vdw-df vdw-df vdw-df 2



Similar documents

和佐田P indd

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

スライド 1

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

untitled

1.06μm帯高出力高寿命InGaAs歪量子井戸レーザ

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

講 座 熱電研究のための第一原理計算入門 第1回 密度汎関数法による第一原理バンド計算 桂 1 はじめに ゆかり 東京大学 2 密度汎関数理論 第一原理 first-principles バンド計算とは 結晶構造 Schrödinger 方程式は 量子力学を司る基本方程式で 以外の経験的パラメータや

SPring-8_seminar_

原子・分子架橋系の量子輸送の理論 現状と展望

1) T. L. Cottrel, A. J. Matheson, Trans. Farad. Soc., 58, 2336(1962). 2) E. N. Chesnokov, V. N. Panfilov, Teor. Eksp. Khimiya, 17, 699(1981). 3) M. Ko

Frontier Simulation Software for Industrial Science

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

Materials Studio Basic Training - CASTEP

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

スライド 1

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

SiC SiC QMAS(Quantum MAterials Simulator) VASP(Vienna Ab-initio Simulation Package) SiC 3C, 4H, 6H-SiC EV VASP VASP 3C, 4H, 6H-SiC (0001) (11 20) (1 1

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

第122号(A4、E)(4C)/3 宇野ほか

物理予稿01-

プログラム

日本内科学会雑誌第97巻第3号

Structural Studies of Graphite Intercalation Compounds of Fluorine by Transmission Electron Microscopy Tetsuya Isshiki, Fujio Okino, Yoshiyuki Hattori


Fig, 1. Waveform of the short-circuit current peculiar to a metal. Fig. 2. Waveform of arc short-circuit current. 398 T. IEE Japan, Vol. 113-B, No. 4,

C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1) 0.3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P = ) S.Mizutani, S.Ishid

Fig. 1 Sampling positions from the ingot. Table 2 Chemical compositions of base metal (%) Fig. 2 (unit: mm) Shape and size of fatigue test specimen. T

4/15 No.

1) J. H. Callomon, E. Hirota, K. Kuchitsu, W. J. Lafferty, A. G. Maki, C. S. Pote, "Landolt-BOrnstein Tables", New Series, Vol. 7, Springer, Heidelber

A comparative study of the team strengths calculated by mathematical and statistical methods and points and winning rate of the Tokyo Big6 Baseball Le

untitled

和佐田P indd

2

Fig. 1 Photography of exercise test by Arm Crank Ergometer. Fig. 2 Photography of exercise test by chair with caster. Arm Crank Ergometer Wheelchair T

和佐田 裕昭P indd

スライド 1

NN_JP_'1203_H1H4.ai

24 Depth scaling of binocular stereopsis by observer s own movements

Web Stamps 96 KJ Stamps Web Vol 8, No 1, 2004

<95DB8C9288E397C389C88A E696E6462>

*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe

28 Horizontal angle correction using straight line detection in an equirectangular image

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6

KII, Masanobu Vol.7 No Spring

Microsoft Excelを用いた分子軌道の描画の実習

(11-5) Abstract : An ultrasonic air pump utilizing acoustic streaming is discussed and its efficient simulation method using finite element analysis (

Transcription:

WPI-AIMR ikutaro@wpi-aimr.tohoku.ac.jp 1

vdw-df vdw-df vdw-df 2

(Semi-)local approximation in density-functional theory - Local density approximation (LDA) Good structural and dynamical properties of solids Too large atomization energy (cohesive energy) - Generalized gradient approximation (GGA) Better structural properties of molecules Better atomization energies for molecules and solids Overestimation of lattice constants (hence underestimation of bulk modulus and vibrational frequencies) Good for describing covalent/ionic bonds Good for hydrogen bonds Lack of long-range dispersion (van der Waals) forces: Weak interactions are described inaccurately 3

van der Waals density functional (vdw-df) Exchange-correlation E xc = E revpbe x + E LDA c + E nl c Nonlocal correlation which accounts for vdw interaction E nl c = 1 2 dr 1 dr 2 n(r 1 )φ(q 1,q 2,r 12 )n(r 2 ) q i = q 0 (n(r i ), n(r i ) ) r 12 = r 1 r 2 Dion et al., Phys. Rev. Lett. 92, 246401 (2004). 4

vdw-df is able to describe vdw interaction Rare gas dimer GGA vdw-df Dion et al., Phys. Rev. Lett. 92, 246401 (2004). 5

vdw-df gives essentially the same results as PBE- GGA for water monomer θhoh doh (A ) θhoh (degree) doh Potential energy curve PBE* 0.975 104.5 vdw-df 0.972 104.6 CCSD(T) 0.958 104.5 Expt. 0.958 104.5 *Perdew-Burke-Ernzerhof GGA IH, J. Chem. Phys. 133, 214503 (2010). 6

vdw-df is able to describe covalent bonding 0.12 0.10 Graphene vdw!df LDA PBE!E tot (ev) 0.08 0.06 0.04 0.02 PBE vdw-df 0.00 0.242 0.244 0.246 0.248 0.25 Lattice constant (nm) IH and M. Otani, Phys. Rev. B 82, 153412 (2010). 7

vdw-df yields more accurate binding energy of ice Ih, but equilibrium volume is slightly overestimated Binding energy (Eb), lattice parameter (c/a), and equilibrium volume (V0), bulk modulus (B0) Eb (ev/h2o) c/a V0 (A 3 /H2O) B0 (GPa) PBE 0.665 1.636 30.23 15.6 vdw-df 0.602 1.632 34.01 10.5 CCSD(T) 0.577 1.627 32.10 15.2 Expt. 0.580 1.628 32.05 12.1 CCSD(T): A. Hermann, P. Schwerdtfeger, Phys. Rev. Lett. 101, 183005 (2008). IH, J. Chem. Phys. 133, 214503 (2010). 8

Problems in vdw-df Equilibrium distance overestimated Too repulsive exchange energy used Rare gas dimer GGA vdw interaction near equilibrium overestimated Too large vdw attraction of vdw-df nonlocal correlation vdw-df Dion et al., Phys. Rev. Lett. 92, 246401 (2004). 9

Band-gap opening at the K point of graphene/ni(111) is not reproduced by vdw-df ARPES experiment vdw-df calculation A. Varykhalov, et al., Phys. Rev. Lett. 101, 157601 (2008) M. Vanin, et al., Phys. Rev. B 81, 081408(R) (2010) 10

Adsorption energy is calculated accurately, while adsorption distance is generally overestimated by vdw-df Expt. GGA vdw-df DFT-D Expt. Z C 0.42 0.37 0.24 0.234 Δφ (ev) -0.15-0.37-0.97-0.90 K. Toyoda, IH, K. Lee, S. Yanagisawa, Y. Morikawa, J. Chem. Phys. 132, 134703 (2010) 11

Problems in vdw-df Equilibrium distance overestimated Too repulsive exchange energy used Rare gas dimer GGA vdw interaction near equilibrium overestimated Too large vdw attraction of vdw-df nonlocal correlation near the equilibrium vdw-df E vdw-df xc = E revpbe x + E LDA c + E nl c Dion et al., Phys. Rev. Lett. 92, 246401 (2004). 12

The revpbe exchange reasonably reproduce the Hartree- Fock exchange, but too repulsive at small separation Dion et al., Phys. Rev. Lett. 92, 246401 (2004). 13

vdw-df vdw-df vdw-df vdw-df Self-consistent vdw-df potential STATE 14

vdw-df Lee vdw-df2 vdw-df Self-consistent vdw-df potential STATE 15

Improved vdw-df: vdw-df2 C09x Exchange functional of Cooper (C09) Phys. Rev B 81, 161104(R) (2010) Nonlocal correlation of Lee et al (vdw-df2) Phys. Rev. B 82, 081101(R) (2010). for improved description of interface geometry and electronic structure IH and M. Otani, Phys. Rev. B 82, 153412 (2010). 16

Exchange enhancement factor E GGA x = drne unif x (n)f x (s) 2.4 2.2 2.0 PBE revpbe C09 Reproduce revpbe at a large reduced gradient F x 1.8 1.6 1.4 1.2 1.0 Small Fx at a small reduced gradient to reduce repulsion at short distance 0 2 4 6 8 10 s C09 [Cooper, Phys. Rev. B 81, 161104(R) (2010)] 17

Application of improved vdw-df to adsorption systems Graphene/metal C60/metal 18

C09 exchange and vdw-df2 correlation improves the adsorption distance of graphene 300 Graphene/Ni(111) 200 PBE vdw-df Binding energy (mev) 100 0 Expt. vdw-df2 C09 x -100-200 0.2 0.3 0.4 0.5 Adsorption distance (nm) IH and M. Otani, Phys. Rev. B 82, 153412 (2010). 19

Band-gap opening at the K point on Ni (111) is reproduced by vdw-df2 C09x vdw-df2 C09x band structure ARPES experiment IH and M. Otani, Phys. Rev. B 82, 153412 (2010). A. Varykhalov, et al., Phys. Rev. Lett. 101, 157601 (2008) 20

C09 exchange and vdw-df2 correlation improves the adsorption distance of graphene Graphene/Pt(111) Binding energy (mev) 200 100 0 Expt. vdw-df vdw-df2 vdw-df C09 x vdw-df2 C09 x -100 0.2 0.3 0.4 0.5 Adsorption distance (nm) 21

Electronic structure of graphene varies depending on the nature of the substrate Band structures of graphene on metal surfaces calculated at the equilibrium distances by vdw-df2c09x Ni E-EF (ev) 5 0 Cu High EF -5-10 Low -15 n-type doping EF E-EF (ev) -20 5 Pd 0 Au -5 EF -10 p-type doping -15-20 Γ n-type doping Κ ΜΓ Κ IH and M. Otani, Phys. Rev. B 82, 153412 (2010). Μ 22

C60/Au(111): accurate binding energy with vdw-df2 C09x 1 Binding energy (ev) 0-1 PBE Distance vdw-df2 C09 x -2 Expt. 0.1 0.2 0.3 0.4 0.5 0.6 Distance (nm) IH and M. Tsukada, Phys. Rev. B 83, 245437 (2011). 23

C09 exchange and vdw-df2 correlation improves the interlayer distance of graphite Graphite c Interlayer binding energy (mev) 75 50 25 0-25 -50-75 LDA PBE vdw-df vdw-df2 vdw-df C09 x vdw-df2 C09 x Expt. 0.55 0.60 0.65 0.70 0.75 Lattice constant c (nm) LDA PBE vdw-df vdw-df2 C09x Expt. c (nm) 0.664 0.853 0.714 0.652 0.6672 24

vdw-df2 C09x predicts accurate geometry of solid Hexagonal Boron nitride c Interlayer binding energy (mev) 75 50 25 0-25 -50 Experimental interlayer distance LDA PBE vdw-df vdw-df2 C09 z -75 0.55 0.60 0.65 0.70 0.75 Lattice constant c (nm) LDA PBE vdw-df vdw-df2 C09x Expt. c (nm) 0.646 0.848 0.708 0.642 0.6603 25

vdw-df vdw-df2 C09x / 26

STATE self-consistent vdw-df potential [Public domain (Quantum-espresso SIESTA)] vdw-df2 C09x / / 27