IPSJ SIG Technical Report Tutorial: Active 3D reconstruction of moving objects HIROSHI KAWASAKI, 1 RYUSUKE SAGAWA 2 and RYO FURUKAWA 3 Rec

Similar documents
(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

1214_KiyotaCalib_matsusita_fixed2.pdf

光学

IPSJ-CVIM

光学

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

proc.dvi

dsample.dvi

IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

IPSJ SIG Technical Report Vol.2015-CVIM-196 No /3/6 1,a) 1,b) 1,c) U,,,, The Camera Position Alignment on a Gimbal Head for Fixed Viewpoint Swi

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

光学

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

14 2 5

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

IPSJ SIG Technical Report iphone iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Proc

Silhouette on Image Object Silhouette on Images Object 1 Fig. 1 Visual cone Fig. 2 2 Volume intersection method Fig. 3 3 Background subtraction Fig. 4

2003/3 Vol. J86 D II No Fig. 1 An exterior view of eye scanner. CCD [7] CCD PC USB PC PC USB RS-232C PC

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

Computer Security Symposium October ,a) 1,b) Microsoft Kinect Kinect, Takafumi Mori 1,a) Hiroaki Kikuchi 1,b) [1] 1 Meiji U

,,.,.,,.,.,.,.,,.,..,,,, i

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

(a) (b) (c) Fig. 2 2 (a) ; (b) ; (c) (a)configuration of the proposed system; (b)processing flow of the system; (c)the system in use 1 GPGPU (

2 Fig D human model. 1 Fig. 1 The flow of proposed method )9)10) 2.2 3)4)7) 5)11)12)13)14) TOF 1 3 TOF 3 2 c 2011 Information

Vol1-CVIM-172 No.7 21/5/ Shan 1) 2 2)3) Yuan 4) Ancuti 5) Agrawal 6) 2.4 Ben-Ezra 7)8) Raskar 9) Image domain Blur image l PSF b / = F(

IPSJ SIG Technical Report Vol.2016-CG-165 No.16 Vol.2016-DCC-14 No.16 Vol.2016-CVIM-204 No /11/10 1 Marco Visentini Scarzanella (AR) (M

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

IPSJ SIG Technical Report 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai,

[1] SBS [2] SBS Random Forests[3] Random Forests ii

36 581/2 2012

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)

IPSJ SIG Technical Report Vol.2012-CVIM-182 No /5/ RGB [1], [2], [3], [4], [5] [6], [7], [8], [9] 1 (MSFA: Multi-Spectrum Filt

IPSJ SIG Technical Report Vol.2012-IS-119 No /3/ Web A Multi-story e-picture Book with the Degree-of-interest Extraction Function

スライド 1

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

VRSJ-SIG-MR_okada_79dce8c8.pdf

DEIM Forum 2012 E Web Extracting Modification of Objec

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2011-CVIM-178 No /9/ Model-based Human Torso 3D Shape Estimation Shunta Saito, 1 Makiko

Vol. 44 No. SIG 9(CVIM 7) ) 2) 1) 1 2) 3 7) 1) 2) 3 3) 4) 5) (a) (d) (g) (b) (e) (h) No Convergence? End (f) (c) Yes * ** * ** 1

( 1) 3. Hilliges 1 Fig. 1 Overview image of the system 3) PhotoTOC 5) 1993 DigitalDesk 7) DigitalDesk Koike 2) Microsoft J.Kim 4). 2 c 2010

IPSJ SIG Technical Report Vol.2009-CVIM-167 No /6/10 Real AdaBoost HOG 1 1 1, 2 1 Real AdaBoost HOG HOG Real AdaBoost HOG A Method for Reducing

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

2. Eades 1) Kamada-Kawai 7) Fruchterman 2) 6) ACE 8) HDE 9) Kruskal MDS 13) 11) Kruskal AGI Active Graph Interface 3) Kruskal 5) Kruskal 4) 3. Kruskal

PSF SN 2 DFD PSF SN PSF PSF PSF 2 2 PSF 2 PSF PSF 2 3 PSF 4 DFD PSF PSF 3) DFD Levin 4) PSF DFD KL KL PSF DFD 2 Zhou 5) 2 DFD DFD DFD DFD Zhou 2


IPSJ SIG Technical Report Vol.2013-CVIM-188 No /9/2 1,a) D. Marr D. Marr 1. (feature-based) (area-based) (Dense Stereo Vision) van der Ma

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

SICE東北支部研究集会資料(2004年)

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

九州大学学術情報リポジトリ Kyushu University Institutional Repository 多視点動画像処理による 3 次元モデル復元に基づく自由視点画像生成のオンライン化 : PC クラスタを用いた実現法 上田, 恵九州大学システム情報科学研究院知能システム学部門 有田, 大

[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So

IPSJ SIG Technical Report Vol.2010-MPS-77 No /3/5 VR SIFT Virtual View Generation in Hallway of Cybercity Buildings from Video Sequen

第1章

proc.dvi

A basic study on designing 3D Characters for laser-plasma scanning 3D display

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

IPSJ SIG Technical Report Vol.2015-MUS-107 No /5/23 HARK-Binaural Raspberry Pi 2 1,a) ( ) HARK 2 HARK-Binaural A/D Raspberry Pi 2 1.

IPSJ SIG Technical Report Vol.2014-GN-90 No.16 Vol.2014-CDS-9 No.16 Vol.2014-DCC-6 No /1/24 1,a) 2,b) 2,c) 1,d) QUMARION QUMARION Kinect Kinect

IPSJ SIG Technical Report Vol.2014-HCI-158 No /5/22 1,a) 2 2 3,b) Development of visualization technique expressing rainfall changing conditions

MDD PBL ET 9) 2) ET ET 2.2 2), 1 2 5) MDD PBL PBL MDD MDD MDD 10) MDD Executable UML 11) Executable UML MDD Executable UML

A Navigation Algorithm for Avoidance of Moving and Stationary Obstacles for Mobile Robot Masaaki TOMITA*3 and Motoji YAMAMOTO Department of Production

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

22_05.dvi

スライド 1

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1

untitled

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. TRECVID2012 Instance Search {sak

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2016-MBL-80 No.11 Vol.2016-CDS-17 No /8/ (VR) (AR) VR, AR VR, AR Study of a Feedback Method fo

Sobel Canny i

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

IPSJ SIG Technical Report Vol.2014-MBL-70 No.49 Vol.2014-UBI-41 No /3/15 2,a) 2,b) 2,c) 2,d),e) WiFi WiFi WiFi 1. SNS GPS Twitter Facebook Twit

特集_03-07.Q3C

季報2010C_P _3-3.indd

1611 原著 論文受付 2009 年 6 月 2 日 論文受理 2009 年 9 月 18 日 Code No. 733 ピクセル開口率の向上による医用画像表示用カラー液晶モニタの物理特性の変化 澤田道人 石川晃則 1) 松永沙代子 1) 1) 石川陽子 有限会社ムツダ商会 1) 安城更生病院放射

3D UbiCode (Ubiquitous+Code) RFID ResBe (Remote entertainment space Behavior evaluation) 2 UbiCode Fig. 2 UbiCode 2. UbiCode 2. 1 UbiCode UbiCode 2. 2

1 3DCG [2] 3DCG CG 3DCG [3] 3DCG 3 3 API 2 3DCG 3 (1) Saito [4] (a) 1920x1080 (b) 1280x720 (c) 640x360 (d) 320x G-Buffer Decaudin[5] G-Buffer D

4 4 2 RAW (PCA) RAW RAW [5] 4 RAW 4 Park [12] Park 2 RAW RAW 2 RAW y = Mx + n. (1) y RAW x RGB M CFA n.. R G B σr 2, σ2 G, σ2 B D n ( )

Terahertz Color Scanner Takeshi YASUI Terahertz THz spectroscopic imaging is an interesting new tool for nondestructive testing, security screening, b

ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR

IPSJ SIG Technical Report Vol.2013-CVIM-187 No /5/30 1,a) 1,b), 1,,,,,,, (DNN),,,, 2 (CNN),, 1.,,,,,,,,,,,,,,,,,, [1], [6], [7], [12], [13]., [

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

(MIRU2010) Geometric Context Randomized Trees Geometric Context Rand

(a) (b) 2 2 (Bosch, IR Illuminator 850 nm, UFLED30-8BD) ( 7[m] 6[m]) 3 (PointGrey Research Inc.Grasshopper2 M/C) Hz (a) (b

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int

24 Depth scaling of binocular stereopsis by observer s own movements

1(a) (b),(c) - [5], [6] Itti [12] [13] gaze eyeball head 2: [time] [7] Stahl [8], [9] Fang [1], [11] 3 -

Transcription:

3 1 2 3 3 3 Tutorial: Active 3D reconstruction of moving objects HIROSHI KAWASAKI, 1 RYUSUKE SAGAWA 2 and RYO FURUKAWA 3 Recently, 3D scanning devices which can capture moving objects are now widely available even in supermarket. Although such devices can retrieve depth information of the scene almost in realtime, accuracy, resolution and fps are significantly different each other. Indeed, 3D reconstruction algorithm for each device is also different and we still have no idea which one becomes most popular in the near future. In this tutorial, we introduce basic algorithm of current 3D scanning devices as well as new technology proposed recently. 1. 3 1 Kagoshima University 2 National Institute of Advanced Industrial Science and Technology 3 Hiroshima City University 2. 3 1 2 TOF (time-of-flight) TOF 6),24) 30FPS 1 c 2011 Information Processing Society of Japan

1 プロジェクタ グレイコードシーケンス ( ) ( ). 2.1 3 3 ( ) ( 35) ) ( 1) 3 2 3 ( 1 ) ( 2 ) 3 ( 3 ) 3 2 (44) ) 43) 3 4),19) Matlab 19) 2 2.2 3 3( ) 1 1 3) 2 c 2011 Information Processing Society of Japan

Target object camera??? projector 1 0 1 0 1 0 0 1 0 1 0 1 0 3 ( ) ( ) ( ). 2 ( ),( ), ( ) ( x ), ( ). 2 2.2.1 1),5),7),12),15) 3 27),31),39) 3 2.2.2 16),29),33),36) () 4 3. DLP 3 c 2011 Information Processing Society of Japan

5 3 4 (a) (a) 4 (b) 3.1 Hall-Holt Rusinkiewicz 14),31) 4(a) 4 2 4 110 110 DLP 30 60Hz 60FPS 4 4(b) (b) 3.2 2 3 Weise 39) DLP DLP RGBW RGB 120Hz 120FPS 5 12) 13) Weise 4 c 2011 Information Processing Society of Japan

6 (a) (b) (c) Narasimhan 27) (a)dmd (b) DMD (c) 2/3π 3 2/3π 2/3π 3.3 DMD DLP 120Hz DMD(Digital Micromirror Device) Narasimhan 27) DMD 6(a) 0 255 300 3000FPS 6(b) DMD 6(c) 0 255 DLP DMD 160 20 1000FPS 20 20msec 300FPS 4. 4.1 1 1 7(a) 5 c 2011 Information Processing Society of Japan

7 カメラ画像面 ラインパターン (3 個組 ) の対応 対応点 エピポーラ線の対応 (a) カメラ画像面 のエピポーラ線 プロジェクタ画像面 のエピポーラ線 の対応点候補 のエピポーラ線 (c) カメラ画像面 プロジェクタ画像面 特徴点間の対応 エピポーラ線 (b) プロジェクタ画像面 (a) (b) (c) 2 7(b) 2 2 3 7(c) 4.2 2 1 1 1 2 1 2 9) 3 4.3 1 1 6 c 2011 Information Processing Society of Japan

8 ( ) ( ) ( 3) ) ( )Koninckx. 3 2 4.4 4.4.1 2),22),23),34),36),42) ID 36) RGB 34) 42) 9 ( )M-array Murano 26) ( )2*2 Cell Kimura 20) ( )Kinect 30). On/Off 23) 2) Koninckx 21) ( ) ID 22) 4.4.2 On/Off 7 c 2011 Information Processing Society of Japan

10 ( ) ( ) ( )2. 16),20),26),29),33),38) Morano M-array M*M 26) 2*2 RGB 20) Kinect 25) 2 4.4.3 M-array 17),32),37) 1 10) 3 17) 1000fps 32) 37) 2 18) 5. 8),40),41) 41).,. 8),41) 6. 3 3 8 c 2011 Information Processing Society of Japan

6.1 3 11 12 6.2 3 3 3 3 ( 13) 11) 17),32),37) 6.3 CG Kinect (a)frame No. 809/1000 fps. (b)frame No. 824/1000 fps. 11 frame no. 12/300fps. frame no. 19/300fps. 12 Results of a exploding balloon. Results of a breaking dish. 3 32) 28) 9 c 2011 Information Processing Society of Japan

Camera 2 Projector 3 Camera 3 Projector 4 Projector 2 13 7. Camera 1 Target object Camera 4 Projector 1 ( 11) ): ( ) ( ) ( ) 3 TOF (LR030) (SCOPE)ICT (101710002) 21700183,21200002 1) Abdul-Rahman, H.S., Gdeisat, M.A., Burton, D.R., Lalor, M.J., Lilley, F. and Moore, C.J.: Fast and robust three-dimensional best path phase unwrapping algorithm, Appl. Opt., Vol.46, No.2, pp.6623 6635 (2007). 2) Artec: United States Patent Application 2009005924 (2007j). 3) Batlle, J., Mouaddib, E. and Salvi, J.: Recent progress in coded structured light as a technique to solve the correspondence problem: a survey, Pattern Recognition, Vol.31, No.7, pp. 963 982 (1998). 4) Bouguet, J.-Y.: Camera Calibration Toolbox for Matlab. http://www.vision.caltech.edu/ bouguetj/calib doc/. 5) Boyer, K.L. and Kak, A.C.: Color-encoded structured light for rapid active ranging, IEEE Trans. on PAMI, Vol.9, No.1, pp.14 28 (1987). 6) Canesta, Inc.: CanestaVision EP Development Kit. http://www.canesta.com/devkit.htm. 7) Caspi, D., Kiryati, N. and Shamir, J.: Range imaging with adaptive color structured light, IEEE Trans. on PAMI, Vol.20, No.5, pp.470 480 (1998). 8) Davis, J., Nehab, D., Ramamoorthi, R. and Rusinkiewicz, S.: Spacetime Stereo: A Unifying Framework for Depth from Triangulation, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), Vol.27, No.2, pp.296 302 (2005). 9) Furukawa, R. and Kawasaki, H.: Uncalibrated multiple image stereo system with arbitrarily movable camera and projector for wide range scanning, IEEE Conf. 3DIM, pp.302 309 (2005). 10) Furukawa, R. and Kawasaki, H.: Self-calibration of Multiple Laser Planes for 3D Scene Reconstruction, 3DPVT, pp.200 207 (2006). 11) Furukawa, R., Sagawa, R., Kawasaki, H., Sakashita, K., Yagi, Y. and Asada, N.: One-shot Entire Shape Acquisition Method Using Multiple Projectors and Cameras, 4th Pacific-Rim Symposium on Image and Video Technology, IEEE Computer Society, pp.107 114 (2010). 12) Ghiglia, D.C. and Pritt, M.D.: Two-Dimensional Phase Unwrapping: Theory, Algorithms, And Software, Wiley-interscience (1998). 13) Gühring, J.: Dense 3-d surface acquisition by structured light using off-the-shelf components, Videometrics and Optical Methods for 3D Shape Measurement, Vol.4309, pp.220 231 (2001). 14) Hall-Holt, O. and Rusinkiewicz, S.: Stripe Boundary Codes for Real-Time Structured-Light Range Scanning of Moving Objects, ICCV, Vol.2, pp.359 366 (2001). 15) Inokuchi, S., Sato, K. and Matsuda, F.: Range imaging system for 3-D object recognition, ICPR, pp.806 808 (1984). 16) Je, C., Lee, S.W. and Park, R.-H.: High-Contrast Color-Stripe Pattern for Rapid Structured- Light Range Imaging, ECCV, Vol.1, pp.95 107 (2004). 17) Kawasaki, H., Furukawa, R.,, Sagawa, R. and Yagi, Y.: Dynamic scene shape reconstruction using a single structured light pattern, CVPR, pp.1 8 (2008). 18) Kawasaki, H., Furukawa, R., Sagawa, R., Ohta, Y., Sakashita, K., Zushi, R., Yagi, Y. and Asada, N.: Linear solution for oneshot active 3D reconstruction using two projectors, 3DPVT (2010). 19) KawasakiLab: Projector Calibration Toolbox. http://www.ibe.kagoshimau.ac.jp/ cgv/research/projcalib.html. 20) Kimura, M., Mochimaru, M. and Kanade, T.: Measurement of 3D Foot Shape Deformation in Motion, 4th Digital Human Symposium (2009). 21) Koninckx, T.P., Geys, I., Jaeggli, T. and Gool, L. J.V.: A Graph Cut based Adaptive Structured Light Approach for Real-Time Range Acquisition, 3DPVT, pp.413 421 (2004). 22) Koninckx, T.P. and Gool, L.V.: Real-Time Range Acquisition by Adaptive Structured Light, 10 c 2011 Information Processing Society of Japan

IEEE Trans. on PAMI, Vol.28, No.3, pp.432 445 (2006). 23) Maruyama, M. and Abe, S.: Range sensing by projecting multiple slits with random cuts, SPIE Optics, Illumination, and Image Sensing for Machine Vision IV, Vol.1194, pp.216 224 (1989). 24) Mesa Imaging AG.: SwissRanger SR-4000. http://www.swissranger.ch/index.php. 25) Microsoft: Xbox 360 Kinect. http://www.xbox.com/en-us/kinect. 26) Morano, R.A., Ozturk, C., Conn, R., Dubin, S., Zietz, S. and Nissanov, J.: Structured light using pseudorandom codes, IEEE Trans. on PAMI, Vol.20, No.3, pp.322 327 (1998). 27) Narasimhan, S.G., Koppal, S.J., and Yamazaki, S.: Temporal Dithering of Illumination for Fast Active Vision, Proc. European Conference on Computer Vision, pp.830 844 (2008). 28) Ogawara, K., Furukawa, R., Sagawa, R. and Kawasaki, H.: Marker-less Motion Capture using Dense Human-body Shape Scanning System, 3DPVT (2011). 29) Pan, J., Huang, P.S. and Chiang, F.-P.: Color-coded binary fringe projection technique for 3-D shape measurement, Optical Engineering, Vol.44, No.2, pp.23606 23615 (2005). 30) Primesense: United States Patent Application US 2010/0118123 (2010j). 31) Rusinkiewicz, S., Hall-Holt, O. and Levoy, M.: Real-Time 3D Model Acquisition, Proc. SIGGRAPH, pp.438 446 (2002). 32) Sagawa, R., Ota, Y., Yagi, Y., Furukawa, R., Asada, N. and Kawasaki, H.: Dense 3D reconstruction method using a single pattern for fast moving object, ICCV (2009). 33) Salvi, J., Batlle, J. and Mouaddib, E.M.: A robust-coded pattern projection for dynamic 3D scene measurement, Pattern Recognition, Vol.19, No.11, pp.1055 1065 (1998). 34) Sato, K. and Inokuchi, S.: Range-Imaging System Utilizing Nematic Liquid Crystal Mask, Proc. Int. Conf. on Computer Vision, pp.657 661 (1987). 35) Song, Z. and Chung, R.: Novel Method for Structured Light System Calibration, IEEE Transactions on Instrumentation and Measurement, Vol.57, No.11 (2010). 36) Tajima, J. and Iwakawa, M.: 3-D data acquisition by rainbow range finder, ICPR, pp.309 313 (1990). 37) Ulusoy, A.O., Calakli, F. and Taubin, G.: One-Shot Scanning using De Bruijn Spaced Grids, The 7th IEEE Conf. 3DIM (2009). 38) Vuylsteke, P. and Oosterlinck, A.: Range Image Acquisition with a Single Binary-Encoded Light Pattern, IEEE Trans. Pattern Anal. Mach. Intell., Vol.12, No.2, pp.148 164 (1990). 39) Weise, T., Leibe, B. and Gool, L.V.: Fast 3D Scanning with Automatic Motion Compensation, Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp.1 8 (2007). 40) Young, M., Beeson, E., Davis, J., Rusinkiewicz, S. and Ramamoorthi, R.: Viewpoint- Coded Structured Light, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2007). 41) Zhang, L., Snavely, N., Curless, B. and Seitz, S. M.: Spacetime Faces: High-Resolution Capture for Modeling and Animation, ACM Annual Conference on Computer Graphics, pp. 548 558 (2004). 42) Zhang, S. and Huang, P.: High-resolution, Real-time 3D Shape Acquisition, Proc. Conference on Computer Vision and Pattern Recognition Workshop, p.28 (2004). 43) Zhang, S. and Haung, P.S.: Novel Method for Structured Light System Calibration, Optical Engineering, Vol.45, No.8 (2006). 44), CVIM 2002-33-1 IEEE Computer Society, pp.1 8 (2002). 11 c 2011 Information Processing Society of Japan