MicroSystems Lab Poppashoppa22 at wikipedia JuliusKlein at panoramio.com Sensors IMUs 3-D
UBX-G5010 HG1930 MEMS IMU accel :10 6 [ G] or 1 μ-g gyro :10 4 [ deg/hour] allign :10 3 rad [ ] or 3.3 deg
HG9900 Nav grade IMU HG1930 MEMS IMU Magneto Optical trap uartz Oscillator light ΔΦ Sagnac = R 2 8π 2 λ s c Ω Δf = 4A λ s Ln Ω Δf = f cw f cc light ΔΦ Sagnac = 2π 2 λ s c Ω atoms ΔΦ Sagnac light ΔΦ Sagnac atoms ΔΦ Sagnac ω = γ B 0 + Ω = 2π 2m at AΩ = m at λ s c 10 11 but:!!! ΔΩ(A,S N)!!! Ω = T Iω y sense = 2 s x d ω drive=sense Ω θ = η Ω dt φ = η Ω dt Precession measurement Ideal Type I dynamics x + ω 2 n x = 2Ωy y + ω 2 n y = 2Ωx x + ω n x + ω 2 x = V n d sinω n t y + ω n y + ω 2 y = 2Ωx n Ideal Type II dynamics ()= 2X D yt ω n φ 2 ω n Ω Rate measurement Ω
+ + = Ω Ω + + ), ( ), ( 0 2 2 0 0 0 2 2 y y f x x f y x y x y x y x y x yy yx xy xx yy yx xy xx yy xy xy xx z z n n δ δ δ δ β β β β α α α α ω ω ( ) ω ω π Δ + Δ = Ω err 2
1 2 3
150 µm * Published in Technologies for Furure M. Worksop 2011
1 1 = 1 Elect 1 Viscous TED 1 + 1 + Assym 1 + Other Anchor + + Output (Voltage) Ideal response Drifted response Input (Rotation) 1.Fabricate sensor directly on calibration stage 2.Periodically apply reference stimulus (e.g. oscillatory) 3.Extract reference stimulus and sensor response 4.Recover new I/O relationship and reset bias
100 m MG 0.1 mtorr MG f 0.9 TED > 1,000,000 0.0001 / hr y Mass 11 Mass 12 Mass 21 Mass 22 x
Ultra-miniaturization of atomic inertial sensors Harness energy transitions in nuclei magnetic resonance, atomic interferometry, hyperfine transfers, and atom number amplification Exploit inherent coupling in polarized spin-exchange Multi-functional microsystem Combinatorics of dissimilar physics Fabrication processes Ensemble of gyros are predicted to produce a system with noise characteristic 10 2 lower than any single consistent inertial sensor
Precision fabrication & new materials Novel assembly techniques SELF-CONTAINED NAVIGATION In-situ calibration Atomic accuracy Research consumes $ to create ideas, innovation consumes ideas to create $
MEMS ジャイロスコープの 世 界 的 第 一 人 者 Andrei M. Shkel 教 授 による 特 別 セミナー Special Seminar by Prof. Andrei M. Shkel, The world-leading expert in MEMS gyroscopes 日 時 :2016 年 5 月 13 日 ( 金 曜 日 ) 13:00~15:00 13 May 2016 (Friday) 13:00~15:00 参 加 無 料, 事 前 申 込 不 要 Admission free, No advanced registration required 場 所 : 東 北 大 学 青 葉 山 キャンパス マイクロ ナノマシニング 研 究 教 育 センター 3 階 セミナー 室 Tohoku University, Aobayama Campus, Micro-Nanomachining Research & Education Center (MNC), 3rd floor, Seminar room ( 田 中 ( 秀 ) 研 究 室 ウェブサイト アクセス ページの 地 図 上 A14 の 建 物 ) (Building A14 on the map at http://www.mems.mech.tohoku.ac.jp/access/) 主 催 : 田 中 ( 秀 ) 研 究 室,マイクロ ナノマシニング 研 究 教 育 センター Organized by S. Tanaka Laboratory and MNC, Tohoku University 講 師 : Prof. Andrei M. Shkel Department of Mechanical and Aerospace Engineering, University of California, Irvine Dr. Andrei M. Shkel has been on faculty at the University of California, Irvine since 2000. From 2009 to 2013, he was on leave from academia serving as a Program Manager in the Microsystems Technology Office of DARPA. Dr. Shkel has been on a number of editorial boards, most recently as Editor of IEEE/ASME Journal of MicroElectroMechanical Systems (JMEMS) and the founding chair of the IEEE Inertial Sensors conference (INERTIAL). Dr. Shkel is the IEEE Fellow. He has been awarded in 2013 the Office of the Secretary of Defense Medal for Exceptional Public Service, the 2009 IEEE Sensors Council Technical Achievement Award, and the 2005 NSF CAREER award. He received his Diploma (1991) in Mechanics and Mathematics from Moscow State University, Ph.D. degree (1997) in Mechanical Engineering from the University of Wisconsin at Madison, and experienced postdoc (1999) at Berkeley Sensors and Actuators Center (BSAC). 要 旨 : After briefly reviewing the fundamentals of MEMS gyroscope, the state-of-the-art MEMS gyroscope technology is introduced. The performance of MEMS gyroscopes are continuously improving to reach the navigation grade, which has been conventionally achieved only by optical gyroscopes. Various types of precise MEMS gyroscopes and advanced control systems developed by Prof. Shkel s Laboratory are presented, including a quad mass gyroscope, a micro hemispherical resonator gyroscope (HRG), and origami-like 3D assembly of MEMS gyroscopes. In addition, this talk touches on novel atomic MEMS for ultra-precise timing reference and magnetic sensing. After this seminar, the attendee can understand that MEMS technology can further extend its sensing precision beyond the present level. 予 習 資 料 田 中 ( 秀 ) 研 究 室 ウェブサイト インターネット 記 事 のページ State-of-the-art MEMS Gyroscopes for Autonomous Cars チップ 上 にフーコー 振 子 高 性 能 MEMS ジャイロ 自 動 運 転 などに 向 けて 開 発 が 進 む MEMS はもうかる IEEE MEMS 2016 学 会 報 告