A Brief Introduction to Modular Forms Computation



Similar documents
Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Tabulation of the clasp number of prime knots with up to 10 crossings


●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb

REALV5_A4…p_Ł\1_4A_OCF

untitled

「都市から地方への人材誘致・移住促進に関する調査」

<91498EE88CA D815B2E786C73>

〔 大 会 役 員 〕

橡本体資料+参考条文.PDF

Lecture on



放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)


I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

日本内科学会雑誌第97巻第3号

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

main.dvi

Armstrong culture Web

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+


2014 F/ E 1 The arithmetic of elliptic curves from a viewpoint of computation 1 Shun ichi Yokoyama / JST CREST,.

I [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X X n ): µ X N(µ, σ 2 /n) Z = X µ σ/ n N(, 1) < α < 1/2 Φ(z) =.5 α z α

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)


2 probably 3 probability theory probability theory (gàil`ü) , 1:


1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

一般演題(ポスター)

日本内科学会雑誌第98巻第3号

Sage for Mathematics : a Primer ‚æ1Łfl - Sage ‡ð™m‡é

untitled

untitled



yakuri06023‡Ì…R…s†[

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +


スタートアップガイド_応用編


No.28

2 Riemann Im(s) > 0 ζ(s) s R(s) = 2 Riemann [Riemann]) ζ(s) ζ(2) = π2 6 *3 Kummer s = 2n, n N ζ( 2) = 2 2, ζ( 4) =.3 2 3, ζ( 6) = ζ( 8)

10西宮市立中央病院/本文

北九州高専 志遠 第63号/表紙・表4

P-12 P P-14 P-15 P P-17 P-18 P-19 P-20 P-21 P-22

ニューガラス100/100目次

program08.pdf

項 目

( ) [18 30] [21 00] 2 3 ( ( ) ) ( ) ( ) a b

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

untitled

B5‘·¢‡Ì…X…X…†PDFŠp

JPROM-PRINT

サービス付き高齢者向け住宅賠償責任保険.indd

‚æ01Łª“û†œ070203/1‘Í

Pari-gp 2006/7/ Pari-gp 2. Microsoft Windows Pari-gp Galois 8.

Transcription:

A Brief Introduction to Modular Forms Computation Magma Supported by GCOE Program Math-For-Industry Education & Research Hub

What s this? Definitions and Properties Demonstration H := H P 1 (Q) some conditions k Z: f (g(z)) = (cz + d) k f (z) for all g Γ(N) Γ(N): Congruence subgroup N: with Nebentypus ε M k (Γ(N), ε): (N, k, ε) dim C M k (Γ(N)) < + f = n 0 a nq n q = e 2πiz/N : q- S k (Γ(N), ε): (N, k, ε) f M k (Γ(N), ε) s.t. a 0 = 0

Background Definitions and Properties Demonstration eigenform Fermat - Serre mod p Galois etc. Algebraic topology String theory Algebraic combinatorics : e.g. Kissing Number Problem

on Number Theory Definitions and Properties Demonstration X 0 (N) e.g. N = 39 Hecke T n q- T n f = a n f a n C (Atkin-Lehner-Li, Miyake) S k (Γ 1 (N)) = M N d (N/M) α d (Sk new (Γ 1 (M)))

Construct Space and Hecke Action T 2 on M 2 (Γ 0 (41)). Definitions and Properties Demonstration > M41 := ModularForms(Gamma0(41),2); > T2 := HeckeOperator(M41,2); T2; [ 3 0 12 6] [ 0 0 3-2] [ 0 1-2 0] [ 0 0-2 1] > Parent(T2); Full Matrix Algebra of degree 4 over Integer Ring > Ch2 := CharacteristicPolynomial(T2); Ch2; x^4-2*x^3-8*x^2 + 14*x +3 > Factorization(Ch2); [ <x - 3, 1>, <x^3 + x^2-5*x - 1, 1> ]

Compute Newforms Definitions and Properties Demonstration S new 2 (Γ 0 (11)). > S := CuspForms(Gamma0(11),2); > N := Newforms(S); N; [* [* q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6-2*q^7-2*q^9-2*q^10 + q^11 + O(q^12) *], [* 5/12 + q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + 12*q^6 + 8*q^7 + 15*q^8 + 13*q^9 + 18*q^10 + q^11 + O(q^12) *] *] > Newforms("G0N11k2A"); // LABELS [* [* q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6-2*q^7-2*q^9-2*q^10 + q^11 + O(q^12) *] *]

SMC: Algebraic vs. Analytic Theorem (Khare-Wintenberger, 2007) Q detρ(c) = 1 2 mod p Galois ρ : Gal(Q/Q) GL 2 (F p ) (N(ρ), k(ρ), ε(ρ)). f = a n q n ( q = e 2πiz ) S k(ρ) (Γ, ε(ρ)) n 1

Verification Galois Tr(ρ(Frob l )) a l (mod p) for all l pn(ρ): prime Galois (N, k, ε) (N, k, ε) conductor, Serre weight, character level, weight, character

Matching example Q, Galois. E : y 2 + xy + y = x 3 + 1, E E. E Galois ρ E,l N(ρ E,l ) = p l,l ord p( E ) { 2 (l ordl ( p, k(ρ E,l ) = E )) l + 1 (otherwise), ε(ρ E,l ) = 1. Serre > E := EllipticCurve([1,0,1,0,1]); Elliptic Curve defined by y^2 + x*y + y = x^3 + 1 over Rational Field > D := Discriminant(E); D; -639 > Factorization(D); [ <3, 2>, <71, 1> ]

Matching example E = 3 2 71 Galois ρ 3 = ρ E,3 (N(ρ 3 ), k(ρ 3 ), ε(ρ 3 )) = (71, 4, 1) Tr(Frob p (ρ 3 )) E [ 1, 1, 2, 2, 0, -2, 0, 0, 0, -2, -10, -6,... ], (71, 4, 1). S new 4 (Γ 0 (71)). > S71 := CuspForms(Gamma0(71),4); > f := Newforms(S71,1); > [Coefficient(f,p) : p in [1..50] IsPrime(p)]; [ 1, 1, -16, -1, 24, 7, 72, -153, -213, 232, 149, -204, -432, 71, 273 ]

Matching example p 2 3 5 7 11 13 17 19 23 29 31 ρ 1 * 2 2 0 2 0 0 0 2 10 f 1 (1) 16 1 24 7 72 153 213 232 149 mod 3 p 2 3 5 7 11 13 17 19 23 29 31 ρ 1 * 1 1 0 1 0 0 0 1 1 f 1 (1) 1 1 0 1 0 0 0 1 1,.

for Generalization Magma Hilbert / totally real case - Quaternion algebra Bianchi / imaginary quadratic case - Sharbly complex, Voronoi polyhedron. Bianchi Ver.2-16.. Bianchi.

Final Remark System for Algebra and Geometry Experimentation. W. Stein. Magma interpreter sage: magma.setdefaultrealfieldprecision(50) # magma >= v2.12; optional - magma sage: magma.eval( 1.1 ) # optional - magma 1.10000000000000000000000000000... (omitted)