A03-2.dvi

Similar documents
: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

teionkogaku43_527

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat

untitled

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

KENZOU Karman) x

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

緩衝材透水特性II 技術資料.PDF

<4D F736F F D208F4390B38DC58F49938A8D6595A CA90858D48985F95B F8F43959C82B382EA82BD B5F2E646F6378>

工学的な設計のための流れと熱の数値シミュレーション

Fig. 1 Experimental apparatus.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Fig. 2 Pressure-temperature diagram of pure substance and mixed thel consisting of n-tridecane and n-pentane Fig. 1 Schematic of present model

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

A Numerical Study on Early Stage of Flame Kernel Development in Spark Ignition Process for Methane/Air Combustible Mixtures Shinji NAKAYA*6, Kazuo HAT

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

JFE.dvi

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

プログラム

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

mains.dvi

Numerical Analysis II, Exam End Term Spring 2017

空間多次元 Navier-Stokes 方程式に対する無反射境界条件

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

基礎数学I

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

28 Horizontal angle correction using straight line detection in an equirectangular image

Effect of Radiation on a Spray Jet Flame Ryoichi KUROSE and Satoru KOMORI Engineering Research Laboratory, Central Research Institute of Electric Powe

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH


空力騒音シミュレータの開発

Journal of the Combustion Society of Japan Vol.56 No.178 (2014) FEATURE /Issues and Solutions for Engine Combustion φ-t マッ

Journal of Textile Engineering, Vol.53, No.5, pp

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

KENZOU

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Journal of the Combustion Society of Japan Vol.58 No.185 (2016) ORIGINAL PAPER 火災旋風近傍の流れに関する研究 Flow Around a Fire Whirl *

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

パーキンソン病治療ガイドライン2002

研修コーナー


44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

生活設計レジメ

TOP URL 1

I II III 28 29


2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

本文/目次(裏白)

第5章 偏微分方程式の境界値問題

IV (2)

Autumn

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

[1] 2 キトラ古墳天文図に関する従来の研究とその問題点 mm 3 9 mm cm 40.3 cm 60.6 cm 40.5 cm [2] 9 mm [3,4,5] [5] 1998

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member


untitled

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

総研大恒星進化概要.dvi

untitled

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

特-7.indd

IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

2 q effective mean dynamic pressure [Pa] q cr critical value of dynamic pressure [Pa] q CW heat flux for cold wall [J/m 2 ] r th throat radius [m] x a

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

IPSJ SIG Technical Report Vol.2014-HCI-158 No /5/22 1,a) 2 2 3,b) Development of visualization technique expressing rainfall changing conditions

Gravothermal Catastrophe & Quasi-equilibrium Structure in N-body Systems

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

Fig. 1. Schematic drawing of testing system. 71 ( 1 )

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

Computational Semantics 1 category specificity Warrington (1975); Warrington & Shallice (1979, 1984) 2 basic level superiority 3 super-ordinate catego

液相化学反応を伴う乱流拡散の研究名城大学理工学部研究報告 No.5 21 R 6 R S 1) B 6 2 M =1 Nozzle ID =1.2 OD = x mm 6 mm 6 mm 2 mm M = 1 mm mm 1.5 mm x 1 x = 1 m

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

I

IPSJ SIG Technical Report Vol.2014-ARC-213 No.24 Vol.2014-HPC-147 No /12/10 GPU 1,a) 1,b) 1,c) 1,d) GPU GPU Structure Of Array Array Of

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU CFD PIV IHI M

dvi

Transcription:

14 A3-2 Numerical Analyses in the Secondary Combustion Chamber of the Ducted Rocket Engine 184-8588 2-24-16 E-mail: kikumoto@starcadmechtuatacjp Kousuke KIKUMOTO Dept of Mech Systems Eng Tokyo Noko Univ Koganei Tokyo 184-8588 APAN A ducted rocket engine is one of the air-breathing engines The thrust is obtained by mixing the combustible material that generated in the primary combustion chamber with the air and re-burning them in the secondary combustion chamber To improve the engine performance it is important to grasp the mixing and combustion characteristics in the secondary combustion chamber In the present study the mixing and re-burning are numerically simulated under the thin layer approximations Computations are performed in the cases of 2 and 4 intakes The effects of the inlets on the mixing and the re-burning processes are explained 1 2% 8% 2 Fig1 (1) 1 1 2 4 Fig 1: Ducted Rocket Engine for Missiles 1 2 1 1 2 2 2 2 (2) 2 q ω (3) 2 ( ) Navier-Stokes H 2 O 2 N 2 H O OH H 2 O 7 21 3 7 Navier-Stokes (4) Q t + E ξ + F η + G ζ = 1 G v R e ζ + S ρ 1 ρ 1 U ρ 7 ρ 7 U Q = 1 ρu ρv E = 1 ρuu + ξ x p ρvu + ξ y p ρw ρwu + ξ z p e U(e + p) ρq ρqu ρω ρωu ρ 1 V ρ 1 W ρ 7 V ρ 7 W F = 1 ρuv + η x p ρvv + η y p G = 1 ρuw + ζ x p ρvw + ζ y p ρwv + η z p ρww + ζ z p V (e + p) W (e + p) ρqv ρqw ρωv ρωw 1 Copyright c 2 by SCFD

G v ρdm 1 X 1ζ ẇ 1 ρdm 1 X 7ζ ẇ 7 = 1 µm 1 u ζ + µm 2 ζ x µm 1 v ζ + µm 2 ζ y S = 1 µm 1 w ζ + µm 2 ζ z m 4 (µ l + µ t /P rq )m 1 q ζ S q (µ l + µ t /P rω )m 1 ω ζ S ω ρ = e = ρ i p = ρ i R M i TX i = ρ i ρ ρ i h i p + 1 2 ρ(u2 + v 2 + w 2 ) m 1 = ζ 2 x + ζ 2 y + ζ 2 z m 2 = 1 3 (ζ xu ζ + ζ y v ζ + ζ z w ζ ) m 3 = 1 ( u 2 + v 2 + w 2) 2 ζ m 4 = µm 1 m 3 + µm 2 W + ρdm 1 (h i X iζ )+κm 1 T ζ µ i Chapman-Enskog µ l Wilke (5) X i µ i µ l = X i + 7 j=1 X j φ ij j i { } 1+[(µ i /µ j )(ρ j /ρ i )] 1 2 2 (M i /M j ) 1 4 φ ij = 8[1+(Mi /M j )] 1 2 h i = a i T + a 1i 2 T 2 + a 2i 3 T 3 + a 3i 4 T 4 + a 4i 5 T 5 + H i a i a 4i H i ANAF (8) Evans 7 8 (9) ẇ i = M i 8 (β ij α ij )(R fj R bj ) j=1 R fj R bj 22 2 36 (ρu 2 A) j :(ρu 2 A) =1:1 Fig2 3 Tab1 Case Number of Air Intakes Angle Between Intakes (deg) (a) 4 9 (b) 2 18 (c) 2 9 µ t Coakley q ω (6) ρq 2 µ t =9f µ R e ω ρq f µ =45 (1 2 ) exp( 18R e µ l ω ) +45 µ κ D L e =1 µ = µ l + µ t κ = C p ( µ l C p = C pi ρ i P rl + µ t P rt ) ρd =( µ l + µ t ) P rl P rt C pi h i 4 5 (7) Fig 2: Computational Cases Tab 1: Initial Conditions in The Chamber Chamber Length : Diameter L : D =5: 1 Reynolds Number R e =82 1 6 Main Fuel Flow Mach Number M =2 Molar Fraction [H 2 ] :[N 2 ] =3:1 Air Injection Location of Holes x/d = 1 Mach Number M j =3 Molar Fraction [O 2 ] j :[N 2 ] j =1:4 C pi = a i + a 1i T + a 2i T 2 + a 3i T 3 + a 4i T 4 2 Copyright c 2 by SCFD

3 Fig3 (b) Fig 3: Mach Line Contours in The Case (b) Fig4 3/5 ( ) (2) ( ) 3 (a) (b) 8 (c) 4 (c) 2 1 (b) (c) 2 (b) 2 4 I II 2 III IV 2 I II Tab2 (b) (c) I II III IV Fig5 (c) Fig6 Fig7 H 2 H 2 O H 2 H 2 O (c) Fig6 (x/d =4) H 2 Fig 4: Velocity Vector Diagrams at x/d = 3 and Fuel Trajectory Lines from The Chamber Front H H 2 O ( ) R AH2 O= Ψ da A Ψ = ( 2ρH2 M H2 /A 2ρ H2O M H2O + ρ H M H + ρ OH M OH + 2ρ H 2O M H2O Fig8 (x/d =1) (x/d=4) 9 H H 2 O (c) (a) (b) 4 2 2 ) 3 Copyright c 2 by SCFD

Tab 2: The number of Regions Regions Case I II III IV (RD) (RS) (LD) (LS) Mixing-(a) 8 Combustion-(a) 8 Mixing-(b) 4 4 Combustion-(b) 4 4 Mixing-(c) 2 2 Combustion-(c) 2 2 R : L : D : S : Fuel Rich Region Fuel Lean Region Directly Generated Region Secondary Induced Region 1 2 (c) 3 4 9% H 2 CO 1 Vol 39 No 446 1991 3 2 Kikumoto K and Higashino F Numerical Analyses in The Secondary Combustion Chamber of The Ducted Rocket Proceedings of 8th Annual Conference of The CFD Society of Canada 2 pp 991 997 3 Takakura Y Ogawa S and Ishiguro T Turbulence Models for 3-D Transonc Viscous Flows AIAA Paper No 89 1952 1989 4 Shinn Yee H and Uenishi K Extension of a Semi-Implicit Shock-Capturing Algorithm for 3-D Fully Coupled Chemically Reacting Flows in Generalized Coordinates AIAA Paper No 87 1577 1987 5 Reid R Prausnitz and Poling B The Properties of Gasses and Liquid 4th Edition McGraw-Hill Book Company 1987 6 Coakley T Turbulence Modeling Methods for the Compressible Navier-Stokes Equations AIAA Paper No 83 1693 1983 7 Gordon S and McBride B Computer Program for Calculation of Complex Chemical Equilibrium Compositions Rocket Performance Incident and Reflected Shocks and Chapman-ouguet Detonations NASA SP 273 Nondimensionalized Temperature 15 3 Fig 5: Temperature Contours 8 Chase M r Davies C Downey r Frurip D McDonald R and Synerud A ANAF Thermochemical Tables Third Edition ournal of Physical and Chemical Reference Data Vol 14 Supplement No1 1985 9 Evans and Schexnayder C Influence of Chemical Kinetics and Unmixedness of Burning in Supersonic Hydrogen Flames AIAA ournal Vol 18 No 2 198 pp 188 193 4 Copyright c 2 by SCFD

Nondimensionalized H 2 Density 25 5 Fig 6: H 2 Density Contours Fig 8: Burnup Fraction Nondimensionalized H 2 O Density 1 2 Fig 7: H 2 O Density Contours 5 Copyright c 2 by SCFD