgs working group gg,qq! tth qq! Zh 100 200 300 400 500 m h [GeV] g g Q H g g H Q Q

1 2m H spin,color dlip S = (2π) 4 δ 4 (q p 1 p 2 ) M 2 dlip S d 3 p 1 (2π) 3 2E 1 d 3 p 2 (2π) 3 2E 2 Γ(H VV)= G µm 3 H 16 2π δ V 1 4x (1 4x +12x 2 ), x = M 2 V M 2 H Γ Born (H f f) = G µn c 4 2π M H m 2 f β3 f

1 2m H spin,color dlip S = (2π) 4 δ 4 (q p 1 p 2 ) M 2 dlip S d 3 p 1 (2π) 3 2E 1 d 3 p 2 (2π) 3 2E 2 Γ(H VV)= G µm 3 H 16 2π δ V 1 4x (1 4x +12x 2 ), x = M 2 V M 2 H Γ Born (H f f) = G µn c 4 2π M H m 2 f β3 f

100 Higgs Width [GeV] 10 1 0.1 0.01 m H m 3 H 0.001 0 100 200 300 400 Higgs Mass [GeV/c 2 ] 500

!"

100m

100m

10 5! [fb] 10 4 10 3 10 2 gg! h qq! qqh qq! Wh bb! h gg,qq! tth qb! qth TeV4LHC Higgs working group SM Higgs production LHC qq! Zh 100 200 300 400 500 m h [GeV]

LHCでのヒッグス探索能力 必要な統計量 ルミノシティ(fb-1) S/ B ルミノシティ!"# 1,2年目 a few fb-1 / yr 2,3,4年目 a few x 10 fb-1 /yr 予想は非常に難しい 標準理論ヒッグスの質量 図はLHC実験の1つATLAS実験単独での結果予想 実験グループはもう1つ CMS ある 非常に軽くなければ数年で発見可能 24

ヒッグス発見後にやること ゲージ対称性により ゲージボソンの質量は本来ゼロ カイラル対称性により フェルミオンの質量は本来ゼロ 標準理論では 素性の違う2種類の粒子に質量を与える メカニズムが一つ 省エネだが若干 かなり 怪しい ヒッグスセクターには原理がない 結合定数 質量 の関係を確認することが最重要 結果次第では発見された ヒッグスは標準理論の枠外 25