IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

Similar documents
( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

IPSJ SIG Technical Report Vol.2016-MUS-111 No /5/21 1, 1 2,a) HMM A study on an implementation of semiautomatic composition of music which matc

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

1: 2: 3: 4: 2. 1 Exploratory Search [4] Exploratory Search 2. 1 [7] [8] [9] [10] Exploratory Search

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

log F0 意識 しゃべり 葉の log F0 Fig. 1 1 An example of classification of substyles of rap. ' & 2. 4) m.o.v.e 5) motsu motsu (1) (2) (3) (4) (1) (2) mot

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

Bull. of Nippon Sport Sci. Univ. 47 (1) Devising musical expression in teaching methods for elementary music An attempt at shared teaching

DT pdf

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

sigmusdemo.dvi

2016年2月27日11s感性工学会パンフレット

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

9_18.dvi

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

IPSJ SIG Technical Report Vol.2015-MUS-107 No /5/23 HARK-Binaural Raspberry Pi 2 1,a) ( ) HARK 2 HARK-Binaural A/D Raspberry Pi 2 1.

28 Horizontal angle correction using straight line detection in an equirectangular image

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

HASC2012corpus HASC Challenge 2010,2011 HASC2011corpus( 116, 4898), HASC2012corpus( 136, 7668) HASC2012corpus HASC2012corpus

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

MDD PBL ET 9) 2) ET ET 2.2 2), 1 2 5) MDD PBL PBL MDD MDD MDD 10) MDD Executable UML 11) Executable UML MDD Executable UML

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

IPSJ SIG Technical Report Vol.2014-EIP-63 No /2/21 1,a) Wi-Fi Probe Request MAC MAC Probe Request MAC A dynamic ads control based on tra

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

XFEL/SPring-8

& Vol.2 No (Mar. 2012) 1,a) , Bluetooth A Health Management Service by Cell Phones and Its Us

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

揃 Lag [hour] Lag [day] 35

58 10

( )

3D UbiCode (Ubiquitous+Code) RFID ResBe (Remote entertainment space Behavior evaluation) 2 UbiCode Fig. 2 UbiCode 2. UbiCode 2. 1 UbiCode UbiCode 2. 2

13 RoboCup The Interface System for Learning By Observation Applied to RoboCup Agents Ruck Thawonmas

,,.,.,,.,.,.,.,,.,..,,,, i

第 1 回バイオメトリクス研究会 ( 早稲田大学 ) THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS Proceedings of Biometrics Workshop,169

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

04_奥田順也.indd

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

Transcription:

MIDI 1 2 3 2 1 Modeling Performance Indeterminacies for Polyphonic Midi Score Following and Its Application to Automatic Accompaniment Nakamura Eita 1 Yamamoto Ryuichi 2 Saito Yasuyuki 3 Sako Shinji 2 Sagayama Shigeki 1 Abstract: Score following plays an important role in automatic accompaniment, which is an automated performance of accompaniment in synchrony with human performances. This paper describes the score following capable of following performances with ornaments and improvised phrases. We construct a probabilistic model of ornaments based on hidden markov model and discuss a method of describing the structure of more indeterminate improvisational phrases. A score following algorithm based on the model is proposed and its effectiveness is evaluated using human-played performances. An automatic accompaniment system using the algorithm is built and its operation is tested. Keywords: score following, automatic accompaniment, performance indeterminacies, hidden markov model, tempo estimation. 1. 1 The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113 0033, Japan 2 Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555, Japan 3 KisarazuNCT, 2-11-1 Kiyomidai-Higashi, Kisarazu, Chiba 292 0041, Japan Dannenberg [1] Vercoe [2] [3] c 2012 Information Processing Society of Japan 1

Fig. 1 1 Various realizations of a trill. [4], [5] MIDI Raphael [6] Cont [4] MIDI [5] MIDI MIDI 2. 2.1 [8] a) b) c) d) e) f) a) d) [3], [5], [7], [8] e) f) 1 f) 2.2 τ t (onset time) X = {(τ i, c i )} I i=1 I i τ i i c i c i c i c i c i S = {(t m, s m )} M m=1 m t m c 2012 Information Processing Society of Japan 2

s m MIDI s m MIDI s m [8] M X S X S i M i M M τ im 3. HMM 3.1 3.2 HMM 2 p(t m, s m ) p(t m, s m i m, i m 1, t m 1 ) (δt m, s m ) = p(t m, s m i m, i m 1, t m 1 ) (1) δt m = t m t m 1 (inter-onset interval, ioi) p(i m, t m i m 1, t m 1 ) δt m S = {(t m, s m )} M m=1 p(s) = Q = p(s Q)p(Q) (2) i 1,,i m m=1 M a im 1,i m (δt m, s m ) (3) Q = {i m } M m=1 a im 1,i m = p(i m, t m i m 1, t m 1 ) a im 1,i m (δt m, s m ) Hidden Markov Model, HMM HMM ioi (δt m, s m ) = b (ioi) i m 1,i m (δt m )b (evt) i m (s m ) (4) 3.3 a im 1,i m a im 1,i m = δ im 1+1,i m 0 a im 1,i m i m = i m 1 + 2 i m = i m 1 i m < i m 1 i m = i m 1 + d d 1 a im 1,i m HMM 2 ioi c 2012 Information Processing Society of Japan 3

2 Fig. 2 HMM i i Topology of state transition probability for the performance HMM. The i th state corresponds to the i th musical action (chord, ornament etc.) of the performace score. 4. HMM 4.1 i HMM ioi ioi 35 msec [9] b (ioi) i,i (δt) δt 35 msec b (evt) i (s) s 4.2 2 2 HMM 1 *1 shake 3 ioi 30 < δt < 200 msec b (ioi) i,i (δt) b (evt) i (s) s *1 0 4.3 ioi 1 HMM 1 ( ) 1 HMM ioi 30 < δt < 100 msec b (ioi) i,i (δt) 4.4 1 HMM 5. 5.1 HMM HMM HMM ioi HMM HMM 5.2 c 2012 Information Processing Society of Japan 4

HMM HMM ( ) HMM HMM 5.3 HMM ioi 6. 6.1 3 HMM X S Q = {i m } M m=1 Bayes argmax Q = argmax i 1,,i M p(q S) = argmax [p(s Q)p(Q)] (5) Q [ M ] a im 1,i m (δt m, s m ) m=1 (6) HMM Viterbi t M 1 i M 1 ˆp im 1 = max i 1,,i M 2 ˆp im [ M 1 m=1 a im 1,i m (δt m, s m ) ] (7) = max i M 1 [ˆpiM 1 a im 1,i M b im 1,i M (δt M, s M ) ] (8) Viterbi [8] HMM 6.2 HMM r im = (τ im+1 τ im )/(t im+1 t im ) HMM 7. 7.1 [8] MIDI 3 Beethoven 3 4 Mozart 2 c 2012 Information Processing Society of Japan 5

8. 3 Fig. 3 Estimation of score location for a performance with trills. In the piano roll, the vertical lines show onsets, and the blue bold lines show onsets where the score location estimation is updated. HMM HMM MusicXML midi HMM 4 Fig. 4 Estimation of score location for a performance with arpeggi. Beethoven 7.2 Eurydice [8], [10] [1] R. Dannenberg, An on-line algorithm for real-time accompaniment, Proc. ICMC, pp. 193 198, 1984. [2] B. Vercoe, The synthetic performer in the context of live performance, Proc. ICMC, pp. 199 200, 1984. [3] N. Orio et al., Score Following: State of the Art and New Developments, in New Interfaces for Musical Expression, 2003. [4] A. Cont, ANTESCOFO: Anticipatory synchronization and control of interactive parameters in computer music, Proc. ICMC, 2008. [5] D. Schwarz, Nicola Orio and N. Schnell, Robust Polyphonic Midi Score Following with Hidden Markov Models, Proc. ICMC, 2004. [6] C. Raphael, Music Plus One: A system for expressive and flexible musical accompaniment, Proc. ICMC, 2001. [7], HMM MIDI,, MUS, pp. 109 116, 2006. [8] Eurydice:, [9] MIDI,, 48(1), pp. 237 247, 2007. [10] Eurydice:, 96, 2012. c 2012 Information Processing Society of Japan 6