d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

Size: px
Start display at page:

Download "d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )"

Transcription

1 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ t x)) f t f U, x 1,...,x n )) dϕ t f)x) f d ϕ x )ϕ i) t x) i t f ) x)) x ϕ i t x)) ξ iϕ t x)) ξ f ξf) dϕ t f)x) ) t0 ξf) dϕ t f)x) )t0 f ) x x) ξ ix) i T x M),..., t x 1 x n x 1,...,x i 1,x i + t, x i+1,...,x n ) Tx M) dx 1,..., dx n d x j x x j x j t x 1,...,x i 1,x i + t, x i+1,...,x n ) δ ij, i j 1 i j 0 T x M), Tx M) T xm),...,, Tx M) dx 1,...,dx n x 1 x n dx j )δ ij f d f, df f dx i ξf) ξf) f ) x) ξ ix) df)ξ) U, x 1,...,x n )) α f i dx i ϕ t α f i ϕ t x)) dϕ i) t d ) f t0 iϕ t x)) f i x j ξ j 67

2 d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) ϕ t0 t α α ξ L ξ α p α ϕ t α t x Tx M) p p Tx M) d ) ϕ t0 t α p 23.1 p α p d ) ϕ t0 t α α ξ L ξ α 23.2 p α, q β, ξ L ξ α β) L ξ α) β + α L ξ β) 23.2 d L ξ α β) ` ϕ t0 t α β) ` d ϕ t0 t α ϕ t β) d ` t0 ϕ t d α) β + α ` ϕ t0 t β) L ξ α) β + α L ξ β) 23.3 p α, ξ 23.3 dl ξ α)l ξ d α d dl ξ α)d` t0 ϕ t d α)` ϕ t0 t d α) L ξ d α) α L ξ α d ) ϕ t0 t α f i x j ξ j dx i + f i ξ i x j dx j T x M) ξ Tx M) α M αξ) f i ξ i dαξ)) dαξ)) d f i ξ i f i ξ i x j dx j + f i x j ξ i dx j 68

3 L ξ α dαξ)) α d α ξ i f i dx j L ξ α d ) x j t0 ϕ t α f i x j ξ j dx i f i dx i d f i dx i f i x j dx j dx i f i x j ξ i dx j ξ ξ i x i 2 Tx M T x M dx i dx j, x k ) δ ki dx j k1 δ kj dx i d α ξ dx i dx j dx i x k i ξ d α) L ξ α dαξ)) + i ξ d α) k ) Tx M) p p Tx M) dx i 1 dx ip T x M) p 1 Tx M) x k i x k dx i1 dx ip ) 1) j 1 n k1 δ kij dx i1 dx ij 1 dx ij+1 dx ip p α f i1 i p dx i1 dx ip, ξ i 1 < <i p ξ i i ξ α i 1 < <i p 1) j 1 f i1 i p ξ ij dx i1 dx ij 1 dx ij+1 dx ip ) p α, q β α β, i ξ α β) i ξ α) β + 1) p α i ξ β) 2) F : U V U, V V 1 α, V ξ F i ξ α)i F 1 ξf α 69

4 3) F : U V U, V V p α, V ξ F i ξ α)i F 1 ξf α ) α f i1 i p dx i1 dx ip, i 1 < <i p β g j1 j q dx j1 dx jq, ξ ξ i j 1 < <j q i ξ α β) i ξ p i 1 < <i p k1 i 1 < <i p + q f i1 i p g j1 j q dx i1 dx ip dx j1 dx jq ) j 1 < <j q 1) k f i1 i p g j1 j q ξ ik j 1 < <j q dx i1 dx ik 1 dx ik+1 dx ip dx j1 dx jq 1) p+k f i1 i p g j1 j q ξ jk k1 i 1 < <i p j 1 < <j q dx i1 dx ip dx j1 dx jk 1 dx jk+1 dx jq i ξ α) β + 1) p α i ξ β) 2) F y 1,...,y n )x 1,...,x n ) α f i dx i, ξ ξ i i ξ α f i ξ i F α f i F ) x i dy j, F 1 ξ ξ i y j F ) y j y j i F 1 ξf α f i F ) ξ i F ) y j y j f i F )ξ i F )F i ξ α) 3) V p α, q β, V ξ F i ξ α)i F 1 ξf α, F i ξ β)i F 1 ξf β, F i ξ α β)) F i ξ α) β + 1) p α i ξ β)) F i ξ α) F β + 1) p F α F i ξ β) i F 1 ξf α F β + 1) p F α i F 1 ξf β i F 1 ξf α F β) i F 1 ξf α β) 2) f i1 i p dx i1 dx ip p f, α 69 L ξ f ξf) dfξ) i ξ d f) L ξ α dαξ)) + i ξ d α) di ξ α)+i ξ d α) 23.7 ) p α, ξ L ξ α di ξ α)+i ξ d α) p q 70

5 p α q β di ξ α β)) + i ξ dα β)) di ξ α) β + 1) p α i ξ β)) + i ξ d α) β + 1) p α d β)) di ξ α) β + 1) p 1 i ξ α) d β + 1) p d α) i ξ β)+α di ξ β) +i ξ d α)) β + 1) p+1 d α) i ξ β)+ 1) p i ξ α) d β)+α i ξ d β)) di ξ α) β + α di ξ β)+i ξ d α)) β + α i ξ d β)) di ξ α)+i ξ d α)) β + α di ξ β)+i ξ d β)) L ξ α) β + α L ξ β)l ξ α β) 69 f i1 i p dx i1 dx ip p ξ ξ i, η η i x i x i η j ξ j ) [ξ,η] [ξ,η] ξi η i x j 23.8 α, ξ, η L ξ L η α L η L ξ α L [ξ,η] α ` f 23.8 i ξ j α f i dx i L ξ α ξ j + f j dxi x j L ξ L η α L η L ξ α k1 k1 k1 k1 ` f i η j η j + f j ξk + ` «f j η k ξ j η k + f k dx i x k x j x k x j 2 f i η j ξ k + f i η j ξ k + f j η j 2 η j ξ k + f j ξ k x j x k x j x k x k x k + f «j ξ j η k ξ j η k + f k dx i x k x j ` f i ξ j ξ j + f j ηk + ` «f j ξ k η j ξ k + f k dx i x k x j x k x j 2 f i ξ j η k + f i ξ j η k + f j ξ j 2 ξ j η k + f j η k x j x k x j x k x k x k + f j x k ξ k η j + f k ξ k x j η j «dx i L ξ L η α L η L ξ α L ξ L η α L η L ξ α fi η j ξ k ξ j η k )+f j 2 η j ξ k x j x k x k x k k1 +f k η k ξ j ξ «k η j ) dx i x j x j fi η j ξ k ξ j η k )+f j η j ξ k ξ j x j x k x k x k k1 L [ξ,η] α 2 ξ j x k η k ) «η k ) x k dx i 23.8 p 23.9 p α, ξ, η L ξ L η L η L ξ )α L [ξ,η] α 71

6 23.9 f L ξ L η f L η L ξ f ξηf)) ηξf)) [ξ, η]f) L [ξ,η] f 23.8 p α, q β L ξ L η L η L ξ )α L [ξ,η] α,l ξ L η L η L ξ )β L [ξ,η] β α β L ξ L η L η L ξ )α β) L ξ L η α β)) L η L ξ α β)) L ξ L η α) β + α L η β)) L η L ξ α) β + α L ξ β)) L ξ L η α)) β +L η α) L ξ β)+l ξ α) L η β)+α L ξ L η β)) L η L ξ α)) β L ξ α) L η β) L η α) L ξ β) α L η L ξ β)) L ξ L η α) L η L ξ α)) β + α L ξ L η β) L η L ξ β)) L [ξ,η] α) β + α L [ξ,η] β) L [ξ,η] α β) p α, ξ, η i ξ i η α) i η i ξ α) i ξ L η α L η i ξ α i [ξ,η] α α f i dx i i ξ L η α L η i ξ α ` f i η j i ξ η j + f j dxi ) x j ` f i η j η j ξ i + f j ξ i x j i [ξ,η] α `fj ξ i η j η i ξ j ) η i f j ξ j ) η i f j ξ j + f j ξ j ) p α, q β i ξ L η L η i ξ )α i [ξ,η] α,i ξ L η L η i ξ )β i [ξ,η] β α β i ξ L η L η i ξ )α β) i ξ L η α β)) L η i ξ α β)) i ξ L η α) β + α L η β)) L η i ξ α) β + 1) p α i ξ β)) i ξ L η α)) β + 1) p L η α) i ξ β)+i ξ α) L η β)+ 1) p α i ξ L η β)) L η i ξ α)) β i ξ α) L η β) 1) p L η α) i ξ β) 1) p α L η i ξ β)) i ξ L η α) L η i ξ α)) β + 1) p α i ξ L η β) L η i ξ β)) i [ξ,η] α) β + 1) p α i [ξ,η] β) i [ξ,η] α β) ) R 3 ω dx 1 dx 2 dx 3 3 ξ a ij x j L ξ ω 0 i, 2) R 3 α x 1 dx 2 dx 3 x 2 dx 1 dx 3 + x 3 dx 1 dx 2 3 ξ a ij x j L ξ α 0 x i, i ) L ξ ω di ξ ω)+i ξ d ω) di ξ ω) dξ 1 dx 2 dx 3 ξ 2 dx 1 dx 3 + ξ 3 dx 1 dx 2 ) 3 ξ i 3 ω a ii ω 72

7 3 a ii 0 2) L ξ α di ξ α)+i ξ d α) dx 1 ξ 2 dx 3 x 1 ξ 3 dx 2 x 2 ξ 1 dx 3 + x 2 ξ 3 dx 1 + x 3 ξ 1 dx 2 x 3 ξ 2 dx 1 )+3i ξ ω ξ 2 dx 1 dx 3 + x 1 d ξ 2 dx 3 ξ 3 dx 1 dx 2 x 1 d ξ 3 dx 2 ξ 1 dx 2 dx 3 x 2 d ξ 1 dx 3 + ξ 3 dx 2 dx 1 + x 2 d ξ 3 dx 1 +ξ 1 dx 3 dx 2 + x 3 d ξ 1 dx 2 ξ 2 dx 3 dx 1 x 3 d ξ 2 dx 1 ) +3ξ 1 dx 2 dx 3 3ξ 2 dx 1 dx 3 +3ξ 3 dx 1 dx 2 ξ 1 dx 2 dx 3 ξ 2 dx 1 dx 3 + ξ 3 dx 1 dx 2 x 1 a 21 dx 1 + a 22 dx 2 ) dx 3 x 1 a 31 dx 1 + a 33 dx 3 ) dx 2 x 2 a 11 dx 1 + a 12 dx 2 ) dx 3 + x 2 a 32 dx 2 + a 33 dx 3 ) dx 1 +x 3 da 11 dx 1 + a 13 dx 3 ) dx 2 x 3 a 22 dx 2 + a 23 dx 3 ) dx 1 a 11 + a 22 + a 33 )x 1 dx 2 dx 3 x 2 dx 1 dx 3 + x 3 dx 1 dx 2 ) 3 a ii 0 2) 1) L ξ ω di ξ ω) 0 3 ε δ ij x j [ε, ξ] 0 i, 0i [ε,ξ] ω i ε L ξ ω L ξ i ε ω L ξ i ε ω L ξ α L ξ α 0 L ξ α 00 dl ξ α)l ξ d α) 3L ξ ω L ξ ω 0 n n dx 1 dx n, ε δ ij x j i, α i ε ω 1) i x i dx 1 dx i 1 dx i+1 dx n ξ a ij x j L ξ ω 0 L ξ α 0 i, a ii S π N : S 2 \{p N } R 2, π S : S 2 \{p S } R 2 1) R 2 ξ P v 1,v 2 ) + Qv 1,v 2 ) v 1 v 2 π 1 N ) ξ S 2 2) R 2 α P v 1,v 2 )dv 1 + Qv 1,v 2 )dv 2 π N α S 2 v u 1,u 2 ) v 12 + v, v v 12 + v ), v u 1 2 1,v 2 ) 2 u 12 + u, u u 12 + u ) 2 2 1) u 1 v 1 u 1 v 2 u 1 + u 2 v 1 u 1 + u 2 v 2 u 2 u 2 v 1 v 1 v 12 + v ) + v u 1 v 1 v 12 + v ) 2 2 u 2 v v 1 + 2v 1v 2 v 12 + v 22 ) 2 u 1 v 12 + v 22 ) 2 u 2 u 2 2 u 2 1 ) 2u 1 u 2 u 1 u 2 v 1 v 2 v 12 + v ) + v u 1 v 2 v 12 + v ) 2 2 u 2 2v 1v 2 + v v 2 v 12 + v 22 ) 2 u 1 v 12 + v 22 ) 2 u 2 2u 1 u 2 u 1 +u 1 2 u 2 2 ) u 2 73

8 π S π 1 u 1 N ) ξ P u 12 + u, u u 12 + u )u u 2 1 ) 2u 1 u 2 ) 2 u 1 u 2 u 1 +Q u 12 + u, u u 12 + u ) 2u 2 1u 2 +u 2 1 u 2 2 ) ) 2 u 1 u 2 P, Q k, k P k, Q k π S π 1 N ) ξ k +2 u 2 2 u 2 1 )P k u 1,u 2 ) 2u 1 u 2 Q k u 1,u 2 ) u 12 + u 22 ) k u 1 + 2u 1u 2 P k u 1,u 2 )+u 2 1 u 2 2 )Q k u 1,u 2 ) u 12 + u 22 ) k u 2 k>2 2k u 1,u 2 )0, 0) k +2 0 P k Q k 0 k 2 k 2 u 2 2 u 1 2 )P 2 u 1,u 2 ) 2u 1 u 2 Q 2 u 1,u 2 )Au u 2 2 ) 2 2u 1 u 2 P 2 u 1,u 2 )+u 1 2 u 2 2 )Q 2 u 1,u 2 )Bu u 2 2 ) 2 P 2 u 1,u 2 )u 2 2 u 1 2 )A 2u 1 u 2 B Q 2 u 1,u 2 ) 2u 1 u 2 A u 2 2 u 1 2 )B P, Q P 1 u 1,u 2 )a 1 u 1 + a 2 u 2, Q 1 u 1,u 2 )b 1 u 1 + b 2 u 2 u 2 2 u 1 2 )P 1 u 1,u 2 ) 2u 1 u 2 Q 1 u 1,u 2 ) u 2 2 u 1 2 )a 1 u 1 + a 2 u 2 ) 2u 1 u 2 b 1 u 1 + b 2 u 2 ) a 1 u 1 3 a 2 +2b 1 )u 1 2 u 2 +a 1 2b 2 )u 1 u a 2 u 2 3 a 1 u 1 u u 2 2 ) a 2 +2b 1 )u u 2 2 )u 2 +2a 1 2b 2 )u 1 u a 2 +2b 1 )u 2 3 2u 1 u 2 P 1 u 1,u 2 )+u 1 2 u 2 2 )Q 1 u 1,u 2 ) 2u 1 u 2 a 1 u 1 + a 2 u 2 )+u 1 2 u 2 2 )b 1 u 1 + b 2 u 2 ) b 1 u a 1 + b 2 )u 1 2 u 2 + 2a 2 b 1 )u 1 u 2 2 b 2 u 2 3 b 1 u 1 u u 1 2 )+ 2a 1 + b 2 )u u 2 2 )u 2 + 2a 2 2b 1 )u 1 u a 1 2b 2 )u 2 3 P 1 u 1,u 2 )a 1 u 1 + a 2 u 2, Q 1 u 1,u 2 ) a 2 u 1 + a 1 u 2 0 2) {v 2 2 v 1 2 )A 2v 1 v 2 B + a 1 v 1 + a 2 v 2 + c 1 } v 1 +{ 2v 1 v 2 A v 2 2 v 1 2 )B a 2 v 1 + a 1 v 2 + c 2 } v 2 dv 1 v 1 du 1 + v 1 du 2 u 1 u 1 u 2 u 1 u 12 + u )du u 1 2 u 2 u 12 + u )du u u 1 u 12 + u 22 ) du u 1u 2 u 12 + u 22 ) du 2 2 dv 2 v 2 du 1 + v 2 du 2 u 2 u 1 u 2 u 1 u 12 + u )du u 2 2 u 2 u 12 + u )du u 1u 2 u 12 + u 22 ) du u u 2 u 12 + u 22 ) du 2 2 π 1 S π N ) α u 1 P u 12 + u, u u 12 + u ) u u u 12 + u 22 ) du u 1u 2 u 12 + u 22 ) du 2) 2 u 1 +Q u 12 + u, u u 12 + u ) 2u 1 u u 12 + u 22 ) du u u 2 u 12 + u 22 ) du 2) 2 74

9 P k, Q k π S 1 π N ) α k 2 u 2 2 u 1 2 )P k u 1,u 2 ) 2u 1 u 2 Q k u 1,u 2 ) u 12 + u 22 ) 2+k du 1 + 2u 1u 2 P k u 1,u 2 )+u 1 2 u 2 2 )Q k u 1,u 2 ) u 12 + u 22 ) 2+k du 2 k 0 2k +4 u 1,u 2 )0, 0) k +2 0 P k Q k 0 S ) p α, ξ 1,..., ξ p αξ 1,...,ξ p )i ξp i ξ1 α f i ξ d f ξf) αξ 1,...,ξ p ) 1 p! i ξ p i ξ1 α p α, ) q β α β)ξ 1,...,ξ p+q ) 1 p + q sign αξ j1,...,ξ jp )βξ k1,...,ξ kq ) j j 1 j p k 1 j p k 1 k q 1 k q ) 1 p + q j 1 j p k 1 k q 1 p+q sign j 1 j p k 1 k q i ξp+q i ξ1 α β) 23.6 i i ξj p ξ j1 α)i i ξk q ξ k1 β) ±1 i ξ i η i η i ξ i i ξk q ξ k1 i i ξj p ξ j1 α β) i i ξj p ξ j1 α)i i ξk q ξ k1 β) i ξp+q i ξ1 α β) i i ξj p ξ j1 α)i i ξk q ξ k1 β) «1 p + q sign j 1 j p k 1 k q , ) α d α)ξ 1,ξ 2 )ξ 1 αξ 2 )) ξ 2 αξ 1 )) α[ξ 1,ξ 2 ]). 2) p α d α)ξ 1,...,ξ p+1 ) p+1 1) i 1 ξ i αξ 1,...,ξ i 1,ξ i+1,...,ξ p+1 )) + i<j 1) i+j α[ξ i,ξ j ],ξ 1,...,ξ i 1,ξ i+1,...,ξ j 1,ξ j+1,...,ξ p+1 ) 3) L ξ α)ξ 1,...,ξ p ) ξαξ 1,...,ξ p ) αξ 1,...,ξ i 1, [ξ,ξ i ],ξ i+1,...,ξ p ) ) i ξ1 L ξ2 α L ξ2 i ξ1 α i [ξ1,ξ 2 ]α 23.7 i ξ1 i ξ2 d α + i ξ1 d i ξ2 α i ξ2 d i ξ1 α d i ξ2 i ξ1 α i [ξ1,ξ 2 ]α α d α)ξ 2,ξ 1 )+ξ 1 αξ 2 )) ξ 2 αξ 1 )) i [ξ1,ξ 2 ]α ξ 1, ξ 2 d α)ξ 1,ξ 2 )ξ 1 αξ 2 )) ξ 2 αξ 1 )) α[ξ 1,ξ 2 ]) 75

10 2) i ξ2 i ξ1 d α i ξ1 d i ξ2 α i ξ2 d i ξ1 α +di ξ1 i ξ2 α i [ξ1,ξ 2 ]α i ξp+1 i ξ1 d α p+1 1) i 1 i ξi di ξp+1 i ξi+1 i ξi 1 i ξ1 α) + i<j 1) i+j i ξp+1 i ξj+1 i ξj 1 i ξi+1 i ξi 1 i ξ1 i [ξi,ξ j ]α p p 1 α p p 1 i ξ1 α i ξp+1 i ξ2 d i ξ1 α p+1 1) i i ξi di ξp+1 i ξi+1 i ξi 1 i ξ2 i ξ1 α) i2 + 1) i+j i ξp+1 i ξj+1 i ξj 1 i ξi+1 i ξi 1 i ξ2 i [ξi,ξ j ]i ξ1 α 1<i<j p 1 i ξ2 α i ξp+1 i ξ3 i ξ1 d i ξ2 α p+1 i ξ1 di ξp+1 i ξ3 i ξ2 α) 1) i i ξi di ξp+1 i ξi+1 i ξi 1 i ξ3 i ξ1 i ξ2 α) i3 2<j 1) j i ξp+1 i ξj+1 i ξj 1 i ξ3 i [ξ1,ξ j ]i ξ2 α 1) i+j i ξp+1 i ξj+1 i ξj 1 i ξi+1 i ξi 1 i ξ3 i ξ1 i [ξi,ξ j ]i ξ2 α 2<i<j p 1 i ξ1 i ξ2 α i ξp+1 i ξ3 d i ξ1 i ξ2 α i ξp+1 i ξ3 d i ξ2 i ξ1 α p+1 1 i 1 i ξi di ξp+1 i ξi+1 i ξi 1 i ξ3 i ξ2 i ξ1 α) i3 1) i+j i ξp+1 i ξj+1 i ξj 1 i ξi+1 i ξi 1 i ξ3 i [ξi,ξ j ]i ξ2 i ξ1 α 2<i<j i ξp+1 i ξ3 i ξ2 i ξ1 d α) i ξp+1 i ξ3 i ξ1 d i ξ2 α i ξ2 d i ξ1 α +di ξ1 i ξ2 α i [ξ1,ξ 2 ]α) p+1 1) i 1 i ξi di ξp+1 i ξi+1 i ξi 1 i ξ1 α) + i<j 1) i+j i ξp+1 i ξj+1 i ξj 1 i ξi+1 i ξi 1 i ξ1 i [ξi,ξ j ]α 3) i ξp i ξ1 L ξ α i ξp i ξ2 i [ξ1,ξ]α + i ξp i ξ2 L ξ i ξ1 α i ξp i [ξ1,ξ]α + i ξp i ξ3 i [ξ2,ξ]i ξ1 α + i ξp i ξ3 L ξ i ξ2 i ξ1 α... i ξp i ξi+1 i [ξi,ξ]i ξi 1 i ξ1 α + L ξ i ξp i ξ1 α ξαξ 1,...,ξ p ) p αξ 1,...,ξ i 1, [ξ, ξ i ],ξ i+1,...,ξ p ) 24 G G G G C G 76

11 G G C G g L g : G G L g h) gh G 1 v T 1 G h G L h ) v T h G ξ L g ) ξ ξ) g T 1 G ξ, η [ξ,η] T1 G p p T1 G a L h) a p Th G h 1 G L 1 h ) a p α L g ) α α) 24.1 α ξ i ξ α ), L g ) i ξ α)i Lg 1 ) ξl g ) α i ξ α α d α g T 1 G {e 1,...,e n } [e i,e j ] [e i,e j ] c k ije k T 1 G k {e 1,...,e n } {e 1,...,e n} de k ) ) de k))e i,e j )e i e ke j )) e j e ke i )) e k[e i,e j ]) e k e j)δ kj, e k e i)δ ki e i e k e j)), e j e k e i)) 0 de k))e i,e j ) e k[e i,e j ]) e k k c k ije k ) c k ij GLN; R) G A T 1 G) T 1 GLN; R) R N 2 A g G ϕ A t B) Be ta A g B G A B) d ) t0 BetA BA T B G T B GLN; R) R N 2 A 1, A 2 [A 1,A 2 ] B) d ) t0 ϕa 1 t) A 2ϕ A 1 t B)) d ) t0 ϕa 1 t) A 2Be ta 1 ) d ) t0 BetA 1 A 2 e ta 1 )BA 1 A 2 A 2 A 1 ) A 1, A 2 [A 1,A 2 ] A 1 A 2 A 2 A ) SO3) so3) T 1 SO3)

12 t A + A 0) e , e , e [e i,e j ] e 1, e 2, e 3 d e i 2) SL2; R) sl2; R) T 1 SL2; ) R) ) ) Tr A 0) H, S, U H, S, U ) [e 1,e 2 ]e 3,[e 1,e 3 ] e 2,[e 2,e 3 ]e 1. d e 1 e 2 e 3,de 2 e 1 e 3,de 3 e 1 e 2. 2) [H, S] S, [H, U] U, [S, U] H. d H S U,dS H S,dU H U. G G G m M n G. ev : G M g, x) L g x M L g1 L g2 x)l g1 g 2 x, L 1 x x G G n n dimg 1 e 1,...,e n µ e 1 e n µ µ 1 µ h G R h µ µ M p α ev α G M p p + n π G µ) ev α) G M G p α mα) mα)x) π G µ) ev α) G {x} G G M L h g, x) gh 1,h x) ev L h ev L h π G µ) ev α)) L h π G µ) L h ev α) π G R h 1 µ) ev α) π G µ) ev α) L h mα)))x) L h ) π G µ) ev α)) G {L h x} L h π G µ) ev α)) G {x} π G µ) ev α) G {x} mα)x) α p G p c mα) c π G µ) ev α) π G µ) ev α). G G c G {g} c G 78

13 α α L g c) c π G µ) ev α)π G µ) {g} c π G µ) c c {g} c L g c) ev α) α π G µ) α mα) α mα) α M G M M G G G d R[1] 24.21) SO3) d R[e 1] R[e 2] R[e 3] d R[e 2 e 3] R[e 1 e 3] R[e 1 e 2] d R[e 1 e 2 e 3] c d ) H DR k SO3)) R k 0,3),HDR k SO3)) 0k 0,3) 25 M α x Tx M) Tx M) T x M) α x M 0 ker α T x M) n 1 M f d f x 0 0 x {x fx) fx0 )} n 1 x 0 n 1 ker d f g d f gx 0 ) 0 n 1 α g d f x 0 0 α d α 0 α d α g d f d g d f) M α x 0 0 α d α 0 x 0 f, g g d f 0 α g d f α x 0 U, ϕ x 1,...,x n )) α f i dx i f n 1 n 1 ξ 1,...,ξ n 1 ) ξ i f i i 1,..., n 1) x n 79

14 α d α 0 f i dx i ) d f k dx k ) k1 k1 f i f k x j dx i dx j dx k [ξ i,ξ j ][ f i, f j ] x n x j x n f j + f i f j f i ) + f i f j x j x n x n x n α d α dx i dx j dx n f j + f i f j f i + f i f j x j x n x n [ξ i,ξ j ]0 ξ 1,..., ξ n 1 R n 1 x R n 1 x 0 ϕ 1 0,...,0,fx)) x n ξ 1,..., ξ n 1 ker d f n 1 α d f g α g d f α g d f x 0 0 d α dg d f d g g α α d α 0, β d α β α 25.2 M α, p β α 0 α β 0 p 1 γ β γ α Tx M) dx 1,..., dx n e 1 α x e 1,..., e n p p Tx M) p Tx M) {dx i1 dx ip } i1 < <i p {e j1 e jp } j1 < <j p x e 2,..., e n T M C α e 1, β g j1 j p e j1 e jp α β 0 1 <j 1 j 1 < <j p g j1 j p 0 β e 1 g 1j2 j p e j2 e jp ) j 2 < <j p M U i λ i U i β α γ i p 1 γ i γ i λ i γ i α γ α i λ i γ i i λ i α γ i i λ i β β 25.1 α d α 0 1 β d α β α 80

15 x F : U R x F : U R q F q ϕ : U R n F R n R p R q p + q n) R n R q R p x 1,...,x p ), R q y 1,...,y q ) ker dy 1 ker dy q a ij ) i,,...,q U GLq; R) dy 1,..., dy q 1 α i a ij dy j j 1,..., q) ker α 1 ker α q dy j a 1 ) jk a kl dy l a 1 ) jk α k k1 k1 k1 d α i d a ij dy j d a ij a 1 ) jk α k ) k1 k1 a 1 ) jk d a ij ) α k d α i β ik α k 1 β ik k1 ker α 1 ker α q kerγ 1 ker γ q γ i c ij α j GLq; R) c ij d γ i δ ik γ j 1 δ ik k1 d γ i d c ij α j d c ij α j + c ij d α j d c ij c 1 ) jk γ k )+ k1 c 1 ) jk d c ij + k1 c ij k1 c ij β jk ) α k β jk α k p ker α 1 ker α q 1 α 1,..., α q d α i β ik α k 1 β ik q 1 α 1,...,α q 25.3 ) M p+q p x M U 1 α 1,..., α q ker α 1 ker α q x V q F : V R q p k1 81

16 d α i β ik β ik α k 1 U, x 1,...,x p ; y 1,...,y q )) p y 1,...,y q ) + b li i 1, y l l1..., p) α 1,..., α q ker α 1 ker α q α l dy l b li dx i l 1,..., q) p ξ i + b li i 1,..., p) ξ p y l l1 [ξ i,ξ j ] p [ξ i,ξ j ] ξ i i 1,..., p) 1 [ξ i,ξ j ] k 1,..., p) ξ i + b li i 1,..., p) y l l1 [ + m1 l1 b mj b mj m1 b li, + y l x j y m l1 b mi x j + b li x j l1 m1 b mj y l + b li b mj y l k1 ] y m b mj b li y l l,m1 l1 x k y m b lj b mi y l ) y m l,m1 b mj b li y m y l α l dy l b li dx i l 1,..., q), β li g lij dy j f lij dx j + ddy l b li dx i ) b li x j dx j dx i f lij dx j + b li dy j dx i y j g lij dy j ) dy i b ik dx k ) k1 g lij g lji b li f lji + g lkj b ki y j k1 b li b lj f lkj b ki f lki b kj x j k1 82

17 b mj b mi b mj b mi + b li b lj x j y l y l l1 l1 f mkj b ki f mki b kj ) k1 + b li f mlj + g mkl b kj ) b lj f mli + l1 k1 l1 g mkl b li b kj g mkl b ki b lj l1 k1 l1 k1 g mlk b li b kj l1 k1 l1 k1 g mkl g mlk g mkl b ki b lj 0 g mkl b ki ) k1 p α x ker α ker α {v T x M) iv α 0 p 1 T x M)} ker α α f i1 i p dx i1 dx ip i 1 < <i p ξ ξ i, η η i i ξ α f i1 i x i x p ξ ij dx i1 i dx ij 1 dx ij+1 dx ip 0,i η α f i1 i p η ij dx i1 dx ij 1 dx ij+1 dx ip 0 a, b R i aξ+bη α f i1 i p aξ ij + bη ij )dx i1 dx ij 1 dx ij+1 dx ip a +b f i1 i p ξ ij dx i1 dx ij 1 dx ij+1 dx ip f i1 i p η ij dx i1 dx ij 1 dx ij+1 dx ip ) n 0 n Ω ker Ω 0 2) T 0 R 4 kerd x 1 d x 2 +dx 3 d x 4 ) 0. T 0 R 6 kerd x 1 d x 2 d x 3 +dx 4 d x 5 d x 6 )0. n M 0 Ω ξ Ω div ξ L ξ Ω divξ)ω. R n n d x 1 d x n, ξ div ξ ξ i ξ i 25.5 M 0 n Ω 0, Ω 1 F 0 F t : M M F 1 Ω 0 Ω R n ω ker ω 0 n 83

18 n 2m) T 0 R n e 1,..., e 2m ω0) e 1 e e 2m 1 e 2m 25.7 ω ker ω 0 n 2m) U, ϕ x 1,...,x 2m )) ω dx 1 dx 2 + +dx 2m 1 dx 2m 25.8 ω ker ω 0 ξ ω L ξ ω 0 L ξ ω di ξ ω + i ξ d ω di ξ ω i ξ ω 1 R 2m ω i ξ ω df f ξ ξf) df)ξ) i ξ i ξ ω 0ξ f f α i ξ ω α ξ ξ L ξ ω 0 R 2m ω dx 1 dx 2 + +dx 2m 1 dx 2m fx 1,...,x 2m ) d f ω f f + + f f x 2 x 1 x 1 x 2 x 2m x 2m 1 x 2m 1 x 2m 84

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α SO(3) 48 6 SO(3) t 6.1 u, v u = u 1 1 + u 2 2 + u 3 3 = u 1 e 1 + u 2 e 2 + u 3 e 3, v = v 1 1 + v 2 2 + v 3 3 = v 1 e 1 + v 2 e 2 + v 3 e 3 (6.1) i (e i ) e i e j = i j = δ ij (6.2) ( u, v ) = u v = ij

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2 6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1 ,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +,

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

~nabe/lecture/index.html 2

~nabe/lecture/index.html 2 2001 12 13 1 http://www.sml.k.u-tokyo.ac.jp/ ~nabe/lecture/index.html nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/11 3. 10/18 1 4. 10/25 2 5. 11/ 1 6. 11/ 8 7. 11/15 8. 11/22 9. 11/29 10. 12/ 6 1 11. 12/13

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 1 (1) 1.1 X Y f, g : X Y { F (x, 0) = f(x) F (x, 1) = g(x) F : X I Y f g f g F f g 1.2 X Y X Y gf id X, fg id Y f : X Y, g : Y X X Y X Y (2) 1.3

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t, 1 Gourgoulhon BSSN BSSN ϕ = 1 6 ( D i β i αk) (1) γ ij = 2αĀij 2 3 D k β k γ ij (2) K = e 4ϕ ( Di Di α + 2 D i ϕ D i α ) + α ] [4π(E + S) + ĀijĀij + K2 3 (3) Ā ij = 2 3Āij D k β k 2αĀikĀk j + αāijk +e

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

difgeo1.dvi

difgeo1.dvi 1 http://matlab0.hwe.oita-u.ac.jp/ matsuo/difgeo.pdf ver.1 8//001 1 1.1 a A. O 1 e 1 ; e ; e e 1 ; e ; e x 1 ;x ;x e 1 ; e ; e X x x x 1 ;x ;x X (x 1 ;x ;x ) 1 1 x x X e e 1 O e x x 1 x x = x 1 e 1 + x

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq 7 2003 6 26 ( ) 5 5.1 F K 0 (q 1,,q N,p 1,,p N ) (Q 1,,Q N,P 1,,P N ) Q i Q i (q, p). (1) P i P i (q, p), (2) (p i dq i P i dq i )df. (3) [ ] Q αq + βp, P γq + δp α, β, γ, δ [ ] PdQ pdq (γq + δp)(αdq +

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

OHP.dvi

OHP.dvi 7 2010 11 22 1 7 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2010 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/18 3. 10/25 2, 3 4. 11/ 1 5. 11/ 8 6. 11/15 7. 11/22 8. 11/29 9. 12/ 6 skyline 10. 12/13

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1. R A 1.3 X : (1)X ()X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 (A) f X X f 1 (A) = X f 1 (A) = A a A f f(x) = a x

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

2002 11 21 1 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2002 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture nabe@sml.k.u-tokyo.ac.jp 2 1. 10/10 2. 10/17 3. 10/24 4. 10/31 5. 11/ 7 6. 11/14

More information

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t January 16, 2017 1 1. Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) (simple) (general) (stable) f((1 t)x + ty) (1 t)f(x)

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

II Lie Lie Lie ( ) 1. Lie Lie Lie

II Lie Lie Lie ( ) 1. Lie Lie Lie II Lie 2010 1 II Lie Lie Lie ( ) 1. Lie Lie 2. 3. 4. Lie i 1 1 2 Lie Lie 4 3 Lie 8 4 9 5 11 6 14 7 16 8 19 9 Lie 23 10 Lie 26 11 Lie Lie 31 12 Lie 35 1 1 C Lie Lie 1.1 Hausdorff M M {(U α, φ α )} α A (1)

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge

1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge Edwrd Wring Lgrnge n {(x i, y i )} n x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) () n j= x x j x i x j (2) Runge [] [2] = ξ 0 < ξ < ξ n = b [, b] [ξ i, ξ i ] y = /( + 25x 2 ) 5 2,, 0,,

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information