27 VR Interaction between visual and vestibular perception in VR environment

Similar documents
27 VR Effects of the position of viewpoint on self body in VR environment

25 Examine of the effect higher-order visual information to self-motion sensation

24 Depth scaling of binocular stereopsis by observer s own movements

25 AR 3 Property of three-dimensional perception in the wearable AR environment

25 D Effects of viewpoints of head mounted wearable 3D display on human task performance

ron.dvi

23 A Comparison of Flick and Ring Document Scrolling in Touch-based Mobile Phones

1..FEM FEM 3. 4.

Web Stamps 96 KJ Stamps Web Vol 8, No 1, 2004

2 1 ( ) 2 ( ) i

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

2 ( ) i

24 Perceived depth position of autostereoscopic stimulus

卒業論文2.dvi

Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Social Networking

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

SOM SOM(Self-Organizing Maps) SOM SOM SOM SOM SOM SOM i

_念3)医療2009_夏.indd

,,,,., C Java,,.,,.,., ,,.,, i

25 Removal of the fricative sounds that occur in the electronic stethoscope

) 2) , , ) 1 2 Q1 / Q2 Q Q4 /// Q5 Q6 3,4 Q7 5, Q8 HP Q9 Q10 13 Q11

26 3 Stereo shape constancy with active and passive movement

29 jjencode JavaScript

21 Effects of background stimuli by changing speed color matching color stimulus

,.,.,,.,. X Y..,,., [1].,,,.,,.. HCI,,,,,,, i

untitled

i

2

06’ÓŠ¹/ŒØŒì

28 Horizontal angle correction using straight line detection in an equirectangular image

Perspective-Taking Perspective-Taking.... Vol. No.

NotePC 8 10cd=m 2 965cd=m Note-PC Weber L,M,S { i {

29 Short-time prediction of time series data for binary option trade

Web Web Web Web Web, i

GPGPU

2 The Bulletin of Meiji University of Integrative Medicine 3, Yamashita 10 11

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

原稿.indd

2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun


Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Juntendo Medical Journal


, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

16_.....E...._.I.v2006

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

[10] 2 [11][12] Fig.1 2 (Panasonic: PT-D5700L) deg Fig. 1: Experimental environment. 65 cd/m 2 20 % 1500 mm 2560 mm ( )

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

塗装深み感の要因解析

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

国土技術政策総合研究所 研究資料


22 1,936, ,115, , , , , , ,

SNS ( ) SNS(Social Networking Service) SNS SNS i

udc-2.dvi

untitled

<4D F736F F F696E74202D C835B B E B8CDD8AB B83685D>

SC-85X2取説


The Journal of the Japan Academy of Nursing Administration and Policies Vol 7, No 2, pp 19 _ 30, 2004 Survey on Counseling Services Performed by Nursi

220 28;29) 30 35) 26;27) % 8.0% 9 36) 8) 14) 37) O O 13 2 E S % % 2 6 1fl 2fl 3fl 3 4

,,.,.,,.,.,.,.,,.,..,,,, i

28 TCG SURF Card recognition using SURF in TCG play video

Web Web Web Web i

2017 (413812)

<303491BA8FE32E696E6464>

<303288C991BD946797C797592E696E6464>



05_藤田先生_責

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

1 1 tf-idf tf-idf i

12 Vol. 12, No Benner 8 ICU 1 2 ICU Krippendorff, K ICU 5

FIG 7 5) 7 FIG ) 7) 8) 9) 10) 11) 12) 3 18 Gymnastik 13) 1793 J. Ch. F. Guts Muths Gymnastik fuer die Juegend 1816 F. L. Jahn Turnkunst Rhythm

™…


WebRTC P2P Web Proxy P2P Web Proxy WebRTC WebRTC Web, HTTP, WebRTC, P2P i

II A LexisNexis JP 80, /03/

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

活用ガイド (ソフトウェア編)

01_渡部先生_21-2.indd

7,, i

untitled

ÿþ

TF-IDF TDF-IDF TDF-IDF Extracting Impression of Sightseeing Spots from Blogs for Supporting Selection of Spots to Visit in Travel Sat

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2016-MBL-80 No.11 Vol.2016-CDS-17 No /8/ (VR) (AR) VR, AR VR, AR Study of a Feedback Method fo


*.E (..).R

:- Ofer Feldman,Feldman : -

光学

IT i

正誤表 グローバル コミュニケーション研究 第 4 号 ( 特別号 ) におきま して 以下の箇所に誤りがございました お詫びして訂正いたします 訂正箇所誤正 34 頁下から 2 行目約 45km 約 450km (2017 年 5 月 )

4.1 % 7.5 %

untitled

P2P Web Proxy P2P Web Proxy P2P P2P Web Proxy P2P Web Proxy Web P2P WebProxy i

シラバス政治学H18.PDF

40B: Satoshi Shimai 1 and Shigehiro Fujimoto 2 1 Center for Liberal Arts and Education, Minami-Kyushu University, Miyakonojo,


Transcription:

27 VR Interaction between visual and vestibular perception in VR environment 1160281 2015 2 26

VR,.,., (,HMD),..,. HMD,Virtual Reality(,VR). Simulator Sickness Questionnaire, SSQ),.,,HMD VR.,., VR,.,SSQ,, i

Abstract Interaction between visual and vestibular perception in VR environment Yukai Isobe We combine the information obtained from the five senses and other senses such as vestibular sense to know the outer world and ourselves. This process is called multimodal integration. Many studies have investigated the mechanisms of the integration process of the visual and vestibular perception, there are few studies manipulating each cue independently and examined the cue weight for the integration. In recent years, a head mounted display (HMD) has often been implemented with head tracking function. It has become easy to manipulate the visual and vestibular information independently. This manipulation may cause motion sickness by the inconsistency among multi-modal information. In this study, the visual stimuli were manipulated using the HMD, and how are the weights of the integration of visual and vestibular information under the virtual reality environment. Also subjective symptoms of motion sickness were obtained using simulator sickness questionnaire (SSQ) investigating the effect of the inconsistency of visual and vestibular information. As a result, weights for the integration varied depending on both the ratio and the amount of the rotation angle of the visual and vestibular stimulation. Moreover, the weight of vestibular information is relatively higher than visual information under the VR environment using HMD. In contrast, effects of the ratio and the amount of the rotation angle on motion sickness showed no significant difference. From these results, to present VR environment with vestibular stimuli, it is ii

important to take account to show the information correctly as well as visual information. Since SSQ scores were relatively small, it is necessary to examine in the condition which causes severer symptoms of the motion sickness. key words multimodal integration, vestibular sense, motion sickness iii

1 1 1.1...................................... 1 1.2...................................... 1 1.3 HMD..................................... 2 1.4................................... 2 1.5 SSQ............................... 2 2 4 2.1................................... 4 2.2.................................... 10 2.3................................... 10 2.4.................................... 12 3 14 3.1................................... 14 3.2 SSQ............................. 19 4 28 5 30 31 32 iv

2.1 RICOH THETA............................... 6 2.2 Oculus Rift DK2............................... 6 2.3.................................... 6 2.4 Oculus Rift DK2.......................... 6 2.5.................................... 7 2.6................................. 7 2.7............................... 7 2.8................................... 7 2.9 iphone 5s................................... 8 2.10.................................... 8 2.11 ipad Air2................................... 8 2.12................................ 9 2.13.................................... 13 3.1 1.................................... 15 3.2 2.................................... 15 3.3 3.................................... 15 3.4 4.................................... 15 3.5 5.................................... 16 3.6 6.................................... 16 3.7 7.................................... 16 3.8 8.................................... 16 3.9 9.................................... 17 3.10 10................................... 17 v

3.11.................................... 18 3.12 1( ).............................. 20 3.13 2( ).............................. 20 3.14 3( ).............................. 20 3.15 4( ).............................. 20 3.16 5( ).............................. 21 3.17 6( ).............................. 21 3.18 7( ).............................. 21 3.19 8( ).............................. 21 3.20 9( ).............................. 21 3.21 10( ).............................. 21 3.22 TotalScore( )............................. 22 3.23 Oculomotor( )............................ 22 3.24 Nausea( )............................... 22 3.25 TotalScore(, N = 7)......................... 22 3.26 Oculomotor(, N = 6)........................ 23 3.27 Nausea(, N = 6).......................... 23 3.28 1( )................................. 24 3.29 2( )................................. 24 3.30 3( )................................. 24 3.31 4( )................................. 24 3.32 5( )................................. 25 3.33 6( )................................. 25 3.34 7( )................................. 25 3.35 8( )................................. 25 3.36 9( )................................. 25 vi

3.37 10( )................................ 25 3.38 TotalScore( )............................... 26 3.39 Oculomotor( )............................... 26 3.40 Nausea( )................................. 26 3.41 TotalScore(, N = 9)........................... 26 3.42 Oculomotor(, N = 8).......................... 27 3.43 Nausea(, N = 7)............................. 27 vii

1.1 SSQ [6][7]............................. 3 2.1.......................... 11 viii

1 1.1,.., (,[1][2]).,HMD,..,. 1.2 HMD,VR, Simulator Sickness Questionnaire, SSQ),. 1

1.3 HMD 1.3 HMD HMD, 1. VR, VR.,HMD,..,,. 1.4 [5].,,. 0. 1.5 SSQ,,Simulator Sickness Questionnaire 1 [6]. SSQ 16,4 ( ).,SSQ 4 (TotalScore, Oculomotor, Nausea, Disorientation),.TotalScore 16, 3.74.Oculomotor( ) 7,7.58 2

1.5 SSQ.Nausea 7,9.54.Disorientation, 7,13.92. 1.1 SSQ. [7]. 1.1 SSQ [6][7] Nausea Oculomotor Disorientation TotalScore 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9.54 7.58 13.92 3.74 3

2 2.1 (RICOH THETA, 2.1),Unity(Version 5.1.1f1 Personal).., Unity,., Unity.HMD Oculus Rift DK2(Oculusu VR, 2.2) HMD HMD,HMD ( 2.3) ( 2.4).Oculus Rift. Oculus Rift DK2,., ( 2.5), ( 2.7)..,, ( 2.6) 5, ( 2.8) 5.,..,,,. (iphone 5s, 2.9)., HMD ( 2.10). HMD 4

2.1. SSQ (ipad Air2, 2.11).,. OS: Windows8.1 Intel Core(TM) i5-4460 3.20GHz : 7.95GB 5

2.1 実験装置 図 2.1 図 2.2 Oculus Rift DK2 RICOH THETA 図 2.3 黒色の袋 図 2.4 6 実験時の Oculus Rift DK2

2.1 実験装置 図 2.5 図 2.7 図 2.6 回転椅子 角度指標確認用板 キャビネット 図 2.8 段ボール箱 7

2.1 実験装置 図 2.9 iphone 5s 図 2.10 ニット帽 図 2.11 ipad Air2 8

2.1 実験装置 図 2.12 実際の実験環境 9

2.2 2.2 10 ( 9, 1 ).,. 1000. 2.3 HMD,.,. 2.1,.,.,.., [8]. 10

2.3 2.1 45 deg 90 deg 1:0 45 deg 0 deg 90 deg 0 deg 2:1 90 deg 45 deg 180 deg 90 deg 1:2 45 deg 90 deg 90 deg 180 deg 2:1 0 deg 45 deg 0 deg 90 deg 1:0 45 deg 0 deg 90 deg 0 deg 2:1 90 deg 45 deg 180 deg 90 deg 1:2 45 deg 90 deg 90 deg 180 deg 2:1 0 deg 45 deg 0 deg 90 deg 11

2.4 2.4,,. 1 SSQ. 1. HMD,,.,., 2.1 1.,., 2.,.,HMD,. 1. 4 SSQ.,4 5., 2.3,. 4 1:0, 2:1, 1:2, 0:1 2 45 deg 90 deg 2 ( ) 16. 1 16 1. 3 3.16, 4, 2 2 4., 1:0, 4 45 deg : 0 deg, 90 deg : 0 deg, -45 deg : 0 deg, -90 deg : 0 deg ( ). 12

2.4 2.13 13

3 3.1, 1, 0. 3.1, 3.2. [11][12]. w 1. w 2. v i. v e. Y. Y = w 1 v i + w 2 v e (3.1) 1 = w 1 + w 2 (3.2), 2. 3.1 3.10., 3.11. 2, (F(3,27)=4.0075, p<.05).,, 1:0 0:1 p<.05, p<.01.,45,1:0 1:2, 1:0 0:1 p<.05, p<.05.,hmd VR,. 14

3.1 3.1 1 3.2 2 3.3 3 3.4 4 15

3.1 3.5 5 3.6 6 3.7 7 3.8 8 16

3.1 3.9 9 3.10 10 17

3.1 3.11 18

3.2 SSQ 3.2 SSQ 1:0, 2:1, 1:2, 0:1, 2 2.SSQ 4, 3.12 3.27., 3.12 3.21 SSQ.,3.22 3.24 TotalScore, Oculomotor, Nausea. 3.25 3.27,TotalScore, Oculomotor, Nausea 0.,,4 4. 3.28 3.37.,3.38 3.43 TotalScore, Oculomotor, Nausea. SSQ TotalScore, Oculomotor, Nausea 0,.(F(3,27)=0.8531, p>.05, F(3,27)=0.7122, p>.05, F(3,27)=0.5220, p>.05, F(3,18)=0.8468, p>.05, F(3,15)=0.6962, p>.05, F(3,15)=0.5028, p>.05,),4 4,.(F(3,27)=0.7682, p>.05, F(3,27)=0.3529, p>.05, F(3,27)=0.4909, p>.05, F(3,24)=0.7659, p>.05, F(3,21)=0.3465, p>.05, F(3,18)=0.7011, p>.05,),. 19

3.2 SSQ 3.12 1( ) 3.13 2( ) 3.14 3( ) 3.15 4( ) 20

3.2 SSQ 3.16 5( ) 3.17 6( ) 3.18 7( ) 3.19 8( ) 3.20 9( ) 3.21 10( ) 21

3.2 SSQ 3.22 TotalScore( ) 3.23 Oculomotor( ) 3.24 Nausea( ) 3.25 TotalScore(, N = 7) 22

3.2 SSQ 3.26 Oculomotor(, N = 6) 3.27 Nausea(, N = 6) 23

3.2 SSQ 3.28 1( ) 3.29 2( ) 3.30 3( ) 3.31 4( ) 24

3.2 SSQ 3.32 5( ) 3.33 6( ) 3.34 7( ) 3.35 8( ) 3.36 9( ) 3.37 10( ) 25

3.2 SSQ 3.38 TotalScore( ) 3.39 Oculomotor( ) 3.40 Nausea( ) 3.41 TotalScore(, N = 9) 26

3.2 SSQ 3.42 Oculomotor(, N = 8) 3.43 Nausea(, N = 7) 27

4 1:0 0:1.,., 2:1 1:2.,., 45,1:0 1:2, 1:0 0:1.1:0 0:1,,.1:0 1:2,.,90. 0.5. 1:1. 3.1, 3.2., 3.11, 1:1, 0.5.,,. SSQ.,SSQ 0,.,SSQ,, 28

.,,,.,, 180,.,., HMD VR,.,., VR,. VR,, VR., VR,.,,., VR. 29

5 HMD,VR.,SSQ,., HMD VR.,HMD VR,.,,.., SSQ 30

,.,,.,.. 31

[1] J. A. Saunders, Reliability and relative weighting of visual and nonvisual information for perceiving direction of self-motion during walking, Journal of Vision (2014) 14(3):24, 117 [2],,, IE97-156, 89-94 1977. [3] Reason, J. T., Motion sickness adaptation : A neural mismatch model, Journal of the Royal Society of Medicine, 71, pp. 819-829, (1978). [4] Oman, C. M., A heuristic mathematical model for the dynamics of sensory conflict and motion sickness, Acta Otolaryngologica, 44, pp. 392, (1982). [5] 2009 [6] Kennedy, R.S., Lane, N.E., Berbaum, K.S. Simulator sickness questionairre: an enhanced method for quantifying simulator sickness, The Infernafional Journal ofaviation Psychology, 3, 203-220, 1993. [7],,,,,,,,,,, 15, pp. 41-44, (2010). [8] Namba, S., Kuwano, S. & H. Fastl: Loudness of road traffic noise using the continuous judgment by category. Proceedings of the 5th International Congress on Noise as a Public Health Problem, 241-246, 1988. [9] 2011 [10], 3,,, 2000. [11] van Beers RJ, Sittig AC (1999) Integration of proprioceptive and visual position information: an experimentally supported model. J Neurophysiol 81:13551364 32

[12] Wu B, Klatzky RL, Shelton D, Stetten G (2008) Mental concatenation of perceptually and cognitively specified depth to represent locations in near space. Exp Brain Res 184:295305 33