Vol. 47 No. SIG 7(ACS 14) 195 GtrcNET-1 3) 4) IEEE802.3x PAUSE 200 ms TCP/IP 2 3 Linux 4 5 TCP/IP 6 7 8 2. GbE 1,500 12 µs 500 Mbps 1 (a) 24 µs ON OFF



Similar documents
17 TCP (ACK:ACKnowledge) (RTT:Round Trip Time) TCP (Transmission Control Protocol) PSPacer (Precise Software Pacer) JGN2 TCP FAST TCP UDP PSPacer

Microsoft PowerPoint - ns0601.ppt


JGN2 先端グローバル R&D 網の構築と国際協調アプリケーションの展開 JGN2 の国際連携活動 4 図 -1 JGN2 国際ネットワーク構成 2 国際運用とその実務 JGN2 24 NOC Network Operation Center NOC NOC IP NOC JGN2

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

[1] [2] [3] (RTT) 2. Android OS Android OS Google OS 69.7% [4] 1 Android Linux [5] Linux OS Android Runtime Dalvik Dalvik UI Application(Home,T

橡3_2石川.PDF

3_39.dvi

TCP-STAR a) Implementation and Evaluation of TCP-STAR: TCP Congestion Control Method for Satellite Internet Hiroyasu OBATA a), Kazuhiro TAIRA, and Ken


IEEE e

C08.PDF

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

IP IP DHCP..

Vol. 48 No. 4 Apr LAN TCP/IP LAN TCP/IP 1 PC TCP/IP 1 PC User-mode Linux 12 Development of a System to Visualize Computer Network Behavior for L

TCP T ransmission Control Protocol TCP TCP TCP TCP TCP TCP TCP TCP c /(18)

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

IPSJ SIG Technical Report Vol.2011-IOT-12 No /3/ , 6 Construction and Operation of Large Scale Web Contents Distribution Platfo

Vol.58 No (Mar. 2017) LAN MAC 1,a) , IoT LAN LAN AP MAC 1 Null Function Data Frame NFDF NFDF LAN NFDF LAN LAN MAC Null

6 2. AUTOSAR 2.1 AUTOSAR AUTOSAR ECU OSEK/VDX 3) OSEK/VDX OS AUTOSAR AUTOSAR ECU AUTOSAR 1 AUTOSAR BSW (Basic Software) (Runtime Environment) Applicat

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

untitled

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,

,4) 1 P% P%P=2.5 5%!%! (1) = (2) l l Figure 1 A compilation flow of the proposing sampling based architecture simulation

PeerPool IP NAT IP UPnP 2) Bonjour 3) PeerPool CPU 4) 2 UPnP Bonjour PeerPool CPU PeerPool PeerPool PPv2 PPv2 2. PeerPool 2.1 PeerPool PeerPool PoolGW


Shonan Institute of Technology MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 41, No. 1, 2007 Ships1 * ** ** ** Development of a Small-Mid Range Paral

Run-Based Trieから構成される 決定木の枝刈り法

2 PC [1], [2], [3] 2.1 OS 2.1 ifconfig 2.1 lo ifconfig -a 2.1 enp1s0, enx0090cce7c734, lo 3 enp1s0 enx0090cce7c734 PC 2.1 (eth0, eth1) PC 14

$ ifconfig lo Link encap: inet : : inet6 : ::1/128 : UP LOOPBACK RUNNING MTU:65536 :1 RX :8 :0 :0 :0 :0 TX :8 :0 :0 :0 :0 (Collision

橡c03tcp詳説(3/24修正版).PDF

6_27.dvi

Amazon EC2 IaaS (Infrastructure as a Service) HPCI HPCI ( VM) VM VM HPCI VM OS VM HPCI HPC HPCI RENKEI-PoP 2 HPCI HPCI 1 HPCI HPCI HPC CS

SACSIS.TCP

LAN LAN LAN LAN LAN LAN,, i

3D UbiCode (Ubiquitous+Code) RFID ResBe (Remote entertainment space Behavior evaluation) 2 UbiCode Fig. 2 UbiCode 2. UbiCode 2. 1 UbiCode UbiCode 2. 2

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

IPSJ SIG Technical Report Vol.2012-HCI-149 No /7/20 1 1,2 1 (HMD: Head Mounted Display) HMD HMD,,,, An Information Presentation Method for Weara

P2P P2P peer peer P2P peer P2P peer P2P i

PowerPoint プレゼンテーション

I TCP 1/2 1

CTA 82: CTA A A B B A B A, C A A A D A B Max-Planck-Inst. fuer Phys. C D

IEEE802.11n LAN WiMAX(Mobile Worldwide Interoperability for Microwave Access) LTE(Long Term Evolution) IEEE LAN Bluetooth IEEE LAN

IP RTP 2 QoS i

IP IP MTU Maximum Transfer Unit MTU MTU [2] i

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè1²ó

1

Dual Stack Virtual Network Dual Stack Network RS DC Real Network 一般端末 GN NTM 端末 C NTM 端末 B IPv4 Private Network IPv4 Global Network NTM 端末 A NTM 端末 B

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

2017 (413812)

先進的計算基盤システムシンポジウム SACSIS2012 Symposium on Advanced Computing Systems and Infrastructures SACSIS /5/17 Android LAN TCP Android. TCP A Proposal

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

IPSJ SIG Technical Report Vol.2017-ARC-225 No.12 Vol.2017-SLDM-179 No.12 Vol.2017-EMB-44 No /3/9 1 1 RTOS DefensiveZone DefensiveZone MPU RTOS

GPGPU

total-all-nt.dvi

卒業論文

IPSJ SIG Technical Report * Wi-Fi Survey of the Internet connectivity using geolocation of smartphones Yoshiaki Kitaguchi * Kenichi Nagami and Yutaka

Vol. 42 No. SIG 8(TOD 10) July HTML 100 Development of Authoring and Delivery System for Synchronized Contents and Experiment on High Spe


Flow Control Information Network 1 /

1重谷.PDF

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-HPC-139 No /5/29 Gfarm/Pwrake NICT NICT 10TB 100TB CPU I/O HPC I/O NICT Gf

IPSJ SIG Technical Report Vol.2009-DPS-141 No.23 Vol.2009-GN-73 No.23 Vol.2009-EIP-46 No /11/27 t-room t-room 2 Development of

WMN Wi-Fi MBCR i

1 OpenCL OpenCL 1 OpenCL GPU ( ) 1 OpenCL Compute Units Elements OpenCL OpenCL SPMD (Single-Program, Multiple-Data) SPMD OpenCL work-item work-group N

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

nakayama15icm01_l7filter.pptx

58 10

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

単位、情報量、デジタルデータ、CPUと高速化 ~ICT用語集~

IPSJ SIG Technical Report NetMAS NetMAS NetMAS One-dimensional Pedestrian Model for Fast Evacuation Simulator Shunsuke Soeda, 1 Tomohisa Yam

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

IO Linux Vyatta PC

1_26.dvi

Myrinet2000 ご紹介

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

DEIM Forum 2009 B4-6, Str

HP cafe HP of A A B of C C Map on N th Floor coupon A cafe coupon B Poster A Poster A Poster B Poster B Case 1 Show HP of each company on a user scree

develop

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

8 P2P P2P (Peer-to-Peer) P2P P2P As Internet access line bandwidth has increased, peer-to-peer applications have been increasing and have great impact

untitled

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

IPSJ SIG Technical Report Vol.2010-SLDM-144 No.50 Vol.2010-EMB-16 No.50 Vol.2010-MBL-53 No.50 Vol.2010-UBI-25 No /3/27 Twitter IME Twitte

ルータ(IPv6)掲示用池田.PDF

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

Second-semi.PDF

DEIM Forum 2017 H2-2 Android LAN Android 1 Android LAN

Cisco 1711/1712セキュリティ アクセス ルータの概要

untitled

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int

27 YouTube YouTube UGC User Generated Content CDN Content Delivery Networks LRU Least Recently Used UGC YouTube CGM Consumer Generated Media CGM CGM U

QoS TCP-AV fair case QoS LAN VoIP throughput of all s TCP-AV 1 TCP 2 1 CSMA/CA CSMA/CACarrier Sense Multiple Access with Collision QoS Avoidance LAN Q

ITAOI2003第三屆離島資訊與應用研討會論文範例

Transcription:

Vol. 47 No. SIG 7(ACS 14) May 2006,, IEEE 802.3x PAUSE PC 8Kbps 930 Mbps 100 IP 200 ms TCP/IP Precise Software Pacing Method Using Gap Packets Ryousei Takano,, Tomohiro Kudoh, Yuetsu Kodama, Motohiko Matsuda, Yutaka Ishikawa, and Fumihiro Okazaki In this paper, we propose a precise software pacing method, which achieves accurate network bandwidth control and smoothing bursty traffic without requiring special purpose hardware. The proposed method controls an inter-packet gap through the transmission of additional packet (gap packet) between adjacent packets. In order to realize a gap packet, the IEEE 802.3x PAUSE packet is employed. With the method, it is possible to provide bandwidth control and smoothing for each of 100 flows by use of a commodity PC. In the case of gigabit Ethernet, the transmission bandwidth can be set for a range from 8 Kbps to 930 Mbps for each of IP flows. Furthermore, it is shown that TCP/IP communication performance over high bandwidth-delay product networks is almost fully utilized by the method. 1. Grid Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST) AXE, Inc. Graduate School of Information Science and Technology, The University of Tokyo TCP/IP 1) 10) 12) SC2003 Bandwidth Challenge 194

Vol. 47 No. SIG 7(ACS 14) 195 GtrcNET-1 3) 4) IEEE802.3x PAUSE 200 ms TCP/IP 2 3 Linux 4 5 TCP/IP 6 7 8 2. GbE 1,500 12 µs 500 Mbps 1 (a) 24 µs ON OFF ON-OFF 1 Fig. 1 Pacing. Linux 1 10 ms 1 /HZ HZ 500 Mbps 1ms 1(b) 42 62.5 KB CPU 13) 3. 3.1 2 (1) PC (2) IP 3.2

196 May 2006 1 2 2 2 PC NIC Network Interface Card PC IEEE 802.3x PAUSE PAUSE PC NIC PAUSE PAUSE PAUSE 0 PC PC PAUSE IEEE802.3x 3.3 1 ipg NIC XON/XOFF 0 XON 2 Fig. 2 Inter packet gap control using gap packets. max rate pkt size pkt size + ipg = (1) target rate max rate (1) ( ) max rate ipg = target rate 1 pkt size (2) gappkt size hw gap IFG Inter Frame Gap #pkts gappkt size = ipg (hw gap #pkts) (3) 64 GbE 935.2 Mbps MTU 8 Kbps MTU 1,500 190 MB 3.4 IP (2) 2

Vol. 47 No. SIG 7(ACS 14) 197 NIC 1 NIC (1) (1a) (1b) (1c) (2) (1a) (1b) (1a) (1c) (3) (2) (2a) (1) (3) (3a) (1a) 3 global P1 P2 P1 P2 500 Mbps 250 Mbps Fig. 3 Packet scheduling using gap packets: global shows aglobalclock. P1 and P2 showclassclocks. Target bandwidths of P1 and P2 are 500 Mbps and 250 Mbps, respectively. + (2) (3b) 3 500 Mbps 250 Mbps P1 P2 1,500 (2) P1 P2 1,500 4,500 P1 (1) 1,500 P1 3,000 P1 P2 (2) 3,000 P2 6,000 P1 (3) 4,500 P1 6,000 P1 P2 1,500 (4) 6,000 P1 P2 2 1 1 3.5 Linux iproute2

198 May 2006 PSPacer 1),2) iproute2 QoS Quality of Service Qdisc Queuing Discipline Qdisc enqueue dequeue Qdisc PSPacer 4 Qdisc PSPacer enqueue Qdisc dequeue 3.4 dequeue PAUSE PSPacer MTU dequeue sk buff 3.6 iproute2 Qdisc tc PSPacer Qdisc 500 Mbps 250 Mbps Qdisc ID Qdisc # tc qdisc add dev eth0 root handle 1: \ psp default 3 skb clone sk buff skb trim Fig. 4 4 PSPacer Implementation of PSPacer. Qdisc # tc class add dev eth0 parent 1: \ classid 1:1 psp rate 500mbit # tc class add dev eth0 parent 1: \ classid 1:2 psp rate 250mbit # tc class add dev eth0 parent 1: \ classid 1:3 psp mode normal Qdisc FIFO PFIFO # tc qdisc add dev eth0 parent 1:1 \ handle 10: pfifo # tc qdisc add dev eth0 parent 1:2 \ handle 20: pfifo # tc qdisc add dev eth0 parent 1:3 \ handle 30: pfifo IP # tc filter add dev eth0 parent 1: \ protocol ip pref 1 u32 match ip \ dst 192.168.2.0/24 classid 1:1 # tc filter add dev eth0 parent 1: \ protocol ip pref 1 u32 match ip \ dst 192.168.3.0/24 classid 1:2 4. PSPacer 4.1 ATM 9) 1 BW avg

Vol. 47 No. SIG 7(ACS 14) 199 1 Table 1 Host PC specifications. 16 16 CPU Intel Xeon 2.8 GHz dual Intel Xeon 2.8 GHz dual Chipset Intel E7501 ServerWorks GC-LE Memory 1GB 1GB NIC Intel 82546EB Intel 82546EB I/O Bus PCI-X 133MHz/64bit PCI-X 133MHz/64bit OS FedoraCore 3 kernel 2.6.11.12 NIC Driver e1000 5.6.10.1-k2-NAPI TCP BIC TCP 5 Fig. 5 Burstiness. BW avg Q Q 1MTU 1 1MTU 1 2MTU 5 2 5 5 ON-OFF ON OFF 1 ON-OFF t ON t (Avg/Max) t (Avg/Max) (Max Avg) 2 MTU 4.2 PSPacer 2 16 PC 1 Catalyst 2970 3 Catalyst 6506 C2970 C6506 GtrcNET-1 3) GtrcNET-1 1 Linux 2.6.11.12 TCP BIC TCP 16) BIC TCP Linux Reno Linux SACK Selective ACK Scalable TCP SACK-tag 17) Linux TCP 5) 10,000 PSPacer Linux TBF Token Bucket Filter UDP TCP Iperf 4.3 TCP UDP GtrcNET-1

200 May 2006 2 1 1 1 bps Table 2 Single target rate, 1-to-1 communication: Bandwidth per 1 packet and max burstiness (The unit of bandwidth is bps). 8K 7.96 K 7.96 K 7.96 K 1MTU 10 M 9.95 M 9.95 M 9.95 M 1MTU 500 M 495 M 500 M 498 M 2MTU 930 M 918 M 931 M 926 M 2MTU 6 Fig. 6 Effective bandwidth while varying target bandwidth. 7 500 300 100 50 20 Mbps Fig. 7 Bandwidth control in the case of multiple target rates (Target Bandwidth: 500, 300, 100, 50, 20 Mbps). 1 6 Iperf PSPacer 8 Kbps 930 Mbps 1 Gbps 984 Mbps 7 5 500 300 100 50 20 Mbps Iperf 10 ms 4.4 t i pkt size i n ( i+n pkt size k=i i)/(t i+n t i ) n NIC n +1 n 4.1 25 GtrcNET-1 2 24 Hz =59.6ns n 930 Mbps 1 2 Mbps 4.4.1 1 1 1 1 2 99.5% 930 Mbps 931 Mbps 2MTU 8 Kbps 10 Mbps 1MTU 500 Mbps 930 Mbps 2 MTU

Vol. 47 No. SIG 7(ACS 14) 201 3 1 1 bps Table 3 Single target rate, 1-to-many communication: Bandwidth per 1 packet and max burstiness (The unit of bandwidth is bps). 10 M 9.89 M 9.92 M 9.91 M 1MTU 4 n bps Table 4 Multiple target rate: Bandwidth per n packets and burstiness (The unit of bandwidth is bps). n 1 20 M 14.4 M 30.3 M 20.5 M 2MTU 50 M 30.0 M 98.4 M 33.1 M 2MTU 100 M 61.9 M 246 M 103 M 2MTU 300 M 168 M 494 M 332 M 2MTU 500 M 345 M 990 M 506 M 2MTU 2 20 M 16.6 M 24.1 M 19.9 M 2MTU 50 M 39.8 M 74.2 M 49.9 M 2MTU 100 M 68.0 M 143 M 100 M 2MTU 300 M 205 M 493 M 304 M 2MTU 500 M 405 M 658 M 500 M 2MTU 4.4.2 1 1 16 6 96 IP 10 Mbps 3 1 1 40 Kbps 100 4.4.3 7 25 45 5 n 4 n 500 Mbps n =1 990 Mbps 2 2MTU 5. TCP/IP PSPacer 5 FIFO Iperf Mbps Table 5 Iperf throughput and the number of packet losses on a router (The unit of bandwidth is Mbps). TBF PSPacer FIFO 16 KB 29.4 219 26.9 131 474 0 64 KB 210 257 191 402 474 0 256 KB 223 394 379 261 473 0 1024 KB 256 1196 419 12 474 0 4096 KB 459 1283 471 0 474 0 TCP/IP 5.1 TCP/IP TCP/IP 18) GtrcNET-1 1 1 2 2 2 500 Mbps RTT Round Trip Time 200 ms Drop Tail FIFO 25 MB 5.2 1 1 TBF Token Bucket Filtering PSPacer FIFO 16 KB 4MB 5 1 1 5 TBF PSPacer 500 Mbps Iperf TCP/IP GtrcNET-1 Drop Tail PSPacer FIFO TBF FIFO FIFO TBF FIFO 4MB

202 May 2006 PSPacer FIFO 5.3 2 2 2 1 FIFO 32 KB A 5 B 120 110 A B PSPacer TBF PSPacer+PSPacer TBF+TBF PSPacer+TBF TBF +PSPacer 200 Mbps 8 1 1 500 Mbps, RTT 200 ms, FIFO 1MB Fig. 8 Behavior of slow start phase on 1-to-1 communication (Bottleneck bandwidth 500 Mbps, RTT 200 ms, FIFO size 1 MB). 1MB 1MB 256 KB 64 KB 2 62.5 KB 2 ACK 1),2) 500 µs FIFO 1MB TBF PSPacer 8 500 µs 200 ms TBF 8(a) RTT 200 ms ON-OFF 2.5 FIFO 1MB TBF PSPacer FIFO 16 KB ACK ON- OFF 9 1 PSPacer + PSPacer 9(a) 200 Mbps 400 Mbps TBF 5.2 500 Mbps 200 Mbps TBF + TBF 9(b) 200 Mbps PSPacer + TBF 9(c) TBF + PSPacer 9(d) 2 TBF + TBF TBF PSPacer 200 Mbps 6. 6.1 PSPacer NIC GbE NIC 33 MHz/32 bit PCI PCI 1 Gbps

Vol. 47 No. SIG 7(ACS 14) 203 9 2 2 500 Mbps RTT 200 ms FIFO 32 KB Fig. 9 Bandwidth of 2-to-2 communication (Bottleneck bandwidth 500 Mbps, RTT 200 ms, FIFO size 32 KB). PSPacer PCI 6.2 CPU PSPacer PSPacer CPU PSPacer CPU CPU GbE NIC NIC 1 1 Gbps UDP CPU 40% TBF PSPacer 500 Mbps CPU 10% 15% NIC DMA 1) TCP 6.3 5.3 4 PC 7) 16 2 MPI NAS IS 1.6 2 (1) (2) (1) 1 1) TCP RTT PSPacer

204 May 2006 QoS (2) FTTH 40 Mbps RTT 6 mspspacer TBF UDP 40 Mbps PSPacer 0.35% TBF 1.6% PSPacer 8) 7. TCP/IP WEB 10) 12) 6) MPI 1ms 10 ms Mbps 10 ms 1 Gbps IA32 APIC HPET High Precision Event Timer 13) µs 14) GtrcNET-1 3) MAC IPG NIC IPG IPG 15) Chelsio T110 TOE TCP Offloading Engine TOE NIC 2 WFQ Weighted Fair Queuing 19) 1 WFQ 8. IEEE 802.3x PAUSE PSPacer PC 8 Kbps 930 Mbps 100 IP PAUSE PSPacer 200 ms TCP/IP

Vol. 47 No. SIG 7(ACS 14) 205 TCP PSPacer GNU GPL http://www.gridmpi.org/ NAREGI National Research Grid Initiative 1) Takano, R., Kudoh, T., Kodama, Y., Matsuda, M., Tezuka, H. and Ishikawa, Y.: Design and Evaluation of Precise Software Pacing Mechanisms for Fast Long-Distance Networks, PFLDnet2005 (Feb. 2005). 2) 2004 (Oct. 2004). 3) Kodama, Y., Kudoh, T., Takano, R., Sato, H., Tatebe, O. and Sekiguchi, S.: GNET-1: Gigabit Ethernet Network Testbed, IEEE Cluster 2004 (Sep. 2004). 4) Tatebe, O., Ogawa, H., Kodama, Y., Kudoh, T., Sekiguchi, S., Matsuoka, S., Aida, K., Boku, T., Sato, M., Morita, Y., Kitatsuji, Y., Williams, J. and Hicks, J.: The 2nd Trans- Pacific Grid Datafarm Testbed and Experiments for SC2003, IEEE/IPSJ SAINT 2004 Workshops, pp.26 30 (Jan. 2004). 5) TCP/IP 2003 (Oct. 2003). 6) MPI TCP Vol.46, No.SIG12 (ACS11) (2005). 7) GridMPI Version 1.0 SWoPP 2005, (Aug. 2005). 8) Takano, R., Kodama, Y., Kudoh, T., Matsuda, M., Okazaki, F. and Ishikawa, Y.: Realtime Burstiness Measurement, PFLDnet2006 (Feb. 2006). 9) Michiel, H. and Leavens, K.: Teletraffic engineering in a broad-band era, Proc. IEEE, Vol.85, No.12, pp.2007 2033 (Dec. 1997). 10) Visweswaraiah, V. and Heidemann, J.: Improving Restart of Idle TCP Connections, USC TR 97-661 (Nov. 1997). 11) Aggarwal, A., Savage, S. and Anderson, T.: Understanding the performance of TCP pacing, IEEE INFOCOM, pp.1157 1165 (Mar. 2000). 12) Aron, M. and Durschel, P.: TCP: Improving Startup Dynamics by Adaptive Timers and Congestion Control, Technical Report TR98-318, Rice Univ. (1998). 13) Antony, A., Blom, J., de Laat, C., Lee, J. and Sjouw, W.: Microscopic Examination of TCP flows over transatlantic Links, igrid2002 special issue, Future Generation Computer Systems, Vol.19, Issue 6 (2003). 14) Kamezawa, H., Nakamura, M., Tamatsukuri, J., Aoshima, N., Inaba, M., Hiraki, K., Shitami, J., Jinzaki, A., Kurusu, R., Sakamoto, M. and Ikuta, Y.: Inter-layer coordination for parallel TCP streams on Long Fat pipe Networks, SC2004 (Nov. 2004). 15) Nakamura, M., Kurusu, R., Marti, F., Sakamoto, M., Ikuta, Y., Tamatsukuri, J., Sugawara, Y., Aoshima, N., Inaba, M. and Hiraki, K.: Experimental Results of interlayer cooperative hardware for FRC-TCP on 10 Gbps Ethernet WANPHY 18,500 km Network, PFLDnet2005 (Feb. 2005). 16) Xu, L., Harfoush, K. and Rhee, I.: Binary Increase Congestion Control for Fast Long- Distance Networks, IEEE INFOCOM 2004 (Mar. 2004). 17) T. Kelly s SACK-tag patch. http://www-lce.eng.cam.ac.uk/ ctk21/code/ 18) Floyd, S.: HighSpeed TCP for Large Congestion Windows, RFC 3649 (Dec. 2003). 19) Parekh, A.K. and Gallager, R.G.: A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The Single-Node Case, IEEE/ACM Trans.Networking, Vol.1, No.3, pp.344 357 (June 1993).

206 May 2006 ( 17 10 4 ) ( 18 1 20 ) 1997 1999 2005 2003 4 GridMPI 1991 1997 2002 IEEE CS 1962 1986 1988 2001 FPGA 1990 1995 IEEE CS 1988 1995 1999 2003 1987 1993 2002 1987 2 1998 4 2003 GridMPI