2012専門分科会_new_4.pptx

Similar documents
1 flux flux Plumb (1985) flux F s Plumb (1985) Karoly et al. (1989) flux flux Plumb (1985) Plumb (1986) Trenberth (1986) Andrews (1983) review flux Pl

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

応力とひずみ.ppt

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1)., Φ = gh, f.,. (2.6.40), Φ + V Φ + Φ V = 0 (3.2.2). T = L/C (3.2.3), C. C V, T = L/V

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

Gmech08.dvi

液晶の物理1:連続体理論(弾性,粘性)

1

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

Untitled

sec13.dvi

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

7-12.dvi

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

II 2 II

( ) ( )

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

Gmech08.dvi


基礎数学I

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

i

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

DVIOUT

(1) (2) (3) (4) 1

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

2011de.dvi

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

Part () () Γ Part ,

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

第10章 アイソパラメトリック要素

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

tnbp59-21_Web:P2/ky132379509610002944

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)


: , 2.0, 3.0, 2.0, (%) ( 2.

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d


meiji_resume_1.PDF

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

note1.dvi


Gmech08.dvi

量子力学 問題

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

v er.1/ c /(21)

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

all.dvi

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz


C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

Transcription:

d dt L L = 0 q i q i d dt L L = 0 r i i r i r r + Δr Δr δl = 0 dl dt = d dt i L L q i q i + q i i q i = q d L L i + q i i dt q i i q i = i L L q i L = 0, H = q q i L = E i q i i d dt L q q i i L = L(q i, q i )

ρv ε + energy flux + ( F) = 0, F = momentum flux tensor ( ) = 0, ε = ρ 1 v + gz +U ( ) = ρ m r k ( ρ m v ʹ v ʹ ) ρ m v + ρ m v v + ρ m Φ δ ij ρ m v ʹ + ρ m v v ʹ + ρ m v ʹ v + ρ m Φ ʹ δ ij ( ) = ρ m ʹ ( ) r k ρ v m ʹ v ʹ ρ v ʹ v ʹ m

1 ρ v m + 1 ρ m N r 1 + ρ v m + 1 ρ m N r v + ρ m Φ v + ρ m v ʹ v ʹ v + ρ m N r ʹ v ʹ r = K K ʹ [ ] [ P P ʹ ] 1 ρ m v ʹ + 1 ρ m N r ʹ 1 + ρ m v ʹ + 1 ρ m N r ʹ v + ρ m Φ ʹ v ʹ = K K ʹ [ ] + [ P P ʹ ] [ K K ʹ ] = ρ m u ʹ u ʹ u x + u ʹ v ʹ u y + u ʹ w ʹ u z + v ʹ u ʹ v x + v ʹ v ʹ v y + v ʹ w ʹ v z + w ʹ u ʹ w x + w ʹ v ʹ w y + w ʹ w ʹ w z [ P P ʹ ] = ρ m N u ʹ r ʹ r x + v ʹ r ʹ r y + w ʹ r ʹ r z

J = pdq E ω pdq = 1 pq, α dα = E ω, J = π α : phase of oscillation suffix :,α α

p = ρ 0 u, q = ξ ξ A = ξ j, α u j : action j p i = ξ j, i u j : pseudomomentum j e = ξ j, t u j : pseudoenergy j ρ 0 A + F = 0

P + F = D + O(a3 ), : F = F y y + F z z Generalized Eliassen Palm theorem P E u c : wave activity ( pseudomomentum), A P k = Ḙ ω : action, (WKB limit) ρ m N E = 1 ρ m v ʹ + 1 F u ʹ v ʹ 1 u v N z ʹ r ʹ, r ʹ : wave energy u ʹ w ʹ ( f u y ) v ʹ r ʹ, N If D = 0 and u c 0, F = 0, Eliassen Palm theorem Eliassen Palm flux

u + v u * y + w u * z fv * = y u ʹ v ʹ 1 u v N z ʹ r ʹ + z u ʹ w ʹ f u 1 y N r + v r * y N w * = z r ʹ w ʹ r y r ʹ v ʹ + J, N v ʹ r ʹ + X, F u ʹ v ʹ 1 u v N z ʹ r ʹ, u ʹ w ʹ ( f u y ) v ʹ r ʹ N If D = 0 and u c 0, F = 0 ; Generalaized Charney Drazin Nonacceleration theorem

1 q ʹ q y + s v ʹ q ʹ = ʹ q ʹ, q y Zonal mean QG potential vorticity q = f 0 + βy u y + z f 0 ψ = f z 0 + βy u y z Disturbance of QG potential vorticity q ʹ = ψ ʹ x + ψ ʹ y + z v ʹ q ʹ = y u ʹ v ʹ A + F = D A 1 f 0 ( ) + z f 0 q ʹ = E q y u c ψ ʹ, z v ʹ r ʹ = F, f 0 N r, 0 : QG Wave activity ( pseudomomentum), and E P flux = Wave activity ( pseudomomentum) flux.

We consider the WKB limt ψ ʹ (x, y,z,t) = Ψ ˆ (x, y,z,t)sin χ(x, y,z,t), χ : phase function, and the local wavenumbers are defined by k = χ x, 1 q ʹ + E q y u c = 1 4 l = χ y, m = χ z, = 1 4 Ψ ˆ Ψ ˆ q (y,z) = f 0 + βy u y + z k + l + f0 ( m ) f 0 ψ z q y sin χ + 1 4 k + l + f0 ( m ) q y. Ψ ˆ = f 0 + βy u y f 0 z N r 0 k + l + f0 ( m ) q y cos χ u c

Mean zonal flow : U(y, z) A s 1 1 q ʹ q y + E U = 1 4 Ψ ˆ k l f0 ( m ) q y sin χ + 1 4 Ψ ˆ k + l + f0 ( m ) cos χ = 1 U 4 Ψ ˆ k + l + f0 ( m ) q y, A s + F s = A s + (A s c g ) = C s, ψ ʹ ψ ʹ ψ ʹ x x F s = 1 ψ ʹ ψ ʹ x y ψ ʹ ψ ʹ x y f 0 ψ ʹ ψ ʹ x z ψ ʹ ψ ʹ x z.

Time mean flow : u = { u (x, y, z), v (x, y, z) } + u x + v 1 q y ʹ + ( B) H q ( ) = ʹ s q ʹ, ψ ʹ ψ ʹ E ψ ʹ f 0 ψ ʹ ψ ʹ x y y y z ψ ʹ ψ ʹ ψ ʹ f B = E 0 ψ ʹ ψ ʹ x y x x z 0 0 0 u ʹ v ʹ = v ʹ E E u ʹ f 0 u ʹ v ʹ f 0 0 0 0 u ʹ r ʹ v ʹ r ʹ, u ʹ q ʹ = ψ ʹ ψ ʹ y x + ψ ʹ y + z v ʹ q ʹ = ψ ʹ x ψ ʹ x + ψ ʹ y + z f 0 ψ ʹ z = B xx x + B xy y + B xz z = B f 0 ψ ʹ z = B yx x + B yy y + B yz z = B ( ) x, ( ) y.

1 H q where n = Hq H q + u x + v 1 q y ʹ + n B. ( ) = ʹ s q ʹ H q, Assuming that the basic QG potential vorticity gradient is slowly varying, we may write, + u x + v 1 y q ʹ H q + n B + u x + v M + M y R = S M, where ( ) = ʹ s q ʹ H q, M = 1 q ʹ H q, and S s M = ʹ n x B xx + n y B q ʹ H q, and M yx R = n B = n x B xy + n y B yy. n x B xz + n y B yz

Approximately conservative basic state, u H q 0. ( ) / u, if the mean flow is pseudoeastward, n v, u u ( v ʹ E ) v u ʹ v ʹ M R 1 v ( u ʹ E ) u u ʹ v ʹ. u f 0 ( N v u ʹ r ʹ u v ʹ r ʹ ) 0 Utilizing u = 0, + u x + v M + M y R = S M, may be written M + M T = S M, where M T = M R + u M. H q Under the WKB limit, M T = c g M. M R = M T u M = ( c g u )M = c ˆ g M, where ˆ c g c g u : u intrinsic group velocity.

u + u u x + v u y fv * = Φ x + v ʹ q ʹ = Φ x + B ( ) y, v + u v x + v v y + fu * = Φ y u ʹ q ʹ = Φ y B r + u r x + v r y N 0w * = J. 1 u ʹ v ʹ + ʹ F = v ʹ u ʹ r u ʹ v ʹ 1 v ʹ u ʹ + ʹ r ( ) x, f 0 f 0 0 0 0 ( F) x = ( B) y, ( F) y = ( B) x. v ʹ r ʹ u ʹ r ʹ, u + u u x + v u y fv * = Φ x + ( F), x v + u v x + v v y + fu * = Φ y + ( F), y r + u r x + v r y N 0w * = J. 3 D residual circulation u * = u + 1 f v * = v 1 f S y + u ʹ r ʹ, z S x + v ʹ r ʹ, z w * = w u ʹ r ʹ v ʹ r ʹ, x y where S = 1 u ʹ + v ʹ ʹ r.

streamfunction : ψ ʹ (x, y,z,t) = Ψ ˆ (x, y,z,t)sin χ(x, y,z,t), χ : phase function, sin χ + cos χ =1. H q u

Time mean flow : u = { u (x, y, z), v (x, y, z), w (x, y,z) } 1 u ʹ v ʹ w ʹ + ʹ F u ʹ v ʹ Du Dt Dv Dt fv * = Φ x + F x + fu * = Φ y + F y Dr Dt N w * = r ʹ w ʹ z r N u ʹ v ʹ 1 v ʹ u ʹ w ʹ + ʹ u * = u + 1 f v * = v 1 f r N w * = w x u ʹ w ʹ + f N v ʹ w ʹ f N 0 0 0 S y + u ʹ r ʹ u + u z N S S x + v ʹ r ʹ v + v z N S v ʹ r ʹ E c ˆ gx c ˆ x u ʹ r ʹ = E c ˆ gx ˆ c y u ʹ r ʹ v ʹ r ʹ w + w N y N S E E c ˆ gy c ˆ c ˆ gz x c ˆ x E E c ˆ gy c ˆ c ˆ gz y c ˆ y 0 0 0

ε + E T = S E ε = p e + 1 H ψ H q H q H ψ = ( V, U ) q where e denotes energy of QG wave. ʹ

( ) u ρ m = z ρ u ʹ w ʹ m 1 ρ mu = u z ρ u ʹ w ʹ m ( ) u 1 ρ m (u + u 0 ) = (u + u 0) z ρ u ʹ w ʹ m ( ) 1 ρ m (u + u 0 ) = 1 ρ u mu + ρ m u 0 ( ) u u ʹ w ʹ 0 ( ) = u z ρ u ʹ w ʹ m ( ) = (u + u 0 ) z ρ u ʹ w ʹ m 1 ρ u m + z ρ u ʹ w ʹ u m E = 1 ρ m v ʹ + 1 r ʹ N ρ m z ρ m ( ) = ρ m ʹ u w ʹ u z

Plane wave case A : action, e : pseudoenergy, A = E, p = ka = ω ˆ kˆ ω E, p : pseudomomentum e = ωa = ω k p = ωˆ ω E = E + u p = 1 ρ m v ʹ + 1 ρ m N r ʹ + u p p = ρ m u