The painter of the Lascaux Cave (B.C.15,000) knew the geometry of apparent contours. http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 2 / 5



Similar documents
36

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a

x : = : x x

ii-03.dvi

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

n ( (


2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y


a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

PSCHG000.PS

24.15章.微分方程式

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P

REALV5_A4…p_Ł\1_4A_OCF

untitled

「都市から地方への人材誘致・移住促進に関する調査」

<91498EE88CA D815B2E786C73>

〔 大 会 役 員 〕

橡本体資料+参考条文.PDF

Lecture on

main.dvi

) 9 81

mugensho.dvi


II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

untitled

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

all.dvi

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

( )

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

MultiWriter 5600C 活用マニュアル


ガス溶接器・切断器.PDF

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K


aisatu.pdf

Sigma

Sigma

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

30

DVIOUT-HYOU

i

04年度LS民法Ⅰ教材改訂版.PDF

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

Microsoft Word - 触ってみよう、Maximaに2.doc

熊本県数学問題正解

untitled

untitled


1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >


N = Q R = R N < R

ii

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

資料5:聖ウルスラ学院英智小・中学校 提出資料(1)

DVIOUT

II

18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (

untitled

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

FX自己アフリエイトマニュアル

FX ) 2

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3


68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

PSCHG000.PS

A B A E

HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

第10章 アイソパラメトリック要素

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ


untitled

untitled

2011de.dvi


.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

( ) ( )

untitled

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

卓球の試合への興味度に関する確率論的分析

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (


Transcription:

1 / 52 25 http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html

The painter of the Lascaux Cave (B.C.15,000) knew the geometry of apparent contours. http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 2 / 52

3 / 52 1 2 3

4 / 52 16 17 Desargues: 1593-1662

http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 5 / 52

http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 6 / 52

http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 7 / 52

http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 8 / 52

http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 9 / 52

http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 10 / 52

11 / 52 :

11 / 52 :

11 / 52 :

12 / 52 : l l H H

13 / 52 : P 2

13 / 52 : P 2 K = R C K P 2 RP 2 CP 2 P 2 := K 3 {0}/ x y λ K {0} s.t. x = λy

13 / 52 : P 2 K = R C K P 2 RP 2 CP 2 P 2 := K 3 {0}/ x y λ K {0} s.t. x = λy P 2 = U 0 U 1 U 2 U 0 = {[1 : u 0 : v 0 ] P 2 }, U 1 = {[u 1 : 1 : v 1 ] P 2 }, U 2 = {[u 2 : v 2 : 1] P 2 }.

14 / 52 : 0.1 Pappus 300 l, l l A, B, C l A, B, C AB A B P BC B C Q CA. C A R P, Q, R.

: http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 15 / 52

: http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 16 / 52

17 / 52 : P D : RE = P D : DB = F R : RC = AR : RG = BE : EQ = DR : EQ P DR = REQ DRP EQR P, Q, R q.e.d.

18 / 52 =

18 / 52 = d d

18 / 52 = d d =

18 / 52 = d d = =

19 / 52

20 / 52 Gauss K P M elliptic point hyperbolic point parabolic point

http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 21 / 52

22 / 52 M R 3 P 3 p R 3 M M p ϕ : M P 2, x px contour generator ϕ apparent contour ϕ

0.2 f, g : R m, 0 R n, 0 A- source target σ, τ R m, 0 f R n, 0 σ R m, 0 g τ R n, 0.. http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 23 / 52

http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 23 / 52 0.2 f, g : R m, 0 R n, 0 A- source target σ, τ R m, 0 f R n, 0 σ R m, 0 g τ R n, 0. 0.3 f : R m, 0 R n, 0 Jacobi = f (m n) (m > n) A- f : R m, 0 R, 0, df(0) = 0, det Hess f (0) 0 = f ±x 2 1 ± ± x2 m A-.

0.4 ( (1979, 84, 86)) M p ϕ x M ϕ : M, x P 2, ϕ(x) f R 2, 0 R 2, 0, (x, y) (y, f(x, y)) A- type codim. f(x, y) type codim. f(x, y) 1(regular) 0 x 7(gulls) 2 x 4 + x 2 y + xy 2 2(fold) 0 x 2 8(butterfly) 2 x 5 ± x 2 y + xy 3(cusp) 0 x 3 + xy 9 ± 3 x 3 ± xy 4 4 ± (lips/beaks) 1 x 3 ± xy 2 10 3 x. 4 + x 2 y + xy 3 5(goose) 2 x 3 + xy 3 11 3 x 5 + xy 6(swallowtail) 1 x 4 + xy http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 24 / 52

A 0 fold cusp 0.5 type normal form 0(regular) (x, y) (x, y) 1(fold) (x, y) (x 2, y) 2(cusp) (x, y) (x 3 + xy, y) http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 25 / 52

26 / 52 2: P T M P A P A ϕ : M R 2

27 / 52 A P ϕ P ϕ(p ) P

28 / 52 3: P M P ξ 2 + η 3 = 0 3/2-

29 / 52 P M 3 2

30 / 52 P

31 / 52 P P

32 / 52

33 / 52

1 : 1 A t A t0 1 0.6 type miniversal unfolding 3, 4(lips/beaks) (x, y) (x 3 ± xy 2 + ax, y) 6(swallowtail) (x, y) (x 4 + xy + ax 2, y).. http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 34 / 52

35 / 52 1 : 4: Lips/Beaks P 3

36 / 52 1 : 6: Swallowtail P P 4

2 : 2 A s,t A (s0,t 0 ) 2 0.7 type miniversal unfolding 5(goose) (x, y) (x 3 + xy 3 + axy + bx, y) 7(seagull) (x, y) (x 4 + x 2 y + xy 2 + axy + bx, y) 8, 9(butterfly) (x, y) (x 5 ± x 3 y + xy + ax 3 + bx 2, y). http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 37 / 52

38 / 52 2 : 5: Goose

39 / 52 2 : 7: Gulls

40 / 52 2 : 8 Butterfly

41 / 52 0.8 ( ) K > 0 (Fold) K = 0 (Fold) { (Lips/Beaks) 1 3 (Goose) 2 4 (Gulls) 2 K < 0 (Fold) 3 (Cusp) 4 (Swallowtail) 1. 5 (Butterfly) 2-1 - 3 type 9, 10, 11

42 / 52 M S = {x 1, x 2,, x s } ϕ 1 (y) ϕ ϕ : M, S P 2, y A-

43 / 52 1

44 / 52 2

45 / 52 3 P 3 (= CP 3 ) d ( 4) M := { p = [x 0 : x 1 : x 2 : x 3 ] P 3 f(x 0, x 1, x 2, x 3 ) = 0 }, f d )

46 / 52 2 Q:

47 / 52 Q. butterfly

47 / 52 Q. butterfly Butterfly = 5d(d 4)(7d 12)

47 / 52 Q. butterfly Butterfly = 5d(d 4)(7d 12) Q.

47 / 52 Q. butterfly Butterfly = 5d(d 4)(7d 12) Q. Seagull = 2d(d 2)(11d 24) (V. Kulikov, 1983)

48 / 52 X n ξ = ξ 1 + c 1 (ξ) + + c n (ξ) H (X; Z), ( c k (ξ) H 2k (X) )

48 / 52 X n ξ = ξ 1 + c 1 (ξ) + + c n (ξ) H (X; Z), ( c k (ξ) H 2k (X) ) k ɛ k ξ = c j (ξ) = 0 (j n k + 1) CP 1 ξ 1 ɛ 1

49 / 52 X n ξ = ξ 1 + c 1 (ξ) + + c n (ξ) H (X; Z), ( c k (ξ) H 2k (X) ) k ɛ k ξ = c j (ξ) = 0 (j n k + 1) CP 1 ξ 1 ɛ 1 c 1 (ξ 1 ) = 1, c 1 (ɛ 1 ) = 0 H 2 (CP 1 ; Z) Z

0.9 Classification of map-germs = Thom polynomials η : singularity type T p(η) Z[c 1, c 2, ] f : N n P p n η T p(η)(c(f)) = f η- H 2n (M). = Z c i = c i (f) := c i (f T P T N). 0.10 A 4 - Tp T p(a 4 ) = c 4 1 + 6c 2 1c 2 + 2c 2 2 + 9c 1 c 3 + 6c 4 http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 50 / 52.

0.9 Classification of map-germs = Thom polynomials η : singularity type T p(η) Z[c 1, c 2, ] f : N n P p n η T p(η)(c(f)) = f η- H 2n (M). = Z c i = c i (f) := c i (f T P T N). 0.10 A 4 - Tp T p(a 4 ) = c 4 1 + 6c 2 1c 2 + 2c 2 2 + 9c 1 c 3 + 6c 4 Butterfly = 5d(d 4)(7d 12). http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 50 / 52

51 / 52

51 / 52 H (P n ; Z) = Z[a]/(a n+1 )

51 / 52 H (P n ; Z) = Z[a]/(a n+1 )

51 / 52 H (P n ; Z) = Z[a]/(a n+1 )

51 / 52 H (P n ; Z) = Z[a]/(a n+1 )

51 / 52 H (P n ; Z) = Z[a]/(a n+1 )

Modern Art integrates multiple views. http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 52 / 52