Korteweg-de Vries

Similar documents
t, x (4) 3 u(t, x) + 6u(t, x) u(t, x) + u(t, x) = 0 t x x3 ( u x = u x (4) u t + 6uu x + u xxx = 0 ) ( ): ( ) (2) Riccati ( ) ( ) ( ) 2 (1) : f

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

Gmech08.dvi

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

gr09.dvi

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ


II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

Gmech08.dvi

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

Chap11.dvi

( ) ( )

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

phs.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

振動と波動

meiji_resume_1.PDF


(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

DVIOUT

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

KENZOU

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

Morse ( ) 2014

tnbp59-21_Web:P2/ky132379509610002944

1 c Koichi Suga, ISBN

Untitled

Note.tex 2008/09/19( )

08-Note2-web

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W


v er.1/ c /(21)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

Gmech08.dvi

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

05Mar2001_tune.dvi

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

29

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

K E N Z OU

C:/KENAR/0p1.dvi

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

30

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

pdf

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

chap03.dvi

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

85 4

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

2011de.dvi

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

QMII_10.dvi



( ) kadai4, kadai4.zip.,. 3 cos x [ π, π] Python. ( 100 ), x cos x ( ). (, ). def print cos(): print cos()

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

第1章 微分方程式と近似解法

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a


i

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

Acrobat Distiller, Job 128

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a


) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

chap1.dvi

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp

Transcription:

Korteweg-de Vries 2011 03 29

,.,.,.,, Korteweg-de Vries,.

1 1 3 1.1 K-dV........................ 3 1.2.............................. 4 2 K-dV 5 2.1............................. 5 2.2.............................. 8 2.3 K-dV............. 11 2.4 1.............................. 13 3 2 15 3.1 2........................... 15 3.2 2....................... 17 3.3 K-dV......................... 20 3.4 2........................ 21 4 25

2 26 27

1 3 1 1.1 K-dV.,.,.,, (solitary wave) -on..,,. Korteweg-de Vries (, K-dV ), 1895 D. J. Korteweg G. de Vries,,. K-dV. u t 6u u x + 3 u = 0. (1.1.1) x3 x, t, u. 1965, N. J. Zabusky M. D. Kruskal K-dV *1,., K-dV., K-dV. *1 Zabusky and Kruskal (1965) K-dV u t + u u x + δ2 3 u x 3 = 0, (1.1.1),.

1 4 1.2. 2, K-dV, K-dV, K-dV., 1,. 3, K-dV 2., K-dV,,. 4.

2 K-dV 5 2 K-dV 2.1 K-dV,. u t 6u u x + 3 u x 3 = 0 (2.1.1). u/ t, K-dV (2.1.1) *1., (2.1.2). u t 6u u x = 0 (2.1.2), u t + c u x = 0 c = const. u = g(x ct). g x ct. (2.1.2) u,, (2.1.2) u = f(η) η = x + 6ut (2.1.3) *1 (2.1.2 ) Burgers

2 K-dV 6. (2.1.2), ( u u t 6u u x = 6t., t 6u u x f = du dη ) f = 0 (2.1.4). (2.1.4), (2.1.3) (2.1.2). (2.1.3), K-dV. (2.1.2) (2.1.3). η = x + 6ut, 6u.,,. u,. (2.1.2),,.. u t 6u u x = 0 (2.1.2),. 3.0, 128, 1.0 10 5.,, 32 *2. u, 100.0, 2. 2.1.1. (2.1.2) u = f(x + 6ut).,, 2.1.1,,., 2.1.1,,.,.,,. *2 u,.

2 K-dV 7 (a) (b) 16 (c) 32 2.1.1: (2.1.2). x, u.

2 K-dV 8 2.2 K-dV u t 6u u x + 3 u x 3 = 0 (2.1.1). (2.1.1),. u t + 3 u x = 0 (2.2.1) 3, (2.2.1). t = 0 u = ϕ(x). ϕ(x) 2l. ϕ(x) 2l/n (n = 1, 2, ), ϕ(x) = n=0 α n cos nπx l + n=1 β n sin nπx l (2.2.2). α n, β n. k n k n = nπ/l, (2.2.2) ϕ(x) = α n cos k n x + n=0 β n sin k n x (2.2.3). n ω n, u n u n exp(ik n x ω n t), (2.2.1), n n=1 ω n = k 3 n (2.2.4). t > 0 k n x ω n t, t > 0 (2.2.1) u = α n cos (k n x ω n t) + n=0. β n sin (k n x ω n t), n 1 (2.2.5) n=1 α 0 = 1 2l α n = 1 l β n = 1 l l l l l l l ϕ(x)dx, ϕ(x) cos k n x dx, n 1 ϕ(x) sin k n x dx, n 1 (2.2.6)

2 K-dV 9. (2.2.5), (2.2.1)., (2.2.4), k n, v gn v gn = 3k 2 n (2.2.7)., n 2.,,,.,., A n Fourier u = A n = α 2 n + β 2 n, n = 0, 1, 2.,,,.,,.. (2.2.1),. 3.0, 128, 1.0 10 6., 1000.,,, u = 10 3 sech 2 ( x 3.0/2.0 12.0/10 3 ) *3. 2.2.1.,, x..,,, (2.2.6),. *3 K-dV. 2.4 K-dV,.

2 K-dV 10 (a) (b) 400 (c) 800 2.2.1: (2.2.1). x, u.

2 K-dV 11 2.3 K-dV, K-dV. u t 6u u x + 3 u x 3 = 0 (2.1.1) 2.3.1.., (a) u., (b).,.,,,.,.,,,.,,,. (a) (b) 2.3.1:. x, u, u.,.

2 K-dV 12,,., K-dV,,.

2 K-dV 13 2.4 1, K-dV, K-dV (2.1.1), 1., c (c > 0) u = f(η), η = x ct. (2.1.1), K-dV. cf 6ff + f = 0. (2.4.1) f f η. η, f = f = f = = 0, (2.4.1) f = (c + 3f)f. f, (f ) 2 = (C f)f 2. c/2 = C. c > 0, C < 0., > 0 C f < 0. g = C f, ln g i C g + i C = i C(η x 0 ). i, x 0,. g g = i C tanh{i C/2(η x 0 )}. u = f(η) = C + g 2, C = A { } A u = Asech 2 2 (x 2At x 0) (2.4.2). 1. C < 0 A > 0.

2 K-dV 14 K-dV 1 (2.4.2)., A > 0,.. 2A,.,., sech 1, 1/ A/2.,., K-dV,. (2.4.2) 1,.,,.

3 2 15 3 2 3.1 2 1,,., 2. K-dV u t 6u u x + 3 u x 3 = 0 (2.1.1).,. K-dV (2.1.1). u t 6uu x + u xxx = 0 (3.1.1), u φ u = 2 2 ln φ (3.1.2) x2. x, (3.1.1) ( ) 2 2 2 t x ln φ + 6 x ln φ + 4 2 x ln φ = 0 4., K-dV. φ x φ t φφ xt = 3(φ xx ) 2 4φ x φ xxx + φφ xxxx (3.1.3) φ = 1 + e 2θ, θ = kx ωt (3.1.4)

3 2 16, (3.1.3) ω = 4k 3 (3.1.5). k, ω (3.1.4). (3.1.5), (3.1.4) K-dV., (3.1.4) (3.1.2), u, u = 2k 2 sech 2 (kx ωt) (3.1.6). (3.1.6) 1, (3.1.4) K-dV., (3.1.4) A,, (3.1.2) A = e 2δ, φ = 1 + Ae 2θ (3.1.7) u = 2k 2 sech 2 (kx 4k 3 t δ), A. (3.1.7),,, i, φ = 1 + A i e 2θ i, θ i = k i x ω i t, i = 1, 2. K-dV.,, A 3 φ = 1 + A 1 e 2θ 1 + A 2 e 2θ 2 + A 3 e 2(θ 1+θ 2 ) (3.1.8), ω i = 4ki 4, i = 1, 2 (3.1.9) ( ) 2 k1 k 2 A 3 = A 1 A 2 (3.1.10) k 1 + k 2, K-dV *1. (3.1.8) (3.1.2), K-dV 2,., φ (3.1.8), 2. *1 (3.1.8) K-dV (3.1.3), e 2θ i, e 2(θ 1+θ 2 ), e 4θ 1+2θ 2, e 2θ 2+4θ 2,, 0 (3.1.9), (3.1.10).

3 2 17 3.2 2, φ 2 φ = 1 + A 1 e 2θ 1 + A 2 e 2θ 2 + A 3 e 2(θ 1+θ 2 ) (3.1.8).., θ i = k i x ω i t ω i = 4ki 4, i = 1, 2 (3.1.9) ( ) 2 k1 k 2 A 3 = A 1 A 2 (3.1.10) k 1 + k 2.,. (3.1.9), (3.1.10), A 1, A 2, k 1, k 2., (3.1.6), k i, (3.1.7) (3.1.2) A i., t ± u *2., φ. 1 0, k 1 x ω 1 t 0. 2 θ 2, θ 2 θ 1, θ 2 = k 2 x ω 2 t = k 2 (θ 1 ) + k ( 2 1 ω 2 k 1 k 1 ω 1 k 1 = k 2 k 1 (θ 1 ) + k 2 k 1 ( 1 k2 2 k 2 1 k 2 ) ω 1 t ) ω 1 t (3.2.1). k 1 > k 2 > 0. 1, 2,. t, θ 2 0, k 1 > k 2 (3.2.1) θ 2 k ( ) 2 1 k2 2 ω k 1 k1 2 1 t t., e 2θ 2 0, φ φ = 1 + A 1 e 2θ 2 (3.2.2) *2.

3 2 18. A 1 = exp{ 2δ ( ) 1 }, (3.1.2) u, u = 2k 2 1sech 2 {k 1 x ω 1 t δ ( ) 1 } (3.2.3)., t θ 1 = 0. (3.2.3), k 2 1., t +, θ 2 k ( ) 2 1 k2 2 ω k 1 k1 2 1 t + t +, e 2θ 2 e 2θ 1. φ, ( φ = A 2 1 + A ) 3 e 2θ 1 e 2θ 2 (3.2.4) A 2. t, u, u = 2k 2 1sech 2 {k 1 x ω 1 t δ (+) 1 } (3.2.5)., δ (+) 1 = 1 ( ) 2 ln A3 A 2., θ 2 0 t ± u, t, t +. u = 2k2sech 2 2 {k 2 x ω 2 t δ ( ) 2 }, (3.2.6) δ ( ) 2 = 1 ( ) 2 ln A3, A 1 u = 2k 2 2sech 2 {k 2 x ω 2 t δ (+) 2 }, (3.2.7) δ (+) 2 = 1 2 ln A 2

3 2 19, t 2 [ ] u = 2ki 2 sech 2 {k i x ki 3 t δ ( ) i }, (3.2.8) t + i=1 δ ( ) 1 = 1 2 ln A 1, δ ( ) 2 = 1 2 ln ( A3 A 1 ), u = 2 [ 2ki 2 sech 2 {k i x ki 3 t δ (+) i } ], (3.2.9) i=1 δ (+) 1 = 1 ( ) 2 ln A3, A 2 δ (+) 2 = 1 2 ln A 2. (3.2.8) (3.2.9), δ (±) i ± i x i, x i 4k 2 i t, i = 1, 2, t. t x 1 < x 2, t +, x 1 > x 2. +,., 2 2k 2 1, 2k 2 2., t t +., 2k 2 1 1, 1 = 1 k 1 (δ (+) 1 δ ( ) 1 ), = 1 2k 1 ln A 1A 2 A 3., 2k2 2 2 2 = 1 ln A 3 2k 2 A 1 A 2. (3.1.10) k 1 > k 2, ( ) 2 A 1 A 2 k1 + k 2 = > 1 A 3 k 1 k 2,, 1 < 0, 2 > 0., 1 < 2,.

3 2 20 3.3 K-dV 2,, 2,,, K-dV. K-dV u t 6uu x + u xxx = 0 (3.1.1) u t = x (3u2 u xx ) (3.3.1). x u, u x, u xx, 0, (3.3.1) x +,, d dt + udx = 0. I 1 = + udx (3.3.2) (3.1.1) u uu t = 6u 2 u x uu xxx ( ) u 2 = (2u 3 uu xx + (u ) x) 2 t 2 x 2. x +,, + ( ) 1 I 2 = 2 u2 dx (3.3.3)., (3.1.1) u 2, u 3, u 4,. K-dV u,, u x, u xx,.

3 2 21 3.4 2 2. K-dV. u t uu x + u xxx = 0 (3.4.1), 1 2,. 2,,. (3.4.1). t, x, j, i, K-dV u j+1 i u j 1 i 2 t = u j i u j i+1 uj i 1 2 x uj i+2 2uj i+1 + 2uj i 1 uj i 2 2( x) 3 (3.4.2)., u, x + 0., u. (3.4.2),,,. (3.4.2) u., u 2. u, u 2., u 2, (3.4.2) u x,. K-dV (3.4.1) u, t ( u 2 2 ) (u j 2) 2 uj i+1 uj i 1 u j u j i+2 2uj i+1 + 2uj i 1 uj i 2 i (3.4.3) 2 x 2( x) 3, u, 0., 0., (3.4.1) u 2. (3.4.1) ) uu x = αuu x + β x α + β = 1 ( 1 2 u2, (3.4.4)

3 2 22., uu x αu i u i 1 u i+1 2 x + β 1 2 u2 i+1 1 2 u2 i 1 2 x (3.4.5). (3.4.5), u α, β. u 2. (3.4.5) u, u u i,, 1 3 x (u3 ) u i u i+1 ( αu i + β 2 u i+1 ) u i u i 1 ( αu i + β 2 u i 1 x,.,, ). α = 1 3, β = 2 3 (3.4.6),,., (3.4.6) (3.4.5), (3.4.2)., u j+1 i u j 1 i 2 t = u j i (u j i+1 uj i 1 ) 6 x + (uj i+1 )2 (u j i 1 )2 6 x uj i+2 2uj i+1 + 2uj i 1 uj i 2 2( x) 3.. 3.0, 256, 2.0 10 7., 25000. ( ) ( ) x X1 x X2 u = U1sech 2 U2sech 2 2α/U1 2α/U2.. α = 6.0, U1 = 1440.0, U2 = 720.0, X1 = 3.0/4.0, X2 = 3.0/2.0. xu 3.4.1. (a) 2

3 2 23 (a) (b) 6000 (c) 12000 (d) 24000 3.4.1: K-dV 2., (b) x. 3.2, A 2A. u,.,. (c),.,.,,,,.. (d).., 3.2

3 2 24 (a) (b) 3.4.2: a: xtu. z u.,.. b: xt u x.,,., 3.4.2. (a). x 2.0, t 2.5,. xt 3.4.2(b). (b),,,.,., t t +.

4 25 4 K-dV. K-dV,, K-dV,. 2,,.

4 26,.,..,.,.,,., DCL.

4 27 [1], 1995: 30 3 30,, 219pp. [2],, 1984: 6,, 183pp. [3], 1985:,, 249pp. [4], 2007: - KdV -, [5] Zabusky, J. N. and Kruskal, M. D., 1965: Interatction of solitons in a collisionless plasma and the recurrence of initial states, P hys.rev.lett., 15, 240-243.