I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

Size: px
Start display at page:

Download "I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x"

Transcription

1 I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G] = e <., G H, X G = G\H modular symbol. α, β H G 2,, β = M(α) ( M G)., α β H smooth X G, closed path, H 1 (X G, Z). modular symbol α, β G,, α, β., H 1 (X G, Z) modular symbol. ( ) M Γ, H M(0) M( ) smooth (M) = M(0), M( )., M : M(0), M(1), M( ) : (M), (MT S), (M(T S) 2 ) Date: October 24, Key words and phrases. modular forms, elliptic curves, L-functions. 1

2 2.,, S = Γ. ( ) 0 1, T = 1 0 ( ) Remark 1.1. (M) G, index, X G,, G modular symbol., M G, (M) G (MT S) G (M(T S) 2 ) G =0 (M) G (MS) G =0.,, (M M) G = (M) G ( M G), Γ/G, X G closed path. (M 1 ) G,..., (M e ) G (, e = [Γ : G]) modular symbol. C(G), (M 1 ) G,..., (M e ) G symbol Q e. modular symbol B(G) (M) G (MT S) G (M(T S) 2 ) G (M) G (MS) G C(G)., C 0 (G) G-cusp [α] G ([α] G = [β] G β = M(α), M G) Q. modular symbol δ : C(G) C 0 (G) δ((m) G ) = [M( )] G [M(0)] G, Z(G) = Ker (δ)., modular symbol, H(G) = Z(G)/B(G). Proposition 1.2. modular symbol, H(G) H 1 (X G, Q). Remark 1.3. G Γ, cusp α, β modular symbol α, β, Manin Drinfeld, Q-,, H 1 (X G, Q)., 0, H 1 (X G, Q).

3 I. (CREMONA ) M-symbol.,., M-symbol (M Manin ),., G = Γ 0 (N), H(N) = H(Γ 0 (N)), X 0 (N) = X Γ0 (N) M-symbol. gcd(c, d, N) = 1 (c, d) Z 2, (c 1, d 1 ) (c 2, d 2 ) c 1 d 2 c 2 d 1 (mod N)., (c, d) (c : d), M-symbol., M-symbol P 1 (N) = P 1 (Z/NZ). (c 1, d 1 ) (c 2, d 2 ),, N M-symbol., M-symbol modular symbol,. M-symbol v.s. modular symbol Proposition 1.4. P 1 (N) [Γ : Γ 0 (N)] (M) : M [Γ : Γ 0 (N)]., ( ) a b (c : d) M = (M) = b/d, a/c c d., a, b Z ad bc = 1. ( [C, Proposition 2.2.1],.) modular symbol, M-symbol,.,,. M-symbol M-symbol (c : d) (c d : c) (d : c d) (c : d) ( d : c) δ : (c : d) [a/c] [b/d],.

4 4 Example 1.5. M-symbol, 11 modular X 0 (11) H 1 (X 0 (11), Q) H(11). I. M-symbol (c : 1) mod 11 (1 : 0) 12 (c) ( ). II. B(G) a). (c : d) ( d : c) = 0 (0) ( ) = 0, (1) ( 1) = 0, (2) (5) = 0, ( 2) ( 5) = 0, (3) ( 4) = 0, ( 3) (4) = 0., (2 : 1) ( 1 : 2) = 0,, ( 1) (mod 11), ( 1 : 2) = (5 : 1), (2) (5) = 0. b). (c : d) (c d : c) (d : c d) = 0 (0) ( ) ( 1) =0, (1) ( 2) (5) = 0, (2) (4) ( 4) =0, (3) ( 5) ( 3) = 0., (1 : 1) (2 : 1) (1 : 2) = 0,, 2 1 ( 2) ( 1) (mod 11) ( 2) (mod 11), (2 : 1) = ( 2 : 1) (1 : 2) = (5 : 1), (1) ( 2) (5) = 0., A = (2), B = (3), C = (0), (0) = C, ( ) = C, (1) = ( 1) = 0, (2) = ( 2) = A, (3) = B, ( 3) = A B, (4) = B A, ( 4) = B, (5) = ( 5) = A., M-symbol A, B, C. III. Z(G) [a/b] = [0] if b 0 (mod 11), [a/b] = [ ] if b 0 (mod 11), Γ 0 (11)-cusp [0] [ ]. δ((m)) = [1/m] [0] =0 δ((0)) = [ ] [0] 0 m 0 (mod 11), A, B Ker (δ) C = (0) Ker (δ). H 1 (X 0 (11), Q) H(11) A, B.

5 I. (CREMONA ) 5 ( ) Example 1.5. I. II. III., III. II.,,,. 2. Hecke, Hecke, modular form f, a p0 p 0,, Heilbronn.,, a p0, p a p Hecke.,, N N, N p, Hecke T p. modular symbol T p ( α, β ) [ ( ) p 0 ( ) ]α, 1 r β = pα, pβ p r mod p r mod p α r p, β r. p, modular symbol H(N). modular form, Γ 0 (N) 2 cusp form, ( ) C a b S 2 (N)., 2 2 M = c d (ad bc > 0) cusp form f(z) S 2 (N) ad bc (f M)(z) = (cz d) f(az b 2 cz d ) [ ( ) p 0., Hecke T p = 0 1 r mod p form f(z) (f T p )(z) = pf(pz) 1 p, S 2 (N). p 1 f( z r p ) r=0 ( ) ] 1 r cusp 0 p

6 6 Hecke γ H 1 (X 0 (N), Q) f S 2 (N), 2πif(z)dz γ, f γ.,, α, β, f M = Mα, Mβ, f,, Hecke T p α, β, f T p = T p α, T p β, f, Hecke T p H(N) S 2 (N). Fricke involution W q N q, H(N) S 2 (N) Fricke involution W q,., L-,. Hecke T p Fircke involution W q Q Hecke, T., W N = Π q W q,, z 1/Nz,., α N q α N q α1 N, x, y, z, w Z q α xw (N/q α )yz = 1., ( ) q W q = α x y Nz q α w H(N) S 2 (N), Wq 2 Γ 0 (N) involution., W q x, y, z, w Z. Example 2.1. (Example 1.5..) modular X 0 (11) H 1 (X 0 (11), Q) H(11) A, B., M-symbol A = (2 : 1) Hecke T p (p 11) Fricke involution W 11. I. M-symbol modular symbol M-symbol A = (2 : 1) modular symbol Proposition 1.4. ( 1 1 ), ( ) 1 0 A = (2 : 1) M = (M) = 0/1, 1/ II. modular symbol )., Hecke T p. p = 2,, T 2 (A) = T 2 ( 0, ) = 0, 1 0, 4 2, 3 4

7 I. (CREMONA ) 7., modular symbol M-symbol (1 : 1) (4 : 1) (1 : 2) ( 4 : 1) = 0 (B A) ( A) ( B) = 2A T 2 (A) = 2A. Hecke, S 2 (11) rational newform f(z) = a n e 2πinz a 2 = 2, (, f A A, f = 0, ). )., Fricke involution W 11. W 11, ( ) 0 1 W 11 = (x = w = 0, y = 1, z = 1 ) M-symbol modular symbol,, )., W 11 (A) modular symbol 0, 2 1 ( ) 0 1 0, 1 2 W 11 (A) = =, ,, M-symbol, 0 0, 1 5 1, = (1 : 0) ( 5 : 1) (11 : 5) = ( ) ( 5) (0) = A,, Fricke involution W 11 (A) = A., L- ( 5.1),. Hecke, modular form a p0 p 0,, modular symbol, Heilbronn., M-symbol, T p W q, modular symbol.,, M-symbol Heilbronn.,,., modular symbol, T p, p 1 ( ) ( ) p 0 1 r, (r mod p) p

8 8. M-symbol ([C, Proposition ])., p, M 2 (Z) R p (Heilbronn ), T p M-symbol T p ((c : d)) = M R p (c : d)m., R p p, R p, Hecke. Proposition ( 2.2. p ) N., R p x y y x M 2 (Z) (xx yy = p). (1) x > y > 0, x > y > 0, yy > 0; or (2) y = 0, y < x /2; or (3) y = 0, y < x/2. Heilbronn (1 ) ( ) ( ) ( ) R 2 =,,, (1 ) ( ) ( ) ( ) ( ) ( ) R 3 =,,,,, (1 ) ( ) ( ) ( ) ( ) ( ) ( ) R 5 =,,,,,,, ( ) ( ) ( ) ( ) ( ) ,,,, Example 2.3. (Example 2.1. ) modular X 0 (11) H 1 (X 0 (11), Q) H(11) A, B,, M-symbol A = (2 : 1) modular symbol, T 2 (A) = 2A, Heilbronn R 2, M-symbol

9 I. (CREMONA ) 9. T 2 (A) = (2 : 1)R 2 ( ) ( ) ( ) ( ) (2 : 1) (2 : 1) (2 : 1) (2 : 1) =(2 : 2) (4 : 1) (4 : 3) (3 : 2) =(1) (4) (5) ( 4) =0 (B A) ( A) ( B) = 2A., T 3 (A) = (2 : 1)R 3 ( ) ( ) ( ) (2 : 1) (2 : 1) (2 : 1) ( ) ( ) ( ) (2 : 1) (2 : 1) (2 : 1) =(2 : 3) (6 : 3) (3 : 3) (6 : 1) (6 : 1) ( 1 : 3) =(8 : 1) (2 : 1) (1 : 1) (6 : 1) (5 : 1) (4 : 1) =(A B) (A) (0) ( A) ( A) (B A) = A. Hecke ( ) modular form a p0 p 0,. I. M-symbol modular symbol,, Hecke.,. II. Heilbronn, M-symbol Hecke., Heilbronn. 3. modular form, modular form., modular form 2, N rational newform modular. f rational newform, Λ f Λ f = α, β, f α, β H, α β mod Γ 0 (N), 2 ( C). E f = C/Λ f, f modular.

10 10 E f Q. L(E f, s) = L(f, s). E f N 3.2. Hecke. rational newform f(z) = n 1 a nq n (q = e 2πiz ), a 1 = 1.,. p N p, f T p = a p f. q N q, f W q = ϵ q f (ϵ q = ±1) ϵ q if q 2 N a q = 0 if q 2 N., a p n1 = a p a p r δ N (p)pa p r 1 (r 1),., 1 if p N δ N (p) = 0 if p N., n m, a mn = a m a n. 4. H (N) S 2 (N) R,.,, H (N) S 2 (N) R. z H, involution z z = z., modular symbol, H 1 (X 0 (N), R) R-linear involution., H 1 (X 0 (N), R) = H 1 (X 0 (N), R) H 1 (X 0 (N), R)., H ± 1 (X 0 (N), R), ±1. Remark 4.1. A R, H ± 1 (X 0 (N), A) = H ± 1 (X 0 (N), R) H 1 (X 0 (N), A)., H ± (N), H ± 1 (X 0 (N), Q) H(N).

11 modular form I. (CREMONA ) 11 f S 2 (N), f (z) = f(z ), S 2 (N) R-linear involution. S 2 (N) R, S 2 (N). (1) f(z) = a n q n f (z) = a n q n (q = e 2πiz ) (2) γ, f = γ, f for all f, γ., (2), f S 2 (N) R, γ, f R γ H 1 (X 0 (N), R), γ, f ir γ H 1 (X 0 (N), R). Remark 4.2., M-symbol. z z = z, H (N),., M-symbol (c : d) = ( c : d),. [C, 2.5]. 5. modular form a p0 (p 0 : ), L-, p, a p, modular form L-. rational newform f(z) = n 1 a nq n, L- L(f, s) = a n n=1 n s (R(s) > 2/3)., Euler : L(f, s) = p N (1 a pp s p 1 2s ) 1 p N (1 a pp s ) 1 i Mellin : L(f, s) = (2π) s Γ(s) 1 ( iz) s f(z) dz z. Mellin, L(f, s)., L- Γ(s) Λ(f, s) = N s/2 (2π) s Γ(s)L(f, s) = 0 0 f(iy/ N)y s 1 dy, s s 2,. Fricke involution W N, f W N = ϵ N f (ϵ N = ±1), W N z 1/Nz, f( 1/(Nz)) = ϵ N Nz 2 f(z)., z = iy/ N f(i/y N) = ϵ N y 2 f(iy/ N),, Λ(f, 2 s) = ϵ N Λ(f, s).,, ϵ N = 1, L(f, 1) = 0.

12 L-. rational newform f, f Ω(f) L(f, 1)/Ω(f), E f BSD., Mellin L- s = 1 L(f, 1) = 2πi i 0 f(z)dz = 0,, f,, f ( )., L(f, 1)/Ω(f) a p p N p, Hecke T p modular symbol 0,, (2 ), T p ( 0, ) = 0, p 1 p 1 k/p, = (1 p) 0, k/p, 0., k=0 (1 p T p ) 0, p 1 = 0, k/p k=0, T p f = a p f, f k=0 ( ) (1 p a p ) 0, p 1, f = 0, k/p, f, a p., Ω(f). Ω 0 (f), f., f E f E f (R), Ω(f) 2Ω 0 (f) E f (R) Ω(f) = Ω 0 (f) E f (R). 6.1., Ω(f) f ω 1, ω 2, p 1 k=0 0, k/p, f, Ω 0 (f), Ω 0 (f)., ( ) , n(p, f) (, ) L(f, 1) n(p, f) ( ) = Ω(f) 2(1 p a p ).,, a p a p < 2 p non-zero. ( ),. k=0

13 I. (CREMONA ) ( ). ( ). ). p 0, a p0 n(p 0, f), BSD. ). p 0, a p0 n(p 0, f), ( ) L-, p n(p, f) 2(1 p a p ) = n(p 0, f) 2(1 p a p0 ), n(p, f), a p.,, a p0 (p 0 : ), p, a p, modular form ( ),. ( ) p 0, a p0 n(p 0, f). L(f, 1) 0, ( ), n(p 0, f) 0, p a p = 1 p n(p, f)(1 p 0 a p0 ) n(p 0, f).,, a p., n(p, f), p 1 k=0 0, k/p, f Ω 0 (f), p 1 k=0 0, k/p H (N) (4 ). Example 5.1. (Example 2.3. ) modular X 0 (11) H 1 (X 0 (11), Q) H(11) A, B,, M-symbol A = (2 : 1), T 2 (A) = 2A,, a 2 = 2., A modular symbol 0, 1/2., A = A, H (11) A. (1 2 a 2 )L(f, 1) = 0, 1/2, f = A, f = Ω(f) (Example 6.1. Type 1 ). ( ) L(f, 1) Ω(f)., ( ). ).,, a 2, L(f, 1) 0., E f (Q) Mordell-Weil rank 0. = 1 5

14 14 ). ( ), a p. p 1 n(p, f) 0, k/p = A 2 k=0 n(p, f)., H (11) A? n(p, f), 2. p = 3 0, 1/3 0, 2/3 = 0, 1/3 0, 1/2 1/2, 2/3 M-symbol, A = (3 : 1) (2 : 1) (3 : 2) = (3) (2) (7) = B A ( B) = A, a 3 = n(3, f) = 1. 2 p = 5 0, 1/5 0, 2/5 0, 3/5 0, 4/5 = A, a 5 = n(5, f) = 1. 2 p = 7 0, 1/7 0, 2/7 0, 3/7 0, 4/7 0, 5/7 0, 6/7 = 2A, a 7 = n(7, f) = 2. 2, a 13 = 4., 3.2., n = 16 a n, a 1 = 1, a 2 = 2, a 3 = 1, a 4 = 2, a 5 = 1, a 6 = 2, a 7 = 2, a 8 = 0, a 9 = 2, a 10 = 2, a 11 = 1, a 12 = 2, a 13 = 4, a 14 = 4, a 15 = 1, a 16 = 4., Λ f E f. L(f, 1) = 0, E f N = 37,. ( ), n(p 0, f) = 0, a p.,. α = n/d Q (gcd(d, N) = 1) (1 p T p ) α, = α, pα p 1 α k α, p k=0

15 I. (CREMONA ) 15,, integral modular symbol (, H 1 (X 0 (N), Z) ) p 1 α k 0, pα 0, (p 1) 0, α p k=0. modular form f,, n(α, p, f) ( ) R α,, f Ω(f) = n(α, p, f) 2(1 p a p ). ( ), L(f, 1) 0,. ( ), L(f, 1) 0. L(f, 1) = 0,,., a p0 (p 0 : ). I. A i, f = Ω(f) H (N) M-symbol A i. II. p 0 1 k=0 0, k/p0 M-symbol Ai, n(p 0, f). III. p, ( ) a p = 1 p n(p, f)(1 p 0 a p0 ) n(p 0, f), a p., n(p, f) II.. 6. Λ f,, 2 Λ f ( C) γ 1, γ 2,..., γ 2g H 1 (X 0 (N), Z) Z,, H(N) Q,. (1). rational newform f, Hecke Fricke involution, ( ) v, v. (2). γ ± H ± (N) ( ), v γ = v γ = 1.

16 16 (3). R x, y,. x = γ, f, y = i γ, f. Type 1: v v (mod 2) ( ) = ω 1 = 2x, ω 2 = x yi. Type 2: v v (mod 2) ( ) = ω 1 = x, ω 2 = yi. Example 6.1. (Example 5.1. ) M-symbol A = (2 : 1), B = (3 : 1), modular X 0 (11) H 1 (X 0 (11), Q) H(11) A, B. M-symbol, (c) ( c), A = A, ( B = ) A B. 1 1, A B,, 0 1 v ± v = (2, 1), v = (0, 1)., Λ f Type x y., x y, direct method indirect method, Λ f direct method (L- ). γ, f = (v γ)x (v γ)yi, γ, v γ v γ non-zero, γ, f, x y. I f (α, β) = β α 2πif(z)dz, I f (α) = I f (α, ), I f (α, M(α)) = I f (α) I f (M(α)), α. f α, M(α) P f (M). P f (M),. P f (M), lemma. Lemma 6.2. f = a n e 2πinz (z = x iy H) 2 cusp form, z 0 = x 0 iy 0 H, a n I f (z 0 ) = 2πif(z)dz = n e2πinx 0 e 2πny 0. z 0 n=1

17 I. (CREMONA ) 17,. I f (z 0 ), e 2πny 0, a n,. Tingley lemma, e 2πny 0, y 0,., M Tingley ( ) α α = d i cn, M(α) = a i cn. ( ) a b,, M = Γ cn d 0 (N).. Proposition 6.3., P f (M) =I f ( d i cn = n=1 ) I f( a i cn ) a n n e 2πn/cN (e 2πina/cN e 2πind/cN ). x y (direct method) γ = α, M(α), v γ v γ non-zero, P f (M) = γ, f x = R(P f(m)), y = Im (P f(m)) v γ v γ, x y., P f (M) e ny indirect method (L- ). L(f, 1)/Ω(f),,, L(f, 1), Ω(f),., L(f, 1) = 0, 2 χ L(f χ, 1). L(f, 1) 0 rational newform f, L(f, 1) 0 Ω(f)., L-,, a n, L(f, 1).

18 18 rational newform f, ϵ N = ±1 Fricke involution W N.,, L(f, 1) L(f, 1) = i 0 2πif(z)dz =I f (, 0) =I f (, i/ N) I f (i/ N, 0) =I f (, i/ N) ϵ N I f (i/ N, ) =(ϵ N 1)I f (i/ N)., L(f, 1) 0, L(f, 1) = 2I f (i/ N)., lemma 6.2. Proposition 6.4. f = n=1 a ne 2πnz, f W N = f, L(f, 1) L(f, 1) = 2 n=1 a n N n e 2πn/. L(f, 1), L(f, 1) = a n /n,., Proposition, e 2π/ N,,. Remark 6.5., Fricke involution, I f (i/ N, 0) ϵ N I f (i/ N, ), e 2π/ N ( ). Example 6.6. (Example 6.1. ) modular X 0 (11) H 1 (X 0 (11), Q) H(11) A, B,, Example 5.1., A 0, 1/2, ( ) L(f, 1) Ω(f) = 1 5., Example 6.1., Λ f Type 1, (ω 1, ω 2 ) = (2x, x iy) ω 1 = Ω(f) = 5L(f, 1)

19 I. (CREMONA ) 19., Example 5.1. n = 16 a n Proposition 6.4., L(f, 1) L(f, 1) (0.15) 1 2 (0.15)2 1 3 (0.15)3 2 4 (0.15)4 1 5 (0.15)5 2 6 (0.15)6 2 7 (0.15)7 0 8 (0.15)8 2 9 (0.15) (0.15) (0.15) (0.15) (0.15) (0.15) (0.15) (0.15)16 = (, e 2π/ ),.,,, ω 1 = Ω(f) , L(f, 1) = 0,, 2 χ, L(f, 1) variation L(f χ, 1). l N, χ l 2., χ( ) = ( /l) ( ). (f χ) = χ(n)a n e 2πinz S 2 (Nl 2 ) n=1,, L- variation i L(f χ, s) = (2π) s Γ(s) 1 ( iz) s (f χ)(z) dz z. Proposition 6.4. variation,,. Proposition 6.7. χ( N) = ϵ N, L(f χ, 1) χ(n)a n L(f χ, 1) = 2 e 2πn/l N. n n=1, L(f χ, 1), L(f, 1)/Ω(f) = n(p, f)/2(1 p a p ) variation., γ l = l 1 k=0 χ(k) 0, k/l, f γ l, f P (l, f)., P (l, f) = χ( 1)l L(f χ, 1). -, (γ l ) = χ( 1)γ l, χ( 1) = ±1. 0

20 20 ). x (χ( 1) = 1 ), χ( 1) = 1, (γ l ) = γ l, γ l H (N)., P (l, f) Ω 0 (f),, m (l, f)x (m (l, f) )., m (l, f) non-zero, x, x = l ). y (χ( 1) = 1 ) L(f χ, 1) m (l, f) = P (l, f) m (l, f)., χ( 1) = 1, (γ l ) = γ l, γ l H (N)., m (l, f), P (l, f) = m (l, f)yi., m (l, f) non-zero, y, y = l L(f χ, 1) m (l, f) = P (l, f) im (l, f). Remark 6.8. f N perfect square, Murty-Murty, m (l, f) m (l, f) non-zero l., N perfect square,, 0., N = 49,, m (l, f) = 0, y ([C, Appedix, Example 4: N=49] )., N perfect square, direct method. Example 6.9. (Example 6.6. ) modular X 0 (11) H 1 (X 0 (11), Q) H(11) A, B,, Example 6.6., H (11) A, ω 1., y (i.e. ω 2 ), l 3 (mod 4) l, ). y. l, l = 3, γ 3 = 0, , = (3) ( 3) = A 2B 0 3, m (3, f) 0, ).. m (3, f), γ 3 H (11) = H(11)/H (11), H (11). H (11) A,, B 2 m (3, f),. γ 3 t ( 1, 2), v = (0, 1) m (3, f),, m (3, f) = 2., )., y = 1 3 2i P (3, f) = L(f 3, 1). 2

21 I. (CREMONA ) 21 Proposition 6.7. n = 16 a n, L(f 3, 1) L(f 3, 1) (0.53) (0.53) (0.53) (0.53) (0.53) (0.53) (0.53) (0.53) (0.53) (0.53) (0.53) (0.53) (0.53) (0.53) (0.53) (0.53)16 = (, e 2π/ ), y Λ f Type 1, ω 2 = x yi,. ω i x y (indirect method) L(f, 1)/Ω(f) 5, L(f, 1) 0, L(f, 1) a n,,, Ω(f)., l, L(f l, 1),. Λ f ( ) I. -, ±1 v ±., Λ f Type. Type 1 = Type 2 = ω 1 = 2x, ω 2 = x yi Λ f ω 1 = x, ω 2 = yi Λ f II. x y L- direct method, L- indirect method., e nk,,. 7. E f, 6 Λ f, E f = C/Λ f.

22 22 c 4 c 6 ( Z), ω 1 /ω 2 ω 2 /ω 1, τ.,, τ R(τ) 1/2 τ 1,, τ., q = e 2πiτ, c 4 (= 12g 2 ) c 6 (= 216g 3 ) c 4 = ( 2π ω 2 ) 4 ( n=1 n 3 q n 1 q n ) ( 2π ) 6, c 6 = ω 2 ( n=1 n 5 q n 1 q n, q < 0.005,. E f Q, c 4 c 6.,, Edixhoven,., c 4 c 6,,., c 4 c 6 N (1) c 3 4 c 2 6 = 1728., ( ) N, (2) 5 p N p c 4 p c 6 p 2 N, (3) c 6 9 (mod 27), (4) c 6 1 (mod 4), or c 4 0 (mod 16) c 6 0, 8 (mod 32) ).,. E f [a 1, a 2, a 3, a 4, a 6 ], E f : y 2 a 1 xy a 3 y = x 3 a 2 x 2 a 4 x a 6., c 4, c 6 b 2 = c 6 mod 12 5,..., 6 ; b 4 = (b 2 2 c 4 )/24; b 6 = ( b b 2 b 4 c 6 )/216; a 1 = b 2 mod 2 0, 1 ; a 3 = b 6 mod 2 0, 1 ; a 2 = (b 2 a 1 )/4; a 4 = (b 4 a 1 a 3 )/2; a 6 = (b 6 a 3 )/4, c 4 c 6 E f., 11 rational newform f E f.

23 I. (CREMONA ) 23 Example 7.1. Example 6.9. ) Λ f = ω 1, ω 2, ω ω i. c 4, c 6 c , c (n = 16 a n ), c 4 = 496, c 6 = , n = 100 a n c , c ,, 11 y 2 y = x 3 x 2 10x 20, E f. E f ( ) ω 1 ω 2 c 4 c 6. Edixhoven c 4 c 6,,,, N. 1. M-sybmol,. 2. a p0 (p 0 ). 3. L-, p a p. 4. L-,. 5. c 4 c 6 ( ),. References [C] Cremona, J.E.: Algorithms for modular elliptic curves. Second edition. Cambridge University Press, Cambridge, vi376 pp. Department of Mathematics, Hokkaido University, Sapporo , Japan address: morita@math.sci.hokudai.ac.jp

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

( ) ( ) 1729 (, 2016:17) = = (1) 1 1 1729 1 2016 10 28 1 1729 1111 1111 1729 (1887 1920) (1877 1947) 1729 (, 2016:17) 12 3 1728 9 3 729 1729 = 12 3 + 1 3 = 10 3 + 9 3 (1) 1 1 2 1729 1729 19 13 7 = 1729 = 12 3 + 1 3 = 10 3 + 9 3 13 7 = 91

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a + 1 1 22 1 x 3 (mod ) 2 2.1 ( )., b, m Z b m b (mod m) b m 2.2 (Z/mZ). = {x x (mod m)} Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} + b = + b, b = b Z/mZ 1 1 Z Q R Z/Z 2.3 ( ). m {x 0, x 1,..., x m 1 } modm 2.4

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A =

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα = 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a + b α (norm) N(α) = a + b = αα = α α (spure) (trace) 1 1. a R aα = aα. α = α 3. α + β = α + β 4. αβ = αβ 5. β 0 6. α = α ( ) α = α

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

G H J(g, τ G g G J(g, τ τ J(g 1 g, τ = J(g 1, g τj(g, τ J J(1, τ = 1 k g = ( a b c d J(g, τ = (cτ + dk G = SL (R SL (R G G α, β C α = α iθ (θ R

G H J(g, τ G g G J(g, τ τ J(g 1 g, τ = J(g 1, g τj(g, τ J J(1, τ = 1 k g = ( a b c d J(g, τ = (cτ + dk G = SL (R SL (R G G α, β C α = α iθ (θ R 1 1.1 SL (R 1.1.1 SL (R H SL (R SL (R H H H = {z = x + iy C; x, y R, y > 0}, SL (R = {g M (R; dt(g = 1}, gτ = aτ + b a b g = SL (R cτ + d c d 1.1. Γ H H SL (R f(τ f(gτ G SL (R G H J(g, τ τ g G Hol f(τ

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

48 * *2

48 * *2 374-1- 17 2 1 1 B A C A C 48 *2 49-2- 2 176 176 *2 -3- B A A B B C A B A C 1 B C B C 2 B C 94 2 B C 3 1 6 2 8 1 177 C B C C C A D A A B A 7 B C C A 3 C A 187 187 C B 10 AC 187-4- 10 C C B B B B A B 2 BC

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552 3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 1 11 A µ : A A A µx, y x y x y z x y z A x, y, z x y y x A x, y A e x e e x x A x e A e x A xy yx e y x x x y y x 1 111 A 1 A R x y xy + x + y R x, y, z, : xyz xy+x+yz xy+x+yz+xy+x+y+z xyz+y+z+x+yz+y+z

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r) ( : December 27, 215 CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x f (x y f(x x ϕ(r (gradient ϕ(r (gradϕ(r ( ϕ(r r ϕ r xi + yj + zk ϕ(r ϕ(r x i + ϕ(r y j + ϕ(r z k (1.1 ϕ(r ϕ(r i

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

Jacobson Prime Avoidance

Jacobson Prime Avoidance 2016 2017 2 22 1 1 3 2 4 2.1 Jacobson................. 4 2.2.................... 5 3 6 3.1 Prime Avoidance....................... 7 3.2............................. 8 3.3..............................

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information