1 flux flux Plumb (1985) flux F s Plumb (1985) Karoly et al. (1989) flux flux Plumb (1985) Plumb (1986) Trenberth (1986) Andrews (1983) review flux Pl

Size: px
Start display at page:

Download "1 flux flux Plumb (1985) flux F s Plumb (1985) Karoly et al. (1989) flux flux Plumb (1985) Plumb (1986) Trenberth (1986) Andrews (1983) review flux Pl"

Transcription

1 wave-activity flux flux flux ( ) takaya@jamstec.go.jp 1 Introduction ( ) (e.g., Nakamura et al. 1997) storm track cyclogenesis downstream development (e.g., Chang 1993) wave-activity ( ) flux ( ) A F flux A t + F = D, (1) D 0 C g F = C g A F flux sources and sinks, A F ( ) 1 flux Eliassen-Palm (E-P) flux (e.g., Andrews and McIntyre 1976; Edmon et al. 1980; McIntyre 198; Andrews et al. 1987) flux ( ) flux Hoskins et al. (1983) Trenberth (1986) Plumb (1986) flux flux 1

2 1 flux flux Plumb (1985) flux F s Plumb (1985) Karoly et al. (1989) flux flux Plumb (1985) Plumb (1986) Trenberth (1986) Andrews (1983) review flux Plumb (1985) F s Plumb (1985) Plumb (1985) straightforward flux Takaya and Nakamura (1997) Takaya and Nakamura (000) 1

3 wave-activity flux wave-activity flux feedback ( TEM ).1 wave-activity flux: EP flux (x, y, z) β [A] t + 1 ρ 0 F = D () 0 F = ρ 0 [u v ] (3) f[v θ ]/θ 0z [U] t + f 0 v = 1 ρ 0 F (4) v [A] A. Trenberth (1986) flux F = ρ 0 (v u )/ u v f[v θ ]/θ 0z (5) du dt + f 0v = 1 ρ 0 F (6) A A flux.3 Plumb (1986) flux A t + 1 ρ 0 M T = D (7) M T = UA + M R (8) {U(v e) V u v } M R = ρ 0 { Uu v + V (u e)} (9) u f {Uv θ θ + V u θ } 0z TEM V 0 du dt + f 0v = 1 ρ 0 M R (10) 3

4 flux flux Trenberth (1986) flux.4 Plumb (1985) flux F s = ρ 0 A s t + 1 ρ 0 F s = C s (11) ( ψ ) ψ ψ ψ ( ψ ) z ψ ( f N ( ψ z ψ )) 3 wave-activity flux flux Plumb (1985) flux Plumb (1985) feedback ( ) (1) 4

5 3 p- β potential vorticity equation u = ( ψ, ψ, 0) q t + u q = 0 (13) q = f 0 + βy + ψ + ψ + p ( f S ψ p ) (14) (S ) ψ ψ = Ψ + ψ U potential vorticity eq. q t + U q + v = 0 (15) Q potential vorticity q potential vorticity q = ψ + ψ + p ( f S p ) (16) ψ = ψ 0 exp{i(kx + ly + mp ωt)} (15) (16) ω = ku x C x C x = U k k + l + (f/s) m (17) k + l + (f/s) m (18) C gx = U + k l (f/s) m {k + l + (f/s) m } ( ) (19) C gy = C gp = kl {k + l + (f/s) m } ( ) (0) ( f S )km {k + l + (f/s) m } ( ) (1) (18) (C x = 0) K = (k, l, ( f S )m) U = ( )/ K 5

6 C g = U K k kl ( f S )km = ( ) K 4 k kl ( f S )km () U = (U, V ) potential vorticity eq. q t + U q + V q + u + v = 0 (3) ψ = ψ 0 exp{i(kx + ly + mp ωt)} ω = ku + lv + ( l k)/ K (4) C gx = U + (k l (f/s) m )( ) kl( ) K 4 (5) C gy = V + (k l + (f/s) m )( ) + kl( ) K 4 (6) C gp = km( ) lm( ) K 4 (7) C g = 1 K (Appendix ) k U + klv klu + l V (kmu + mlv ) f S (8) 4 flux U flux vorticity eq. = β ζ t + U ζ + βv = 0 6

7 ψ ψ t ζ + Uψ ζ + βψ ψ = 0 ζ = ψ + ψ ψ t ψ = (ψ t ψ ) t {1 ( ψ ) } ψ ψ = (ψ ψ ) {1 ( ψ ) } e t + U e ( ψ + ( t ψ ( t + U + U ) 1 βψ ) e flux F ) = 0 (9) e = 1 {( ψ ) + ( ψ ) } = 1 (u + v ) (30) F = ( Ue ψ ( t v g + U v g) 1 βψ ψ ( t u g + U u g) u g = ψ, v g = ψ ) (31) t e + F = 0 (3) ψ = ψ 0 sin(kx + ly ωt) (17) ω = kc x U C x = β/ K 1 ( K = (k, l)) (3) ( 1 1 t 4 K ψ0 + 4 U K ψ0 1 (k β/ K )ψ0 1 4 βψ 0 1 (klβ/ K )ψ0 ) = 0 (33) ( 1 4 U K ψ0 1 (k β/ K )ψ0 1 ) ( 1 4 βψ 0 1 (klβ/ K )ψ0 = 4 U K ψ0 1 4 (k l ( f S m) )β/ K )ψ0 ) 1 (klβ/ K )ψ0 ( U + (k l ( f = S m) )β/ K 4 ) 1 klβ/ K 4 4 K ψ0 = C g ē overbar 1 7

8 t ē + F = 0, F = Cg ē (34) vorticity eq. u t + U u fv = Φ v t + U v + fu = Φ e ( t ē + F 0 = 0, F 0 Ue + ua Φ = v a Φ ) (35) (36) (37) (u a, v a ) ageostrophic flux F 0 (3) flux F (31) (35) (36) u = u g + u a u g t + U u g (f 0 + βy)(v g + v a ) = Φ v g t + U v g + (f 0 + βy)(u g + u a ) = Φ (38) (39) (31) F = ( Ue + ua Φ ( 1 βyψ ) v a Φ + ( 1 βyψ ) ) (38) (39) (40) F F 0 F = F 0 + ( ( 1 βyψ ) + ( 1 βyψ ) F = F 0 F = F 0 F 0 C g C g F flux C g C g ) 8

9 5 wave activity flux U U wave activity density potential vorticity eq. q t + U q + v = s (41) s Sources and/or sinks q enstrophy Eq. 1 t q + 1 U q + v q = s q (4) v q = v { v u + p ( f S p )} = v v = = B (R) u u u v 1 (v u ( f S p ) ) u v v e u v f S f S p p u v + p ( ψ f S p ) 1 { f S p } (43) y t (4) A t + U A + B(R) = C (44) A = 1 q /( ) (45) wave activity Density U = (U, 0, 0) B (T ) = B (R) + UA (46) A t + B(T ) = C (47) B (T ) 9

10 ( ) 5.1 : Plumb (1986) V = 0 B (T ) ψ = ψ 0 sin(kx + ly + mp ωt) overbar K = (k, l, f S m) Ā = q B (T ) = = K 4 4 ψ0, Ue + v e u v f S p ē = 1 {u + v + ( f S p ) } = K 4 ψ 0 = U + {k l ( f S m) } / K 4 kl /K 4 K 4 ( f S ) km 4 ψ0 / K 4 = C g Ā (48) Ā t + B(T ) = C, B (T ) = C g Ā (49) 5. : Plumb (1985) B (T ) Plumb(1985) B (T ) flux G(i.e. G = 0) F s = B (T ) + G (50) F s A t + F s = C s (51) C s = C + G 10

11 G = 1 4 ψ + p ( f ) S p ψ r q / ψ f S p ψ r r = s s = 0 G = 0 F s F s = 1 ( ψ ) ψ ψ f ( ψ S + ψ q + [(Uq r q )/ p ψ ( ψ ) ψ ( p ψ )) (5) (41) t = 0 U q + ψ = s (Uq + ψ r ) = 0 Uq + ψ q r q = 0 F s F s = 1 f ( ψ S ( ψ p ) ψ ψ ψ ( ψ ) ψ ( p ψ )) ] (53) (54) 1 order ψ = ψ 0 sin(kx + ly + mp ωt) F s k F s ψ 0 kl (55) f km/s ( C g = ) k K 4 kl (56) ( f )km S 11

12 F s = ( 1 4 K 4 ψ0 )C g (57) (57) F s = C g A WKB limit A K = /U A s 1 (A + e U ) = 1 K 4 ψ0 4 (58) WKB limit A s t + F s = C s (59) F s = C g A s (60) 6 U,V wave activity flux: Plumb (1986) Plumb(1986) U = (U, V, 0) wave activity flux β potential vorticity eq. q t + U q + V q + u + v = s (61) q enstrophy Eq. q t + U q + V q + u q + v q = s q (6) u q = u { v u + p ( f S p } = u v + v u + v v u u ψ p ( f S p } 1

13 = u v + (1 (v u )) p ( f S u v = 1 (v u + f ( ψ S p ) ) = f S u v e u f S p p p } + ( f S ( ψ p ) ) enstrophy Eq. q t + U q + V q + ( ) u v e u f S p + ( ) v e u v f S p = s q (63) wave activity density A = q H Q ( H = (,, 0) ) 1 A t + 1 H Q Uq u v v e 1 V q + H Q e u + H Q u v = D (64) 0 1 H Q H Q H Q 1 Uq 1 V q 0 u v e u f S p v e u v f S p f S p 1 { H Q { { H Q H Q 1 Uq 1 V q 0 u v e u f S p v e u v f S p f S p } (65) } (66) } (67) (65) enstrophy potential vorticity (66) (67) potential vorticity flux U + V 0 H Q u U 13 u V

14 ( u = (U, V, 0)) (64) M T = A t + M T = D (68) UA + 1 u {U(v e) V u v } V A + 1 u { Uu v + V (u e)} f ψ {U S u p + V ψ p } (69) ψ = ψ 0 sin(kx + ly + mp ωt) A = K 4 ψ 0 4 H Q M T = C g A (70) 7 pseudoenergy : Andrews (1983) pseudoenergy Andrews(1983) wave activity flux potential vorticity eq. U + V = 0 (71) q t + U q + V q + u + v = s (71) U = (U, V, 0) = ( ψ q t + U q + u 0 Q = 0 (7), ψ, 0) Q Q = Q( ψ; p) Λ( ψ; p) = ψ (73) U Λ = U( ψ Λ ψ Λ ) + V ( ψ ψ ) = 0 (74) 14

15 (7) u 0 Q = Λu 0 ψ = Λ( ψ ψ + ψ ψ ) = ΛU ψ f = ɛ S = U (Λψ ) (75) q t = U (q Λψ ) (76) q = ψ + ψ + p (ɛ ψ p ) (77) ψ q t = 1 t {( ψ ) + ( ψ ) + ɛ( ψ p ) } + (ψ t ) + (ψ t ) + p (ɛψ t p ) (78) (78) Λ 1 q q t = 1 t (q /Λ) 1 t {( ψ ) + ( ψ ) + ɛ( ψ p ) + q /Λ} + ( ψ t ) + ( ψ t ) + p ( ɛψ t p ) 1 q = Λ t (q Λψ ) (79) (76) 1 q Λ t (q Λψ ) = (Λ) 1 U (q Λψ) = U [(q Λψ ) /Λ] = [U(q Λψ ) /Λ] (80) α t + I = 0 (81) 15

16 α = 1 t {( ψ ) + ( ψ ) + ɛ( ψ p ) + q /Λ} (8) ψ ( t ) + U Λ (q Λψ ) I = ψ ( t ) + V Λ (q Λψ ) (83) ɛψ ( t p ) Pseudoenergy overbar 1 I = C g ᾱ (84) V = 0 Λ = /U (83) ψ ( t I = ) U ψ ( t ɛψ ( t (q + Q ) p ) Q U ψ ) α = e UA (86) (85) 8 flux (ψ ) (PV) A E A (pseudomomentum) ( Andrews and McIntyre 1976) E Uryu (1974) ( ) ( ) M (A + E)/ 16

17 log-p β- PV (q) q t + u q + v q = s; q = f 0 + βy + ψ + ψ + f 0 p ( ) p ψ z N. (87) z (u, v) T = u = ( ψ y, ψ x ) T s f = f 0 + βy z = H ln p p =(pressure/1000hpa) H N = R ap κ θ H z θ R a κ R a U = (U, V, 0) T ɛ u = U(x, y, z) + u, v = V (x, y, z) + v, ψ = Ψ(x, y, z) + ψ, q = Q(x, y, z) + q (88) O(ɛ ) PV q q t + U Hq + u H Q = s ; q = ψ + ψ + f 0 p ( p ) z N, (89) z H gradient operator ( U C P energy e = ψ x + ψ y + (f 0 ψ z/s) ) / A E A pq /( H Q ) E pe/( U C P ) C U U x- y- C U = C P U U = ( U U C P, V U C P, 0) T (90) U C P zonal U ( H Q) 0 n PV n H Q/ H Q γ( V, U, 0) T / U γ = 1 pseudoeastward (Andrews 1984, Plumb 1986) WKB ( ) H Q, U n C P U (89) pq / H Q A [ A U t + p H q ] + n u 0 q = D 1, (91) H Q D 1 = ps q / H Q WKB A A t + (E + C UA) + N (1) = D 1. (9) 17

18 N (1) E N (1) (U C U )A, pn u 0 q E = p U U(ψ x e) + V ψ xψ y Uψ xψ y + V (ψ y e) f 0 N {Uψ xψ z + V ψ yψ z} (93) (V = 0) WKB (9) A (9) Plumb (1986) (.19) (89) pψ /( U C P ) E pe/( U C P ) E t p (k Hψ ) (ψ H Q) U C P ( U pψ H q U + C U U C P ) + R(1) U C P = D (94) D = ps ψ /( U C P ) k ( R (1) = p ψ ψ xt, ψ ψ yt, f ) 0 T ψ N ψ zt A E H t E + (H + C UE) + N () R = D +, (95) U C P p U U (ψ H q ) pnψ (k H q ) H = p U U(e ψ ψ xx) V ψ ψ xy V (e Uψ ψ xy) V ψ ψ yy f 0 N {Uψ ψ xz + V ψ ψ yz} (96) (94) p (k Hψ ) (ψ H Q) N () = (k HQ)ψ U C P ( U C P ) R R = p ( e t + U U C e P + V U C P U H Q ψ = U ( U C P ) ) ( e q + pψ t + U U C q P + V U C P C P R = 0 (95) M 1 (A + E) = p q ) (97) (98) ( ) q H Q + e. (99) U C P M ψ = ψ 0 exp(z/h)sin(kx+ ly + mz ωt) M M K 4 ψ 0 4 H Q (100) 18

19 K = (k, l, (f 0 S 1 )m) T H 1 m M (pseudomomentum) M M (9) (95) M t + W = D N + R ( U C P ), (101) D = (D 1 + D )/ D 0 s, N = (N (1) + N () )/, W = (E + H)/ + C U M W N N (1) N () N = p U 4 U ( q H Q ψ ) [ ( U C P )q + H Q ψ ]. (10) U C P (89) r 0 U [ ( U CP )q + H Q ψ ] s, (103) U (10) N = 1 r0 D 0 D 0 (101) ( ) N (s = 0) N = 0 D T = D N = (D 0 r 0 r 0 D 0 )/ C p R = 0 M M t + W = D T. (104) W W s (E + H)/ W = W s + C U M W = p U U(ψ x ψ ψ xx) + V (ψ xψ y ψ ψ xy) U(ψ xψ y ψ ψ xy) + V (ψ y ψ ψ yy) f 0 N {U(ψ xψ z ψ ψ xz) + V (ψ yψ z ψ ψ yz)} + C UM. (105) (104) (105) W W C P ( C P = 0 ) C U M W s Takaya and Nakamura (1997) wave-activity flux ( W ) V = 0 D T = (D 0 r 0 r 0 D 0 )/ W D T M 19

20 (U = U(y, p)) (104) C P = 0 W F s (Plumb, 1985) (104) C g (100) W = C g M W ( ) 9 W W C g W Plumb (1985) F s ( ) transformed Eulerian-mean (TEM) (V = 0) W s Plumb (1985) F s v t + U v + f(u + u (a) ) = φ, (106) u (a) ( ) β- c (U c) v + f 0u (a) + βyu = 0 (107) ψ xx = v x f 0 u (a) /(U c) ψ xy = u x f 0 v (a) /(U c) f 0 Θ z ψ xz/n = θ x Θ z w (a) /(U c) v (a) w (a) U > c ( ψ ψ xx, ψ ψ xy, f 0 N ψ ψ xz) T (Φ u (a), Φ v (a), Φ w (a) ) T /(U c) Φ F s ( W s ) C g (Figs. 1a 1b) ( ψ ψ xx, ψ ψ xy, f 0 ψ N ψ xz) T C g F s ( W s ) v (Fig. 1c) ψ - 0

21 (v ) ψ - F s (W s ) u v (Fig. 1c) F s (W s ) v θ (Fig. 1b) F s ψ - flux W ( W s ) ψ = ψ 0 sin(kx + ly + mz ωt) ψ - F s W Plumb (1986) O(ɛ ) D (0) U () Dt fv () + Φ() = u u v = ψ ψ yy ψ ψ xy, (108) () D (0) U () /Dt U () / t + (U )U () + (U () )U (108) D (0) U () Dt fv () + Φ() = 1 ( u + ψ ψ yy) 1 (u v + ψ ψ xy) (109) (109) ( ) (109) D (0) U () Dt fv () + Φ() = 1 (ψ xq ψ q x) 1

22 1 [ ] (ψ x ψ ψ xx) + (ψ y ψ ψ yy) 1 [ ] f p z p 0 N (ψ xψ z ψ ψ xz). D (0) U () fk U Dt (a) = G + X, (110) D (0) Θ () + W dθ (a) Dt dz = Q, (111) X Q TEM (110) G G = p k (u0 q ψ k H q ) p k P (11) (110) Ua U (a) = (U (a), V (a), W (a) )T = U () (a) + 1 pr, (113) p () (a) = (U(a), V () (a), W () (a) )T Euler (113) R R = 1 (v θ ψ θ x)/θ z (u θ + ψ θ [ y)/θ z ]. (114) (v ψ ψ xx) + (u ψ ψ yy) /f U () (110), (111), (11), (113), (114) Plumb (1986) (4.3), (4.4), (4.5) (4.6) Plumb (1986) PV ( H Q) s s k n G G = p [(P n)s (P s)n]. (115) (93), (96) W s (E + H)/ β- W s p n (u0 q ψ k H q ) = p P n (116) (115) W s Plumb (1986) W s PV

23 10 W Enomoto and Matsuda (1999) [40 N, 90 E] (Fig. a) Fig. b 14 ψ W C P = 0 (Fig. c) W flux W ψ W 3 Plumb (1985) F s W F s F s Figs. 1c 1d W W W NCEP/NCAR 8 W p Fig.3 flux plot W 300-hPa, 600-hPa W W U C P 3 Enomoto and Matsuda (1999) 3

24 11 flux W flux flux A E M M W ψ - flux W W flux W W flux W Takaya and Nakamura (000) W W W 4

25 Appendix: Rossby potential vorticity eq. q t + U q + V q + u + v = 0 (A1) ψ = ψ 0 exp{i(kx + ly + mp ωt)} K = k + l + f 0 N m ω = ku + lv + l K k K = k(u / K ) + l(v + / K ) (A) U + V = 0 (A3) (A) (A3) ω = k(u / K ) + l(v V U / K ) = k(u / K ) + l V (U U / K ) = (k + l V )(U U / K ) (A4) ω = ( U V k + l)(v + / K ) ω = 0 (U / K ) = 0, k l = V U (V + / K ) = 0 (A6) ( 1) (A7) ( ) (A5) (A6) (A7) 5

26 ( ) (A1) ( ) ( Q contour ) ( 1) ( 1) (U / K ) = 0, (A) (V + / K ) = 0 (A8) C gx = U + (k l (f/s) m )( ) kl( ) K 4 C gy = V + (k l + (f/s) m )( ) + kl( ) K 4 (A9) (A10) C gp = km( ) lm( ) K 4 (A11) (A8) C g = 1 K k U + klv klu + l V (kmu + mlv ) f S (A1) 6

27 ( wave-activity flux ) Andrews, D. G., 1983: A conservation law for small-amplitude quasigeostrophic disturbances on a zonally asymmetric basic flow. J.Atmos.Sci., 40, , 1984: On the existence of nonzonal flows satisfying sufficient conditions for instability. Geophys. Astrophys. Fluid Dyn., 8, , and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, , J.R. Holton, and C.B. Leovy, 1987: Middle Atmosphere Dynamics., Academic press, 489pp. Chang, E. -K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50, , I. Orlanski, 1994: On energy flux and group velocity of waves in baroclinic flows. J.Atmos.Sci., 51, Edmon, H. J., B. J. Hoskins and M. E. McIntyre, 1980: Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci., 37, [See also Corrigendum, 1981: J. Atmos. Sci., 38, 1115, especially nd last item]. Enomoto, T., and Y. Matsuda, 1999: Rossby wavepacket propagation in a zonally-varying basic flow. Tellus in press. Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather system. J. Atmos. Sci., 40, Karoly, D.J., R.A. Plumb, and M. Ting, 1989: Examples of the horizontal propagation of quasi-stationary waves, J. Atmos. Sci., 46, Longuet-Higgins, M. S., 1964: On group velocity and energy flux in planetary wave motions. Deep-Sea Res., 11, McIntyre, M. E., 198: How well do we understand the dynamics of stratospheric warmings? J. Meteor. Soc. Japan., 60, Nakamura, H., M. Nakamura, and J.L. Anderson, 1997: The role of high- and low-frequency dynamics in the blocking formation, Mon. Wea. Rev., 15, Orlanski, I., J. Sheldon, 1993: A case of downstream baroclinic development over western north america. Mon.Wea.Rev., 11, Pedlosky, J., 1987: Geophysical Fluid Dynamics. nd ed. Springer-Verlag, 710pp. Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 4, 17-9., 1985: An alternative form of Andrews conservation law for quasi-geostrophic waves on a steady,nonuniform flow. J.Atmos.Sci., 4, , 1986: Three-dimensional propagation of transient quasi-geostrophic eddies and its relationship with the eddy forcing of the time-mean flow, J. Atmos. Sci., 43, Takaya, K., and H. Nakamura, 1997: A formulation of a wave-activity flux for stationary Rossby waves on a zonally varying basic flow. Geophys. Res. Lett., 4,

28 and, 000: A formulation of a phase-independent wave-activity flux for stationary and migratory quasi-geostrophic eddies on a zonally-varying basic flow. J. Atmos. Sci., submitted. Trenberth, K. E., 1986: An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen-Palm flux diagnostics. J. Atmos. Sci., 43, Uryu, M., 1974: Mean zonal flows induced by a vertically propagating Rossby wave packet. J. Meteor. Soc. Japan., 56,

2012専門分科会_new_4.pptx

2012専門分科会_new_4.pptx d dt L L = 0 q i q i d dt L L = 0 r i i r i r r + Δr Δr δl = 0 dl dt = d dt i L L q i q i + q i i q i = q d L L i + q i i dt q i i q i = i L L q i L = 0, H = q q i L = E i q i i d dt L q q i i L = L(q

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

No pp The Relationship between Southeast Asian Summer Monsoon and Upper Atmospheric Field over Eurasia Takeshi MORI and Shuji YAMAKAWA

No pp The Relationship between Southeast Asian Summer Monsoon and Upper Atmospheric Field over Eurasia Takeshi MORI and Shuji YAMAKAWA No.42 2007 pp.159 166 The Relationship between Southeast Asian Summer Monsoon and Upper Atmospheric Field over Eurasia Takeshi MORI and Shuji YAMAKAWA Received September 30, 2006 Using Southeast Asian

More information

63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1)., Φ = gh, f.,. (2.6.40), Φ + V Φ + Φ V = 0 (3.2.2). T = L/C (3.2.3), C. C V, T = L/V

63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1)., Φ = gh, f.,. (2.6.40), Φ + V Φ + Φ V = 0 (3.2.2). T = L/C (3.2.3), C. C V, T = L/V 62 3 3.1,,.,. J. Charney, 1948., Burger(1958) Phillips(1963),.,. L : ( 1/4) T : ( 1/4) V :,. v x u x V L, etc, u V T,,.,., ( )., 2.1.1. 63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1).,

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

hPa ( ) hPa

hPa ( ) hPa 200520241 19 1 18 1993 850hPa 6 7 6 27 7 3 6 29 ( ) 250 200hPa i iii 1 1 1.1...................................... 1 1.1.1................................. 1 1.1.2......................... 1 1.1.3...........

More information

Holton semigeostrophic semigeostrophic,.., Φ(x, y, z, t) = (p p 0 )/ρ 0, Θ = θ θ 0,,., p 0 (z), θ 0 (z).,,,, Du Dt fv + Φ x Dv Φ + fu +

Holton semigeostrophic semigeostrophic,.., Φ(x, y, z, t) = (p p 0 )/ρ 0, Θ = θ θ 0,,., p 0 (z), θ 0 (z).,,,, Du Dt fv + Φ x Dv Φ + fu + Holton 9.2.2 semigeostrophic 1 9.2.2 semigeostrophic,.., Φ(x, y, z, t) = (p p 0 )/ρ 0, Θ = θ θ 0,,., p 0 (z), θ 0 (z).,,,, Du Dt fv + Φ x Dv Φ + fu + Dt DΘ Dt + w dθ 0 dz = 0, (9.2) = 0, (9.3) = 0, (9.4)

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

untitled

untitled 1. [IPCC, 2001] ( ) [UNEP, 1997] [Yatagai and Yasunari, 1995] 1990 1999 2002 [Iwao and Takahashi, 2006] 4 [Morinaga and Shinoda, 2003] [Kurosaki and Mikami, 2003] Iwao and Takahashi [2006] [Enomoto et

More information

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R 38 2002 7 2000 9 * Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National Research Institute for Earth Science and Disaster Prevention,

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

(2005) (2005) 1 2 ( 1 ) 20km 2 4km 20km 40km 400km 10 1km 2km Ruscher and Deardroff (1982) Dempsey and Rotunno (1988) Smolarkiewcz et al. (1988) Smola

(2005) (2005) 1 2 ( 1 ) 20km 2 4km 20km 40km 400km 10 1km 2km Ruscher and Deardroff (1982) Dempsey and Rotunno (1988) Smolarkiewcz et al. (1988) Smola (2005) (2005) 1 2 ( 1 ) 20km 2 4km 20km 40km 400km 10 1km 2km Ruscher and Deardroff (1982) Dempsey and Rotunno (1988) Smolarkiewcz et al. (1988) Smolarkiwicz and Rotunno (1989) F r = 0.15 0.5 ( F r = u/nh,

More information

mains.dvi

mains.dvi 8 Λ MRI.COM 8.1 Mellor and Yamada (198) level.5 8. Noh and Kim (1999) 8.3 Large et al. (1994) K-profile parameterization 8.1 8.1: (MRI.COM ) Mellor and Yamada Noh and Kim KPP (avdsl) K H K B K x (avm)

More information

KENZOU Karman) x

KENZOU Karman) x KENZO 8 8 31 8 1 3 4 5 6 Karman) 7 3 8 x 8 1 1.1.............................. 3 1............................................. 5 1.3................................... 5 1.4 /.........................

More information

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology, 65 6 6.1 No.4 1982 1 1981 J. C. Kaimal 1993 1994 Turbulence and Diffusion in the Atmosphere : Lectures in Environmental Sciences, by A. K. Blackadar, Springer, 1998 An Introduction to Boundary Layer Meteorology,

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c 29 2 1 2.1 2.1.1.,., 5.,. 2.1.1,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c v., V = (u, w), = ( / x, / z). 30 2.1.1: 31., U p(z),

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3.....................

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3..................... NumRu::GPhys::EP Flux 7 2 9 NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3................................. 5 2.4.............................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

砂浜砕波帯における流れと地形変化

砂浜砕波帯における流れと地形変化 47 * Currents and Morphological Changes in the Surf Zone on a Sandy Beach Yoshiaki KURIYAMA, Littoral Drift Division, Port and Airport Research Institute 1 1 1) ρd M M x y 2 + + = (1) t x y 2.1 M x UM

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

sikepuri.dvi

sikepuri.dvi 2009 2 2 2. 2.. F(s) G(s) H(s) G(s) F(s) H(s) F(s),G(s) H(s) : V (s) Z(s)I(s) I(s) Y (s)v (s) Z(s): Y (s): 2: ( ( V V 2 I I 2 ) ( ) ( Z Z 2 Z 2 Z 22 ) ( ) ( Y Y 2 Y 2 Y 22 ( ) ( ) Z Z 2 Y Y 2 : : Z 2 Z

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

1 B () Ver 2014 0 2014/10 2015/1 http://www-cr.scphys.kyoto-u.ac.jp/member/tsuru/lecture/... 1. ( ) 2. 3. 3 1 7 1.1..................................................... 7 1.2.............................................

More information

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

Richard J. Greatbatch

Richard J. Greatbatch https://www.gfd-dennou.org/seminars/gfdsemi/ 2013 @ Lecture note for the 2013 Summer Seminar in Geophysical Fluid Dynamics Lagrange Development of Lagrangean mean theories for baroclinic eddies and wind

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

by ( ) ( ) ( FORTRAN routines for computation of Special Functions [

by ( ) ( ) ( FORTRAN routines for computation of Special Functions [ by (kubok@ees.hokudai.ac.jp) ( ) 2009 12 7 9 ( ) ( FORTRAN routines for computation of Special Functions [http://jin.ece.uiuc.edu/routines/routines.html] ) (2010 2 19 ) Chapter 1 1 1 2 3 4 β 5 3 Chapter

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

PowerPoint Presentation

PowerPoint Presentation 2010 KEK (Japan) (Japan) (Japan) Cheoun, Myun -ki Soongsil (Korea) Ryu,, Chung-Yoe Soongsil (Korea) 1. S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 #013009 (1998) Magnetar : ~ 10 15 G ~ 10 17 19 G (?)

More information

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r) ( ( (3 Lax : (4 Bäcklud : (5 (6 d q = e q q e q q + ( m q ( r = q q r ϕ(r ϕ (r 0 5 0 q q q + 5 3 4 5 m d q = ϕ (r + ϕ (r + ( Hooke ϕ(r = κr (κ > 0 ( d q = κ(q q + κ(q + q = κ(q + + q q (3 ϕ(r = a b e br

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

MUFFIN3

MUFFIN3 MUFFIN - MUltiFarious FIeld simulator for Non-equilibrium system - ( ) MUFFIN WG3 - - JCII, - ( ) - ( ) - ( ) - (JSR) - - MUFFIN sec -3 msec -6 sec GOURMET SUSHI MUFFIN -9 nsec PASTA -1 psec -15 fsec COGNAC

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

68 JAXA-RR r v m Ó e ε 0 E = - Ó/ r f f 0 f 1 f = f 0 + f 1 x k f 1 = f k e ikx Ó = Ó k e ikx Ó k 3

68 JAXA-RR r v m Ó e ε 0 E = - Ó/ r f f 0 f 1 f = f 0 + f 1 x k f 1 = f k e ikx Ó = Ó k e ikx Ó k 3 67 1 Landau Damping and RF Current Drive Kazuya UEHARA* 1 Abstract The current drive due to the rf travelling wave has been available to sustain the plasma current of tokamaks aiming the stational operation.

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

: (1:, 2:, 3:, 4: ) 1 (Stratospheric Sudden Warming; SSW),, 1 (Displacement), 2 (Splitting) 2 (Charlton and Polvani 2007)., (Mi

: (1:, 2:, 3:, 4: ) 1 (Stratospheric Sudden Warming; SSW),, 1 (Displacement), 2 (Splitting) 2 (Charlton and Polvani 2007)., (Mi : 2009 1 1 2 3 3 4 3 3 3 (1:, 2:, 3:, 4: ) 1 (Stratospheric Sudden Warming; SSW),, 1 (Displacement), 2 (Splitting) 2 (Charlton and Polvani 2007)., (Mitchell et al. 2013),. SSW,, (Labitzke 1965),, SSW,,

More information

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1 1 Ricci V, V i, W f : V W f f(v = Imf W ( f : V 1 V k W 1 {f(v 1,, v k v i V i } W < Imf > < > f W V, V i, W f : U V L(U; V f : V 1 V r W L(V 1,, V r ; W L(V 1,, V r ; W (f + g(v 1,, v r = f(v 1,, v r

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information