30_5_3.dvi

Similar documents
a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

Fig.l Music score for ensemble Fig.Z Definition of each indicator Table I Correlation coefficient between hitting lag variation /,(n) and hitting cycl

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

untitled

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

SICE東北支部研究集会資料(2012年)

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

日本感性工学会論文誌

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

3 Hill Fig. 3 Hill s muscle model Fig. 1 Mainly the lower limb musculoskeletal model 2 Fig. 2 Link structure of the bone OpenSim 4)5) 2.2 Open

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

soturon.dvi

Vol. 48 No. 3 Mar PM PM PMBOK PM PM PM PM PM A Proposal and Its Demonstration of Developing System for Project Managers through University-Indus


情報処理学会研究報告 IPSJ SIG Technical Report Vol.2011-MBL-57 No.27 Vol.2011-UBI-29 No /3/ A Consideration of Features for Fatigue Es

Q [4] 2. [3] [5] ϵ- Q Q CO CO [4] Q Q [1] i = X ln n i + C (1) n i i n n i i i n i = n X i i C exploration exploitation [4] Q Q Q ϵ 1 ϵ 3. [3] [5] [4]

百人一首かるた選手の競技時の脳の情報処理に関する研究

浜松医科大学紀要


149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

23 A Comparison of Flick and Ring Document Scrolling in Touch-based Mobile Phones

24 Depth scaling of binocular stereopsis by observer s own movements

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

,,,,., C Java,,.,,.,., ,,.,, i

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

26 Development of Learning Support System for Fixation of Basketball Shoot Form

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

19 Systematization of Problem Solving Strategy in High School Mathematics for Improving Metacognitive Ability

A Navigation Algorithm for Avoidance of Moving and Stationary Obstacles for Mobile Robot Masaaki TOMITA*3 and Motoji YAMAMOTO Department of Production

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

1, 2, 2, 2, 2 Recovery Motion Learning for Single-Armed Mobile Robot in Drive System s Fault Tauku ITO 1, Hitoshi KONO 2, Yusuke TAMURA 2, Atsushi YAM

5b_08.dvi

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR

2 ( ) i

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

29 jjencode JavaScript


IPSJ SIG Technical Report Vol.2014-EIP-63 No /2/21 1,a) Wi-Fi Probe Request MAC MAC Probe Request MAC A dynamic ads control based on tra

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

IPSJ SIG Technical Report Vol.2012-IS-119 No /3/ Web A Multi-story e-picture Book with the Degree-of-interest Extraction Function

Vol. 42 No MUC-6 6) 90% 2) MUC-6 MET-1 7),8) 7 90% 1 MUC IREX-NE 9) 10),11) 1) MUCMET 12) IREX-NE 13) ARPA 1987 MUC 1992 TREC IREX-N

27 VR Effects of the position of viewpoint on self body in VR environment

21 Effects of background stimuli by changing speed color matching color stimulus

昭和恐慌期における長野県下農業・農村と産業組合の展開過程

パーソナリティ研究 2005 第13巻 第2号 170–182

untitled

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

9.プレゼン資料(小泉)R1

Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Social Networking

1 1 tf-idf tf-idf i

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

25 D Effects of viewpoints of head mounted wearable 3D display on human task performance

橡自動車~1.PDF

JFE.dvi

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

Appropriate Disaster Preparedness Education in Classrooms According to Students Grade, from Kindergarten through High School Contrivance of an Educati

短距離スプリントドリルが大学生野球選手の短距離走速度向上に与える効果

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

,,.,.,,.,.,.,.,,.,..,,,, i

日立金属技報 Vol.34

16_.....E...._.I.v2006

MmUm+FopX m Mm+Mop F-Mm(Fop-Mopum)M m+mop MSuS+FX S M S+MOb Fs-Ms(Mobus-Fex)M s+mob Fig. 1 Particle model of single degree of freedom master/ slave sy

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

卒業論文2.dvi

„h‹¤.05.07

プラズマ核融合学会誌11月【81‐11】/小特集5

2007-Kanai-paper.dvi

Vol. 48 No. 4 Apr LAN TCP/IP LAN TCP/IP 1 PC TCP/IP 1 PC User-mode Linux 12 Development of a System to Visualize Computer Network Behavior for L

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig


9_18.dvi

2006 [3] Scratch Squeak PEN [4] PenFlowchart 2 3 PenFlowchart 4 PenFlowchart PEN xdncl PEN [5] PEN xdncl DNCL 1 1 [6] 1 PEN Fig. 1 The PEN

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

( ) fnirs ( ) An analysis of the brain activity during playing video games: comparing master with not master Shingo Hattahara, 1 Nobuto Fuji

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

FA


橡上野先生訂正2

Vol. No. Honda, et al.,

The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website

IPSJ SIG Technical Report Vol.2014-HCI-158 No /5/22 1,a) 2 2 3,b) Development of visualization technique expressing rainfall changing conditions

平成14年度

IPSJ SIG Technical Report Vol.2009-BIO-17 No /5/26 DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing

2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun

05_藤田先生_責

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

本文6(599) (Page 601)

7,, i

Transcription:

524 Vol 30 No 5, pp524 533, 2012 Identifying the Building Blocks of a Human Walking based on the EMG Ratio of Agonist-antagonsit Muscle Pairs Hiroaki Hirai,TaikiIimura,KeitaInoue and Fumio Miyazaki The problem of motor redundancy is well known as Bernstein s problem, named after the scientist who first posed the knotty problem in the early 1930 s At present, it is still a mystery how the central nervous system (CNS) solves the ill-posed problem of motor control We recently made a discovery that links with influential hypotheses that the CNS may produce movements by combining units of motor output This paper introduces the key concept we call the A-A ratio, which is the EMG ratio of agonist-antagonist muscle pairs The statistical analysis based on the A-A ratio specifies that (1) human lower limb movement during walking is explained as the superposition of a few modular units, and that (2) decomposed modules encode the kinematic information of body movement The results also clarifies that various hypotheses, such as the muscle synergy hypothesis, the population vector hypothesis, and the convergent force fields hypothesis, are different interpretations of a common equation derived from our analysis The concept of an A-A ratio provides a beneficial suggestion to many studies on muscle-synergy extraction and gives an important clue to solving Bernstein s problem of redundant degrees of freedom Key Words: EMG Ratio of Agonist-antagonist Muscle Pairs, Human Walking, Motor Primitive, Redundant Degrees of Freedom, Kinematics, Principal Component Analysis 1 1930 NA Bernstein [1] [2] [3] [] [7] [10] [11] [13] [14] [1] 1 2 2010 12 20 Graduate School of Engineering Science, Osaka University 2 3 4 2 2 1 2 A: 23 175 [cm] 48 [kg] B: 23 19 [cm] [kg] 2 2 SportsArt Fitness, T50m 30 [km/h] 1 JRSJ Vol 30 No 5 72 June, 2012

525 Fig 1 Human lower limb (a) Definition of kinematic joint angle (b) Measuring muscle activities QuickMAG System III Fig 1 (a) φ10 [mm] 20 [cm] WEB-5000 1[kHz] m 1 m 2 m 3 m 4 m 5 m m 7 m 8 8 Fig 1 (b) [17] 2 3 2,000 10 150 [Hz] MVC %MVC 1 1 0 100% Fig 2 A 1 8 [17] 2 3 1 t % n m 1(t) m n(t) M (n T ) 2 3 m 1(1) m 1(2) m 1(T ) m 2(1) m 2(2) m 2(T ) M = 1 7 4 5 m n(1) m n(2) m n(t ) n =8 01%1 T T = 100/01 = 1,000 M 8 1,000 Fig 2 Ensemble EMG activities recorded from Subject A during treadmill walking M m(i) =[m i(1),m i(2),, m i(t )] T (i =1,, 8) m(i) m 0(t) = TX v jc j(t) j=1 2 m 0(t) m(i) v j, c j(t) j c j(t) 1 2 3 2 Fig 1 (b) m 1 m 2 r 1 = m 2/m 1 30 5 73 2012

52 Table 1 Definition of the agonist-antagonist muscle-pair ratio Pair label Target muscles Movement function r 1 m 2 /m 1 Hip extension r 2 m 3 /m 4 Knee extension and Hip flexion r 3 m /m 5 Knee extension r 4 m 7 /m 8 Ankle extension r 5 m 2 /m 3 Hip extension r m 3 /m 5 Knee extension (and Hip flexion) r 7 m 1 /m 4 Hip flexion r 8 m 4 /m Knee flexion (and Hip extension) Table 1 m 7 [18] m, m 7 r i (i=1,, n) t % R (T n) n =8 01% 1 T T = 100/01 = 1,000 R 1,000 8 2 3 r 1(1) r 2(1) r n(1) r 1(2) r 2(2) r n(2) R = 3 7 4 5 r 1(T ) r 2(T ) r n(t ) R r(t)(= [r 1(t),r 2(t),, r 8(t)] T ) nx r(t) r 0 = w j(t)s j 4 j=1 r 0 r(t) w j(t), s j j 4 s j 1 3 Fig 3 Table 2 Basic muscle activation patterns of subject A PCA based on original EMG data: the contribution rate % of each component 1st 2nd 3rd others Subject A 40 322 15 20 1[3] [] 2 [7] [10] 3 [11] [13] 3 1 Fig 3 A 231 8 3 938% Table 2 8 Ivanenko 32 [3] [5] JRSJ Vol 30 No 5 74 June, 2012

527 Fig 4 Basic muscle synergy patterns of subject A Fig 5 Basic muscle synergy patterns of subject B c j(t) 232 4 2 3 2 3 2 3 2 3 2 3 r 1(t) r 10 s 11 s 12 s 1n r 2(t) r 20 s 21 s 22 s 2n = w 1(t) 7 + w 2(t) 7 + + w n(t) 7 7 7 4 5 4 5 4 5 4 5 4 5 r 8(t) r 80 s 81 s 82 s 8n 5 Fig 4 5 A, B Table 3 3 A 912% B 952% Fig 4 5 1, 2 3 Table 4 A, B Table 3 PCA based on the A-A ratio: the contribution rate % of each component 1st 2nd 3rd others Subject A 488 334 899 881 Subject B 435 335 182 480 Table 4 Agreement of the PC vectors between Subject A and B 1st 2nd 3rd ŝ (A) ŝ (B) 073 0871 050 ŝ (A), ŝ (B) A, B 1 1, 2 3 A Fig 1 2 3 1 2 Fig 7 8 w j(t) w j(t) =0 30 5 75 2012

528 Fig Kinematic meaning of the extracted muscle synergies Fig 7 Toe position of the muscular-skeletal leg robot (Subject A) Fig 8 Toe position of the muscular-skeletal leg robot (Subject B) φ, L Fig 1 (a) A, B 1 2 B 3 Ivanenko [] 3 2 Georgopoulos JRSJ Vol 30 No 5 7 June, 2012

529 Fig 9 Modular control based on the population vector hypothesis (a) Gait trajectory in PC scores (w 1 -w 2 ) plane (b) Estimation of hip-joint angle during swing phase (c) Estimation of knee-joint angle during swing phase [7] [9] [10] 4 2 3 2 3 2 3 2 3 r 1(t) r 10 s 11 s 12 s 1n w 1(t) r 2(t) r 20 s 21 s 22 s 2n w 2(t) = 7 7 7 7 4 5 4 5 4 5 4 5 r 8(t) r 80 s 81 s 82 s 8n w n(t) 2 3 2 3 p 1 w(t) p 1 w cos θ 1(t) p 2 w(t) p 2 w cos θ 2(t) = = 7 7 4 5 4 5 p 8 w(t) p 8 w cos θ 8(t) p i (= [s i1,s i2,, s in],i =1, 2,, 8) i, w(t) r i i i θ i(t) i w(t) Fig 9 (a) A w 1 w 2 0% 100% ˆφ hip (t) =φ hip,0 + a r1(r 1(t) r 10)+a r2(r 2(t) r 20) +a r5(r 5(t) r 50)+a r7(r 7(t) r 70) = φ hip,0 + a r1 p T 1 p 1 p 1 w(t) cos θ1(t) +a r2 p T 1 p 2 p 2 w(t) cos θ 2(t) +a r5 p T 1 p 5 p 5 w(t) cos θ 5(t) +a r7 p T 1 p 7 p 7 w(t) cos θ7(t) 7 ˆφ hip (t) a r1, a r2, a r5, a r7 φ hip,0 r 1, r 2, r 5, r 7 (a r1, a r2, a r5, a r7) =( 4455, 101, 2900, 1848), ˆφ hip (t) = 3528 a r2 a r7 r 2 = m 3/m 4, r 7 = m 1/m 4 m 1, m 3 30 5 77 2012

530 Fig 10 Modular control based on the CFFs hypothesis (a) Gait trajectory in PC score space (w 1 -w 2 -w 3 ) (b) Vector fields in the phase plane of each PC score at the time of gait-phase 0%, 25%, 55%, and 85% ˆφ knee (t) =φ knee,0 + b r2(r 2(t) r 20)+b r3(r 3(t) r 30) +b r4(r 4(t) r 40)+b r(r (t) r 0) +b r8(r 8(t) r 80) = φ knee,0 + b r2 p T 3 p 2 p 2 w(t) cos θ2(t) +b r3 p T 3 p 3 p 3 w(t) cos θ3(t) +b r4 p T 3 p 4 p 4 w(t) cos θ4(t) +b r p T 3 p p w(t) cos θ(t) +b r8 p T 3 p 8 p 8 w(t) cos θ8(t) 8 ˆφ knee (t) b r2, b r3, b r4, b r, b r8 φ knee,0 r 2, r 3, r 4, r, r 8 (b r2, b r3, b r4, b r, b r8) = (009557, 3338, 2470, 4882, 4924), ˆφ knee (t) = 1403 b r3, b r r 3 = m /m 5, r = m 3/m 5 m 5 Fig 9 (b), (c) 3 3 Bizzi [11] [13] 4 2 3 2 3 2 3 2 3 2 3 r 1(t) r 10 s 11 s 12 s 1n r 2(t) r 20 s 21 = 7 w s 22 7 1(t)+ w s 2n 7 2(t)+ + w 7 n(t) 7 4 5 4 5 4 5 4 5 4 5 r 8(t) r 80 s 81 s 82 s 8n 9 w (t) T JRSJ Vol 30 No 5 78 June, 2012

531 Table 5 Correlation between computed A A ratios from EMG data and reconstructed A A ratios from the model r 1 r 2 r 3 r 4 r 5 r r 7 r 8 094 0912 0949 0755 0789 082 0910 0891 wj (t) s j Table 5 88% 4 Fig 11 A A ratio change during a gait cycle 8 ẅ >< 1(t)+c 1ẇ1(t)+k 1w1(t) 3 A 1 cos 4π t c1z1 =0 T ẅ2(t)+c 2ẇ2(t)+k 2w2(t) 3 A 2 sin 4π t c2z2 =0 T >: ẅ3(t)+c 3ẇ3(t)+k 3w3(t) 3 A 3 sin 4π t c3z3 =0 T 10 c j, k j, A j z j (j =1,2,3) Fig 10 (a) A w 1 w 2 w 3 5%10 Fig 10 (b) 1 0%: 25%: 55%: 85%: [19] 10 1 9 Fig 11 10 4 A Fig 12 Avice, Inc Fig 1 (b) McKibben 3 [20] [21] m 3, m 4 1 p 1(> 0), p 2(> 0) r a r = p1 p 2 a = p 1 + p 2 A1 A2 r 30 5 79 2012

532 Fig 12 Human-like muscular-skeletal leg robot a A1 A2 p 1, p 2 p 1 = 1 1+r a A3 p 2 = r 1+r a A4 p 1, p 2 r a 0 < 1/(1 + r) < 1, 0 <r/(1 + r) < 1 a a 5 8 Fig B wj (t) 10 wj (t) T T/2 2X wj (t) =c j0 + c jn cos 2nπ T t + djn sin 2nπ «T t n=1 B5 c j0, c jn, d jn (n=1, 2) Fig 13 A Fig 13 Table Fourier-series approximation of the PC scores of subject A (a) the first PC score w 1 ; (b) the second PC score w 2 ;(c)thethirdpcscorew 3 Model parameters of the forced Duffing equation c k A z w 1 00593004 0012033 04150 120 w 2 0025428 00198345 0282257 045 w 3 007703 00501977 0293535 010 B5 B510 10 sin, cos B510 0 0 c j, k j, A j, z j B5 c j = func 1(c j0,c j1,c j2,d j1,d j2,z j) k j = func 2(c j0,c j1,c j2,d j1,d j2,z j) A j = func 3(c j0,c j1,c j2,d j1,d j2,z j) B B7 B8 func 1(), func 2(), func 3() B5 B B7 B8 A wj (t) Table JRSJ Vol 30 No 5 80 June, 2012

533 [22] [22] [24] [ 1 ] NA Bernstein: The co-ordination and regulation of movements Pergamon, 197 [ 2 ] NA Bernstein: On Dexterity and Its Development Lawrence Erlbaum Associates, Inc, 199 [ 3 ] YP Ivanenko, RE Poppele and F Lacquaniti: Five basic muscle activation patterns account for muscle activity during human locomotion, J Physiol, vol55 (Pt 1), pp27 282, 2004 [ 4 ] G Cappellini, YP Ivanenko, RE Poppele and F Lacquaniti: Motor Patterns in Human Walking and Running, J Neurophysiol, vol95, no, pp342 3437, 200 [ 5 ] YP Ivanenko, RE Poppele and F Lacquaniti: Motor Control Programs and Walking, Neuroscientist, vol12, no4, pp339 348, 200 [ ] YP Ivanenko, G Cappellini, N Dominici, RE Poppele and F Lacquaniti: Modular Control of Limb Movements during Human Locomotion, J Neurosci, vol27, no41, pp11149 1111, 2007 [ 7 ] AP Georgopoulos, JF Kalaska, R Caminiti and JT Massey: On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex, J Neurosci, vol2, no11, pp1527 1537, 1982 [ 8 ] AB Schwartz, RE Kettner and AP Georgopoulos: Primate motor cortex and free arm movements to visual targets in threedimensional space I Relations between single cell discharge and direction of movement, J Neurosci, vol8, no8, pp2913 2927, 1988 [ 9 ] AB Schwartz, DM Taylor and SIH Tillery: Extraction algorithms for cortical control of arm prosthetics, Cuur Opin Neurobiol, vol11, pp701 707, 2001 [10] M Velliste, S Perel, MC Spalding, AS Whitford and AB Schwartz: Cortical control of a prosthetic arm for selffeeding, Nature, vol453, pp1098 1101, 2008 [11] E Bizzi, FA Mussa-Ivaldi and S Giszter: Computations underlying the execution of movement: a biological perspective, Science, vol253, pp287 291, 1991 [12] FA Mussa-Ivaldi and E Bizzi: Motor learning through the combination of primitives, Phil Trans R Soc Lond B, vol355, no1404, pp1755 179, 2000 [13] MC Tresch, VCK Cheung and A d Avella: Matrix factorization algorithms for identification of muscle synergies: evaluation on simulated and experimental data sets, J Neurophysiol, vol95, no4, pp2199 2212, 200 [14] H Hirai, K Matsui, T Iimura, K Mitsumori and F Miyazaki: Modular Control of Limb Kinematics During Human Walking, Proc of the 3rd IEEE/RAS-EMBS Int Conf on Biomedical Robotics and Biomechatronics (BioRob2010), pp71 721, 2010 [15] 28 DVD-ROM 1D2-3, 2010 [1] 28 DVD-ROM 1I3-2, 2010 [17] DA Neumann: Kinesiology of the Musculoskeletal System Mosby, 2002 [18] AI Kapandji II 2010 [19] J Perry: Gait analysis Slack Incorporated, 1992 [20] VM Zatsiorsky: Kinetics of human motion Human Kinetics, 2002 [21] http://riodbibaseaistgojp/dhbodydb/properties/s/index-ehtml, Human body properties database [22] 11 pp904 907, 2010 [23] T Iimura, K Inoue, HTT Pham, H Hirai and F Miyazaki: A preliminary Experiment for Transferring Human Motion to a Musculoskeletal Robot Decomposition of Human Running based on Muscular Coordination, Proc of the IEEE/RSJ Int Conf Intelligent Robots and Systems (IROS2011), pp449 4501, 2011 [24] T Iimura, K Inoue, HTT Pham, H Hirai and F Miyazaki: Decomposition of Limb Movement based on Muscular Coordination during Human Running, J Adv Comp Intel and Intel Informatics, pp980 987, 2011 Hiroaki Hirai 1997 1999 2004 2005 2010 IEEE Keita Inoue 2010 Taiki Iimura 2010 Fumio Miyazaki 1979 198 1991 1987 1988 1995 1997 IEEE 30 5 81 2012