090117公聴会_提出版.ppt



Similar documents
審査委員会081214_4章まで.ppt

教室説明会1113.ppt

研究成果報告書

untitled

Journal of the Combustion Society of Japan Vol.51 No.155 (2009) FEATURE Clarification of Engine Combustion and the Evolution デ

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake



Journal of the Combustion Society of Japan Vol.56 No.178 (2014) FEATURE /Issues and Solutions for Engine Combustion φ-t マッ


35TS.indd

untitled


(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405

ブローダウン過給システムを用いたガソリンHCCI機関の 運転領域拡大について

Table 2 DENSO Port Injection Fuel Injectors Fig.1 Port Fuel Injection System and Module 1996 CO ポート噴射システム 1 ( 1) HC 2 UC [2] (

燃焼圧センサ

ノック解析(1) CARSによるエンジン筒内未燃ガス温度の高精度測定と自着火反応モデルの評価

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

ガソリンエンジンシステムにおける未燃炭化水素の生成・排出挙動解析

藤村氏(論文1).indd

橡

Microsoft PowerPoint - datatel Presentation Wind Power Testing V01.ppt

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

LEGACY 1. LEGACY A: DIMENSION 1. SEDAN MODEL 2.5 L SOHC 2.5 L DOHC turbo Overall length mm (in) 4,730 (186.2) Overall width mm (in) 1,730 (68.1) Overa

L kW/6000rpm 181Nm/4500rpm 100kW/3500rpm 310Nm/2000rpm /2 2/3 2 km 10km/L 12.5km 100 /L 75 /L 2 km CO2 1- -

....PDF.pmd

Fig. 1. Schematic drawing of testing system. 71 ( 1 )

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

研究論文 尿素 SCR システムの NOx 浄化率向上に関する研究 ( 第 7 報 ) 鉄および銅ゼオライト系 SCR 触媒の比較と N 2 O 排出要因の解明 * 1) 伊藤聡一郎 2) 菊池裕 5) 鈴木央一 3) 田中陽 6) 石井素 4) 大聖泰弘 A Study on t

第2章

Reaction Mechanism and Liquefaction Process of Coal Yosuke MAEKAWA

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

2章.doc

„´™Ÿ/’£flö

Microsoft PowerPoint - SeniorMtng_2010_06_14V2.ppt

Engine Control <D-FH> (T) (T) 0 EDU 0 EFI MIN EDU elay EFI MIN elay 7 0 EFI N. 0 EFI N. - -


MEET NEWS JAPAN

Table 1. Main specifications of VAD plant. Fig. 2. Typical operating pattern of low alloy steel.

S-5.indd

スライド 1

charpter0.PDF

RT-PCR プロトコール.PDF

スペースプラズマ研究会-赤星.ppt

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット


IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric

<93C18F578B4C8E965F90F596EE20918F91BC2E6D6364>

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l


研究速報 JARI Research Journal バイオディーゼル燃料によるポスト新長期規制適合 エンジンの排出ガスへの影響 Effect of Biodiesel Fuel on Emissions from PNLT Diesel Engine 北村高明 *1 松浦賢 *2

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

untitled

untitled

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

K02LE indd

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

380-厚板06

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

Vol.7 No.2 ( ) in mm m/s 40 m/s 20 m/s m/s 20m/s 1999 US ,

橡A PDF

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

Microsoft Word - ■50_TRIAS_08-R docx

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

Microsoft Word - TSE_15_1_5.doc

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

untitled

Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2

表 1 項 目 試 験 回 転 速 度 及 び 測 定 エンジン 回 転 速 度 試 験 トルク 及 び 測 定 軸 トルク 吸 気 絞 り 弁 開 度 等 1) CO 等 の 希 釈 排 出 ガス 濃 度 又 は 排 出 ガス 濃 度 2) PM 捕 集 フィルタ 部 温 度 2) CVS 流 量

A Study of Effective Application of CG Multimedia Contents for Help of Understandings of the Working Principles of the Internal Combustion Engine (The

no15

LM35 高精度・摂氏直読温度センサIC

M6B_8B_98B_body.indd

Introduction ur company has just started service to cut out sugar chains from protein and supply them to users by utilizing the handling technology of

塗装深み感の要因解析

特-7.indd

J. Jpn. Inst. Light Met. 65(6): (2015)

> Case 1 Auto parts factory (Saitama factory) Industry Before coating measured on 3 may After coating measured on 2 June 5/3 測定 6/2 測定 Before coating

(Shigen to Sozai) Vol.116 p (2000) 石炭灰フライアッシュからのゼオライトのアルカリ水熱合成と生成物の陽イオン交換特性 * 1 1 村山憲弘山川洋亮 2 3 小川和男芝田隼次 Alkali Hydrothermal Synthesis of Zeol

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

GPGPU

放水の物理的火災抑制効果に着目した地域住民の消火活動モデル

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

a b Chroma Graphein Chromatography

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju


Plastic Package (Note 12) Note 1: ( ) Top View Order Number T or TF See NS Package Number TA11B for Staggered Lead Non-Isolated Package or TF11B for S

Caloric Behavior of Chemical Oscillation Reactions Shuko Fujieda (Received December 16, 1996) Chemical oscillation behavior of Belousov- Zhabotinskii


0810_UIT250_soto

untitled

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

Transcription:

Presentation title 1 / 6 ( ) NO Study on the Control Methods of NOx Component in Diesel Exhaust by Combustion Control and its Application Keishi TAKADA

Contents 2 / 6 > > > > NOxUrea-SCR NOx NOx NOx NOx Urea-SCR >

Background and Motivation (1) 3 / 6 NOx PM emission Combustion improvement NOx PM Aftertreatment NOx emission Fig. Conceptual figure of diesel emission standards > >DPF PM1% >NOx 8 9% NOx, NOx NOx,

Background and Motivation (2) 4 / 6 - Urea-SCR (NH 3 ) NOx NH 3 Urea-SCR NOx etc NH 3 etc NOx Exhaust gas NOx Catalyst layer Ammonia Injection NH 3NOx N 2 H 2 O Clean gas *Ref. http://www.chuden.co.jp/ NOx NOx

Previous Studies (1) 5 / 6 Urea-SCR Koebel, et al. (Paul Scherrer Institute) Tronconi, et al. (Politecnico di Mirano) York, et al. (Johnson Matthey) SCR Tenisson, et al. (Ford) NOx HNCO NO 2 Fe-ZSM NO 2 Standard SCR Fast SCR NO 2 NOx [ ] 2 3DOC SCR (US FTP ) Urea-SCR NO ( ) 2 N 2 O Curran, et al. (LLNL) Patel, et al. (ERC) ( ) Yamauchi, et al. (Osaka City Univ.) Opat, et al. (ERC) n-heptane ( 56 2537) n-heptane ( 29 52) KUCRS ASRT (LTC) CO HC

Previous Studies (2) 6 / 6 EGR Kimura, et al. (NISSAN) Shimazaki, et al. (Isuzu Adv. Eng. Center) Akihama, et al. (Toyota Central R&D) EGR NOx (Brunel Univ.) 5 Pa(abs) ( ) 3% EGR NOx PM Ladommatos, et al. MK EGR PCI EGR Smoke He Ar NOx DOC DPF, CSF LNT NSR Depres, et al. (Paul Scherrer Institute) Cooper, et al. (Johnson Matthey) Messerer, et al. (Tech. Univ. of Munich) ( ) Mahzoul, et al. (Univ. de Haute-Alsace) Pt DOC NO 2 O 2 NO NO 2 O 2 PM O 2 NO 2 Soot NO NO 2 NO 2 ( ) Pt BaO 2 NO NO 2 NO 2

Outline of Doctor Thesis 7 / 6 1 2 3 5 4 NOx 6 NOx Urea-SCR 7

8 / 6 2 NOxUrea-SCR NOx

Outline of Urea-SCR System 9 / 6 Urea-SCR Urea decomposition (NH 2 ) 2 CO HNCO + NH 3 - Pyrolysis HNCO + H 2 O NH 3 + CO 2 - Hydrolysis Overall SCR reaction 4NH 3 + 4NO + O 2 4N 2 + 6H 2 O 8NH 3 + 6NO 2 7N 2 + 12H 2 O 2NH 3 + NO + NO 2 2N 2 + 3H 2 O (1) Standard SCR reaction (2) NO 2 SCR reaction (3) Fast SCR reaction Fast SCR reaction NOx Urea-SCR SCR NOx Urea-SCR NOx NOx

Experimental Apparatus 1 - Engine Test Bench - 1 / 6 Air flow meter Intercooler Common rail Fuel tank Rotary encoder Urea-SCR system Fuel consumption meter Measuring method MEXA-91DEGR NOx Chemiluminescence CO, CO 2 Non-Dispersive Infrared Dynamometer Detection (NDIR) THC Flame Ionization Detection (FID) MEXA-4FT Turbocharger Fourier Transform Infrared Radiatorspectrometer (FT-IR) Exhaust gas analyzer Engine specifications Engine type : 4-cycle, DOHC, DI Cylinders : In-line 6 Bore x Stroke : 115 x 125 mm Swept volume : 7.8 L Aspiration : Turbocharged MEXA4FT MEXA91DEGR

Experimental Apparatus 2 - Urea-SCR System Layout - Urea-SCR,NOx Base system 11 / 6 Urea Injector Urea tank (32.5 wt% urea-solution) Bypass line Exhaust gas Valve Catalyst line 2 1 Pre-oxidation catalyst ( 2) 3 4 5 6 7 Modification 1. Pre-oxidation catalyst 2. Bypass line 3. Two valves Zeolite SCR catalyst (Cell density : 4 cpsi, Catalyst volume : 22.6 L catalyst

Definition of NO 2 /NOx 12 / 6 NOx NO 2 /NOx NOx 2 /NOx Exhaust gas NO 2 /NOx = NO 2 NO + NO 2 NOx NO, NO 2, N 2 O trace quantity NO NO 2 Load % NO 2 /NOx with Pre-Oxi. cat. w/o Pre-Oxi. cat. 2.143.131 4.536.71 6.574.23 8.374.2 NO 1% NO 2 % - NO 2 /NOx =. NO 5% NO 2 5% - NO 2 /NOx =.5 NO % NO 2 1% - NO 2 /NOx = 1.

Effect of NO 2 /NOx on NOx Reduction 13 / 6 NOx Conventional SCR system Modified SCR system 3 4 5 6 7 Normalized NOx emission % 1 8 6 4 2 NOx reduction performance Catalyst temperature : 45 K NOx reduction 43.% 92.6% 6.1% 91.8% 1 13 S. P. 4 S. P. 7 1 21 Normalized NOx emission % 1 8 6 4 2 NOx reduction performance Catalyst temperature : 5 K NOx reduction 72.7% 97.4% 9.6% 99.4% 1 1 S. P. 4 S. P. 7 NO 2 /NOx =.14.42 NO 2 /NOx =.35.5 1 6 NOx NOx 6 21 %

Summary of Section II 14 / 6 6 7.8L NOx Urea-SCR NOx NOx Urea-SCR NOx NO NO 2 Fast SCR reaction 2 NO 2 /NOx.5 NOx NO 2 Fast SCR reaction 45K(177 ) NOx 1/5

15 / 6 3

Outline of Diesel Combustion Modeling 16 / 6 Physical process > > NOx PM Coupling Chemical process RH QOOH > R OOQOOH > ROO HOOQ OOH HOOQ O + OH R: Alkyl radical NOx

Reaction Scheme - Outline 17 / 6 CFD STAR-CD v3.26 Complex Chemistry Module n-heptane reaction scheme* N series reactions Parameter modification Extended Zel dovich mechanism, Prompt NO, NO via N 2 O, NO 2 formation Species : 33 Elementary reactions : 66 CPU time: Approximately 54 hours for basic conditions. Machine spec. : Intel Core 2 Duo processor 2.4 GHz 2GB Memory (single core calculation) *A. Patel et al., Development and Validation of a Reduced Reaction Mechanism for HCCI Engine Simulations, SAE Paper 24-1-558 (24).

Engine Specifications and Calculation Grids 18 / 6 Table Engine specifications Engine type 4-cycle, 2.2L, DOHC, In-line 4 cylinders, DI Bore Stroke 86 mm 96 mm Top clearance Con-rod length.98 mm 147.5 mm Compression ratio 15.8 Calculation grids Fixed line The number of cells 5464 at BDC timing 2344 at TDC timing

Reaction Scheme Ignition Delay Test 19 / 6 ignition delay ms 1 1 1.1.1 P = 1.3 MPa 1. LLNL scheme ERC scheme Applied scheme.7.9 1.1 1.3 1.5 1.7 1/K Ignition delay characteristics of each scheme calculated by -D chemical reaction analysis. LLNL scheme: 56 species, 2537 reactions ERC scheme : 29 species, In this study : 33 species, Pressure MPa 5 4 Peak Pressure timing.1 ms Pressure rise.1 ms 52 reactions 66 reactions Peak Pressure 3% 3 Operating conditions Engine speed : 2 rpm Fuel injection timing : TDC Exp_pressure Exp_pressure Fuel quantity : 2 mm 3 /st ERC scheme Applied ERC scheme scheme EGR ratio: 19.1% 2-1 1 2 3 Crank angle deg. ATDC

Calculation Conditions for Validation 2 / 6 Parameter : Fuel Injection Timing Engine speed rpm 2 Intake pressure kpa 13 ( 1 in Exp.) Intake temperature K 33.15* ( 1.5 in Exp.) Injection timing deg. ATDC -5, -2,, 2 Injection quantity mm 3 /st 2 EGR ratio % Intake O 2 concentration vol. % 2.9 Parameter : EGR Ratio (Intake O 2 concentration) Engine speed rpm 2 Injection timing deg. ATDC Injection quantity mm 3 /st 2 Intake pressure kpa 13 13 11 97 Intake temperature K 33.4* 327.5 336.2 343.7 EGR ratio % 27.8 3.2 32.5 Intake O 2 concentration vol. % 2.9 17.2 16.2 15.3 *Heat transfer (+1-15 K) between intake gas and cylinder wall is assumed in calculation

Calculation Results - Pressure and Heat Release - 21 / 6 Cylinder pressure MPa 8 6 4 2 Parameter : Fuel Injection Timing Exp. Cal. Fuel injection timing -5 deg. ATDC -2 deg. ATDC TDC 2 deg. ATDC 4 3 2 1 Heat release J/deg. CA Cylinder pressure MPa 8 6 4 2 Parameter : EGR Ratio (Intake O 2 concentration) Exp. Cal. EGR ratio.4% 27.8% 3.2% 32.5% 4 3 2 1 Heat release J/deg. CA -2-2 -1 1 2 3 4 Crank angle deg. ATDC -2-2 -1 1 2 3 4 Crank angle deg. ATDC 8

Calculation Results - NO 2 /NOx Prediction - 22 / 6 NO 2 /NOx NO 2 NO 2 /NO NO 2 emission Calculated NO 2 /NOx.5.4.3.2.1 Oxygen concentration vol% 2.9 17.2 16.2 15.3 Injection timing deg. ATDC Black: -5 Red: -2 Blue: (TDC) Green:2 15%.1.2.3.4.5 Measured NO 2 /NOx 5 1 15 Measured NO 2 emission ppm NO 2 /NOx NO 2 Calculated NO 2 emission ppm 15 1 5 Oxygen concentration vol% 2.9 17.2 16.2 15.3 Injection timing deg. ATDC Black: -5 Red: -2 Blue: (TDC) Green:2 NO 2 /NOx ( 15%) 15%

Summary of Section III 23 / 6 NOx n-heptane.1ms3%.1ms EGR NOx NO 2 NO 2 /NOx 15%

24 / 6 4 NOx

Outline of Supercharge with EGR 25 / 6 EGR EGR line VNT/VGT turbocharger Fig. Diesel engine system Common-rail fuel injection system EGR EGR NOx PM >EGR >EGR PM NOx > EGR NOx NOx NO 2 /NOx

Analysis Method of EGR Mechanism 26 / 6 EGR NOx 2NOx Inert O 2 EGR O 2 Inert O 2 Inert O 2 > > Inert O 2 2

Calculation Conditions - EGR Mechanism - 27 / 6 Table Calculation conditions (Operating conditions) Engine speed rpm 2 Intake pressure kpa 1 Injection timing deg. ATDC Injection quantity mm 3 /st 2 Intake temperature K 344.7 Table Calculation conditions (In-cylinder gas components) Case A B C O 2 vol% 21. 19.3, 17.7, 16. N 2 vol% 79. 78.7, 78.3, 78. H 2 O, CO 2 vol%. 1., 2., 3.. Inert O 2 vol%.. 2., 4., 6. EGR Case A EGR CO 2 H 2 O Case B Inert O 2 Case C

Calculation Results - EGR Mechanism - 28 / 6 Cylinder pressure MPa 6 4 2 In-cylinder Pressure and HRR Dilution gas w/o EGR CO2, H2O Inert_O2 Dilution gas % 2.% 4.% 6.% 5 1 15 2 25 3 Crank angle deg. ATDC NOx 4 3 2 1 Heat release J/deg. CA NO, NO2 ppm.93.12.15.18.2.22.23 1 821.89 NO 8 Inert O 2 NO 2 6 4 2 Case NO NOx 2 /NOx emissions 45.21 346.94 EGR(CO 2,H 2 O) 197.21 13.69 62.83 31.2 Inert O2 EGR Inert O2 EGR Inert O2 EGR. 2. 4. 6. Dilution gas vol% A C B C B C B Case A C () Case B C () EGR NOx EGR NOx 2 /NOx

In-cylinder Behaviour of NO and Gas Temp. NO (movie) 1 9 deg. ATDC (1 deg. CA/sec) Case A Case B* Case C* 29 / 6 Temperature K Min. 4 Max. 25 NO mass fraction Min.. Max..8 *Dilution gas amount of Case B and C is 4.%

NO and Temperature Distribution 3 / 6 NO Temperature K 4 25 NO mass fraction..8 (A) w/o EGR (B) EGR (C) Inert O 2 (A) w/o EGR (B) EGR (C) Inert O 2 14 deg. ATDC 14 deg. ATDC 18 deg. ATDC 18 deg. ATDC 26 deg. ATDC 26 deg. ATDC NO NO NO

Numerical Analysis of Supercharge with EGR EGR Intake pressure / O 2 vol% : base 1 kpa / 18.5% base 2kPa / 23.4%, +2kPa / 15.3%, +4kPa / 13.%, +6kPa / 11.4%, +8kPa / 1.1%, +1 kpa / 9.% 31 / 6 EGR 1 In-cylinder Pressure and HRR 5 Cylinder pressure MPa 8 6 4 2-2 -2-1 1 2 3 4 Crank angle deg. ATDC +2kPa +4kPa +6kPa +8kPa +1kPa -2kPa base 4 3 2 1 Heat release J/deg NOx emission ppm 1 4 1 3 1 2 1 1 1 1-1 NOx NO 2 /NOx -2 2 4 6 8 1 Intake pressure kpa (gage). 1.8.6.4.2 NO 2 /NOx

Summary of Section IV 32 / 6 NOx EGR NOx NOx EGR NOx NOx NO EGR NOx NO EGR NOx NO NOx NO 2 /NOx EGR EGR NOx NOx

33 / 6 5 NOx

Outline of NOx Composition Control 34 / 6 NOx NO 2 NO * NO NO 2 NO 2 /NO x 1.8.6.4.2 CH 4 C 2 H 4 CH 3 OH DME NO-NO 2 NO+HO 2 NO 2 +HO NO-NO 2 6 7 8 9 1 11 12 Temperature K Pilot HC HO 2 NO *Ref. HORI et al., An experimental and kinetic calculation of the promotion effect of hydrocarbons on the NO-NO 2 conversion in a flow reactor Post HO 2 NO NO 2

Experimental Setup 35 / 6 Table Number of cylinders Inline 4 Bore Stroke mm 86 96 Swept volume cc 2231 Max power kw / rpm 13 / 36 Max torque Nm / rpm Test Engine Specifications 4 / 2 26 DOC Pt/Al 2 O 3 Size mm 13 14 Volume L 1.86 Sampling Point A. DOC Inlet B. DOC outlet A B

Experimental Conditions 36 / 6 EGR 4% Post/Pilot Table Experimental conditions EGR effect Load x/8 1, 2 Engine Speed rpm 15 Pilot Injection Timing deg. ATDC -8 ~ -1 w/o w/o Pilot Injection Quantity mm 3 /st 2. Main Injection Timing deg. ATDC Post Injection Timing deg. ATDC 1-8 w/o Post Injection Quantity mm 3 /st 2. EGR ratio % 4 (1/8 Load), 32 (2/8 Load) 1/8 Main

Experimental Results - 1/8 Load with EGR - 37 / 6 NOx g/h BSFC g/kwh 3 25 2 15 1 5 Pilot -8-6 -4-2 2 4 6 8 Injection timing deg. ATDC 44 4 36 32 28 24 2 16 NOx Pilot THC NOx NO 2 /NO Single Single CO NO 2 /NOx BSFC CO THC Post BSFC baseline BSFC Post CO baseline THC baseline -8-6 -4-2 2 4 6 8 Injection timing deg. ATDC 1 8 6 4 2 25 2 15 1 5 NO 2 /NOx CO, THC g/h NOx NO 2 /NOx 84.6% 37.3% BSFC Post 3 deg. ATDC TDC CO TDC NO 2 /NOx THC Post 3deg ATDC

Calculation Conditions Analysis of NO-NO 2 Conversion - 38 / 6 NO-NO 2 Pilot/Post NO 2 Table Calculation conditions Engine speed 15 rpm Engine load 1/8 Injection timing deg. ATDC EGR Single(TDC) Pilot(-4)+Main, Main+Post(4) w/o EGR, with EGR Cylinder pressure MPa 6 4 2 In-cylinder Pressure and HRR Engine speed: 15 rpm Load: 1/8, with EGR Base (single) Pilot(-4)+Main Main+Post(4) Exp Cal -1 1 2 3 Crank angle deg. ATDC 2 15 1 5 Heat release J/deg. CA 15 rpm NOx

In-cylinder Behaviour (movie) - NO, NO 2, HO 2, Gas temp. - 39 / 6 NO, NO 2, HO 2 Min. Max. Temperature K NO mass frac. NO 2 mass frac. HO 2 mass frac. 15 rpm, 1/8 load 3 26.5.2.1 with EGR, 12 deg. ATDC Single injection (TDC) Double injection Main + Post (4 deg. ATDC)

In-cylinder Behaviour - NO, NO 2, HO 2, Gas temp. - 4 / 6 NO, NO 2, HO 2 Min. Max. Temp 3 26 NO.5 Single injection NO 2.2.1 15 deg. ATDC 3 deg. ATDC Temp. NO NO 2 HO 2 53 deg. ATDC HO 2 Post NO-NO 2 Single Post NO 2 Single Post NO 2 HO 2 6 deg. ATDC 58 deg. ATDC 9 deg. ATDC 8 deg. ATDC 12 deg. ATDC Post HO 2 NO 2

Summary of Section V 41 / 6 NOx NO 2 Pilot PostNOx Post Pilot NOx NO 2 NO 2 /NOx 15 rpm 1/8 37.3 84.6% Post HO 2 NO NO 2 NOx NO 2 NOx Pilot/Post Main CO HC

42 / 6 6 NOx Urea-SCR

Outline of Diesel Engine System Optimization 43 / 6 Synergy effect of combustion and aftertreatment Combustion Aftertreatment Emissions reduction performance Cost Cost Cost Exhaust gas temperature > > NOx Urea-SCR

Experimental Setup 44 / 6 Aftertreatment device : Urea-SCR Table Urea-SCR Material Size mm Volume L Specifications of SCR catalyst Vanadium 15 165 2.92 (2.92/2.2 1.32) Sampling Point A. DOC inlet B. DOC outlet C. SCR inlet D. SCR outlet C B D A

Experimental Conditions 45 / 6 NOx Pilot -5 deg. ATDC Post 5 deg ATDC Urea equivalence ratio Table Experimental conditions Effect of NOx control on NOx conversion Load x/8 1, 2 Engine Speed rpm 15 Pilot Injection Timing deg. ATDC -4, -2, -1 w/o Pilot Injection Quantity mm 3 /st 2. Main Injection Timing deg. ATDC Post Injection Timing deg. ATDC 1, 2, 4 w/o Post Injection Quantity mm 3 /st 2. EGR ratio %, or 4(1/8 Load), 32(2/8 Load) 1. w/o Main

NO 2 /NOx, Experimental Results NO 2 /NOx NOx SCR Single injection, w/o EGR NOx conversion % 1 5-5 w/o EGR with EGR NO 2 /NOx (SCR_inlet) NOx conversion SCR temperature -1 15-4 -3-2 -1 1 2 3 4 Pilot/Post Timing deg. ATDC NOx NOx Pilot 1 deg.atdc, w/o EGR 2/8 load NO 2 /NOx 62.3% NOx 76.8% SCR 236.1 BSFC 275 g/kwh 4 35 3 25 2 SCR catalyst temp. deg. C Post 2 deg.atdc, w/o EGR 2/8 load NO 2 /NOx 49.6% ( 12.7%(point)) NOx 8.2% ( 3.4%(point)) SCR 236.2 (.1 ) BSFC 272 g/kwh ( 1.9%) NO 2 /NOx 29.9% NOx 33.3% SCR 174. BSFC 361 g/kwh Post 2 deg. ATDC, w/o EGR 46 / 6 NO 2 /NOx 44.% ( 14.1%(point)) NOx 48.1% ( 14.8%(point)) SCR 194.7 ( 2.7 ) BSFC 363 g/kwh (.55%) NO 2 /NOx, SCR NOx NO 2 /NOx.5 NOx ( NOx1 )

Combination of Combustion and Aftertreatment 47 / 6 NOx 1/8 NOx emission g/h 6 5 4 3 2 1 Case A Case B Case C Case D 56.4% reduction 84.3% reduction 91.5% reduction 87.7% reduction 93.% reduction Injection Single Multi Single Multi EGR w/o EGR w/o EGR with EGR with EGR GHSV 463 496 25 265 1 43.6 15.7 12.3 7.6 8.5 Urea-SCR NOx 1/8 NOx reduction % 1 8 6 4 2 Case ASV NO 2 /NOx.299.653.467.71 SCR temp. (deg. C) 174 191 179 196 Total NOx reduction 39.7% 86.5% 95.9% 97.2% NOx Case A B : 56.4% Case C D : 21.7% (3.4 point) EGR NOx Case A C : 84.3% Case B D : 71.8% (31.3 point) NOx Case C : 46.% (7.2 point) Case D : 42.8% (5.2 point) Urea-SCR 68.9% 6.8% 51.5% 39.7% Case A B : 29.2 point NO 2 Case A C : 11.8 point NO 2

Summary of Section VI NOx Urea-SCR NOx 15rpm 1/8 EGR Post 14.8%(point) NOx 3.4%(point) Urea-SCR NOx NOx NOx Urea-SCR Pilot Post EGR 48 / 6 NOx EGR NO 2 /NOx GHSV 1/8 Urea-SCR 39.7% 68.9% NOx

49 / 6 7

Concluding Remarks 5 / 6 > EGR ( 34 ) > / ( 35 ) NOx NO NO 2 NO 2 /NOx EGR NO Pilot/Post NO-NO 2 NO 2 /NOx >Urea-SCR( 26 ) LNT/NSR NOx NOx NOx

Future Work - Numerical analysis - Table Calculation and experimental conditions Engine speed rpm 2 Engine load 2/8 3/8 6/8 1 st pilot injection timing deg. ATDC -22.8-24.4-1 st pilot injection quantity mm 3 /st 1.8 1.87-2 nd pilot injection timing deg. ATDC -3.2-4.8-19.1 2 nd pilot injection quantity mm 3 /st 1.8 1.87 2.17 Main injection timing deg. ATDC 1.8 8.8.4 Main injection timing mm 3 /st 26.4 35.9 66. Intake pressure kpa(abs) 142.4 164.5 25.4 Intake temperature K 367.55 336.25 312.5* EGR ratio % 3.4 14.4. *Heat transfer (+15 K) between intake gas and cylinder wall is assumed in calculation 51 / 6 EGR

Cylinder pressure MPa 14 12 1 8 6 4 2-2 Future Work - Numerical analysis - Experimental and numerical results In-cylinder Pressure and HRR Exp. Cal. Load 6/8 3/8 2/8-2 2 4 6 Crank angle deg. ATDC 4 3 2 1 Heat release J/deg. CA NO, NO 2 ppm 52 / 6 NOx emission 12 1 1119 NO 841 8 NO 2 6 4 2 197 * * 127 77. 36.4 Exp. Cal. Exp. Cal. Exp. Cal. 2/8 load 3/8 load 6/8 load *NOx in EGR gas is considered Pilot EGR NOx

Future Work - NOx component control - 53 / 6 DOC NO 2 Engine speed : 15 rpm, 1/8 load, with EGR Before DOC After DOC NO 2 /NOx ratio % 1 75 5 25-8 -4 4 8 Injection Timing deg. ATDC >Pilot/Post NO 2 /NOx NO 2 DOC NO 2 /NOx Pilot/Post NO 2 CO THC DOC NO 2 NO CO THC NO-NO 2

Future Work - NOx component control - 54 / 6 Post NO-NO 2 Post 2.mm 3 /st 1.mm 3 /st Cylinder pressure MPa 6 4 2 Pressure and Heat Release NO, NO 2, HO 2 Engine speed: 15 rpm Load: 1/8, with EGR, Main + Post Inj. Exp. Cal. post 2. Cal. post 1. -2 2 4 6 Crank angle deg. ATDC 2 15 1 5 Heat release J/deg. CA NO, NO 2 mass g 6 4 2 post 2. post 1. NO 2 NO HO 2-4 4 8 12 Crank angle 2 1 HO 2 mass g Post HO 2 NO NO 2 NO 2 DOC NO 2

Future Work Fuel Injection for Aftertreatment Device - 55 / 6 NOx NO NO 2, Pilot/Post Present THC NO 2 NO NO-NO 2, DOC Future NOx NOx

Future Work - Simplified Heat Release Prediction Model - 56 / 6 3 Typical heat release rate curve D > (B, C, D, E) (B, C, D) Heat release > C SOI A B E A:Ignition delay (Cool flame) B:Ignition delay (Hot flame) C:Max. heat release D:Max. heat release timing E:Combustion duration 7. J/deg. CA Crank angle 5

Future Work - Simplified Heat Release Prediction Model - 57 / 6 Heat release J/deg D B C A SOI E Crank angle deg. ATDC Heat release J/deg SOI B A D E C Crank angle deg. ATDC Cool flame deg. CA 6 5 4 3 Sensitivity analysis A B C D E base Cool flame deg. ATDC 2-2 2 4 6 8 1 Initial pressure kpa (v.s. base) Hot flame deg. CA 14 12 1 8 Hot flame deg. ATDC base Max. HRR J/deg 6-2 2 4 6 8 1 Initial pressure kpa (v.s. base) 2 15 1 5 base HRR max J/deg -2 2 4 6 8 1 Initial pressure kpa (v.s. base) Simple equations A = f(p,t, ) B = g(p,t, ) C = h(p,t, ) HRR max. timing deg. CA D = i(p,t, ) E = j(p,t, ) 2 18 16 14 12 HRR max timing deg. ATDC base 1-2 base 2 4 6 8 1 Initial pressure kpa (v.s. base) Combustion duration deg. CA 16 14 12 1 8 base Combustion duration deg. CA 6-2 2 4 6 8 1 Initial pressure kpa (v.s. base)

Future Work - Simplified Heat Release Prediction Model - NOx emission ppm (NOx ) NOx (O 2 18.2 vol.%) NOx emission and NO 2 /NOx 2 NOx emission ppm 15 1 5 NOx emission NO 2 /NOx -2 2 4 6 8 1 Intake pressure kpa (gage) 2 1.5 1.5 NO 2 /NOx Max. heat release rate and Air Excess Ratio 15 12 58 / 6 NOx 2 /NOx NOx NOx (parameter: O 2 conc.) NOx NOx NOx emission and NO 2 /NOx 1 4 1 3 1 2 1 1 1 23 22 21 2 19 18 17 16 15 Oxygen concentration vol.% 1.5 NO 2 /NOx Max. H.R.R. J/deg 1 5 Max. Heat release Excess air ratio -2 2 4 6 8 1 Intake pressure kpa (gage) 1 (NOx: 1-1 ppm) 2 (NOx 9-18 ppm) 3 (NO 2 /NOx.14 -.4) NOx 9 6 3 Excess Air Ratio

Future Control System for Diesel Engine 59 / 6 Input (Accel pedal) Engine information Intake temp., Intake pres., Intake air mass., etc. Catalyst information Bed temp., Soot loading, NH 3 or NOx adsorption, etc. Base control Injection pattern Intake throttle EGR ratio, etc In-cylinder state quantity prediction model Pres., Temp., O 2 conc., etc. Injection pattern modification Simple H.R.R. prediction model Torque, Ex. Temp. Emission (Soot, NOx, NO 2 /NOx) NG Number of inj., Inj. Q, timing, etc ECU Performance evaluation Good!! Optimized injection

End of the Presentation 6 / 6 End Thank you for your attention!!