平成14年度

Size: px
Start display at page:

Download "平成14年度"

Transcription

1 14 Estimation of Ground Reaction Force and Joint Moment by Plantar Pressure Measurement Device

2 a) b) (a) (b)

3 (a) (b) (a) (b) (a) (b) (a) 41

4 5.6.2(b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

5 50 51

6 / ,5 6 1

7 ) 2) 3) 8 1) 2) 3) 1) 2) 3) a) 2

8 1.4.b)

9

10 Fig.2.1 Fig

11 Plantar pressu re Installed type Equipped type Plantar pressure distribution Reaction force Plantar pressure distribution Reaction force Scanned type Mapped type Distortion gauge type Crystal piezo-electricity type Ink coloring type Scanned type Distributed type Vertical component All reaction force measurement Vertical & share component Partial reaction force measurement Fig. 2.1Plantar pressure measurement equipment classification 6

12 m / ,15,16,17, [mm](cf. Table 2.1) 2 2 5mm Fig. 2.2Gait Scan Fig. 2.2(a)Sensor (for Gait Scan) 7

13 Table 2.1Specification of Gait Scan system GaitRiteCIR Systems, Inc. 4572mm 902mm 6.4mm ,21 Fig. 2.3GaitRite 8

14 ,23,24,25,26,27, Arcan Force Plate, Force Platform Force Plate, Force Platform cm 2m Hz 400Hz Hz 9

15 cm 2 Fig. 2.4Force plate (Distortion gage type) Fig. 2.5Force plate (Piezo-electricity type) 10

16 Elfman Kistler 1 1 1g mm

17 A C A C RA 39,40,41 Force A film Microcapsule Color developer C film Fig. 2.6Prescal Table 2.2Specification of Prescal 12

18 mm 15% 42 1 F-Scan 10msec 43,44,45 Fig. 2.7F-SCAN system

19 Hz 15.5cm32cm 5mm medilogic FPMS medilogic FPMS 64 COP 3 GANGAS GANGAS 16 FSR medilogic FPMS 14

20 Fig.2.8Parotec-System Table 2.1Specification of Sensor distribution type 15

21 (a),, (b) /

22 2.3 17

23 ) 2) 3.2 Table Z 1) 1/51/12 2) 6 12 Table 3.1Spec of Plantar 3) Z Pressure measurement device 4) 5) ) The inside of ( ) is an in sole part. 18

24 Fig. 3.1.a)Plantar Pressure Measurement Device Fig. 3.1.b)Plantar Pressure Measurement Device 19

25 3.3 (Heel) Chopart s joint 1 (Metatarsals ) 4 (Metatarsals ) (Thumb) 3 (Toe)6 Fig.3.2 [J] b) d)

26 Chopart's joint Metatarsals Toe Heel Metatarsals Fig. 3.2Distribution of sensors Thumb 3.4 PS-10KAM183 Pla-Plate 1.0mm cm 21

27 Fig. 3.3Plantar pressure sensor 22

28

29 4.2 (Fig 4.1) (Y ) ( X ) ( A ) i i 6 Y = A i X i= 1 i (4.1) A i (4.1) ( ) A1X1 A2X2 A4X4 A3X3 A6X6 A5X5 Fig.4.1Image of active area 24

30 4.3 ) A i EFP-S-2KNSA12 1 Fig. 4.2 ( ) [N] Y 6 [kgf/cm2] X, L L, X 1 6 (Fig. 4.1) SPSS Ver A i [cm] [kg]

31 Plantar Pressure Measurement Device Force plate Fig.4.2Example of experiment scenery 4.4 Table [A]-[J] [cm] [kg] Table 4.1Parameter of subjects An able leg 26

32 4.4.1(a) Table [A-J] ( ) R R R 01 A i Table R Fig [A-J] Fig [A-J] Table 4.3 [A-J] Table 4.3Plantar area rate of each subjects 27

33 4.4.1(b) Table cm 3.5cm [J] 6 Table l Table [BDFGIJ] 5 2 Table Fig MP Marquardt 20% 1 17% 5 13%

34 61 Fig MP 4.4.2(a) Fig.4.4.1(a)4.4.10(f) R [msec] [N] Fig.4.4.1(a)4.4.1(f) [A] 6 Table 4.2.1No. 1 5 Table 4.2.1No. 2 4 Table 4.2.1No. 4 3 Table 4.2.1No Table 4.2.1No. 31 Fig.4.4.2(a)4.4.2(f) [B] 6 Table 4.2.2No. 1 5 Table 4.2.2No. 2 4 Table 4.2.2No. 4 3 Table 4.2.2No. 9 2 Table 4.2.2No. 23 Fig.4.4.3(a)4.4.3(f) [C] 6 Table 4.2.3No. 1 5 Table 4.2.3No. 2 4 Table 4.2.3No. 5 3 Table 4.2.3No Table 4.2.3No. 19 Fig.4.4.4(a)4.4.4(f) [D] 6 Table 4.2.4No. 1 5 Table 4.2.4No. 2 4 Table 4.2.4No. 5 3 Table 4.2.4No Table 4.2.4No. 20 Fig.4.4.5(a)4.4.5(f) [E] 29

35 6 Table 4.2.5No. 1 5 Table 4.2.5No. 2 4 Table 4.2.5No. 4 3 Table 4.2.5No. 8 2 Table 4.2.5No. 22 Fig.4.4.6(a)4.4.6(f) [F] 6 Table 4.2.6No. 1 5 Table 4.2.6No. 2 4 Table 4.2.6No. 4 3 Table 4.2.6No Table 4.2.6No. 22 Fig.4.4.7(a)4.4.7(f) [G] 6 Table 4.2.7No. 1 5 Table 4.2.7No. 2 4 Table 4.2.7No. 4 3 Table 4.2.7No Table 4.2.7No. 23 Fig.4.4.8(a)4.4.8(f) [H] 6 Table 4.2.8No. 1 5 Table 4.2.8No. 2 4 Table 4.2.8No. 5 3 Table 4.2.8No Table 4.2.8No. 28 Fig.4.4.9(a)4.4.9(f) [I] 6 Table 4.2.9No. 1 5 Table 4.2.9No. 2 4 Table 4.2.9No. 4 3 Table 4.2.9No. 8 2 Table 4.2.9No. 22 Fig (a)4.4.10(f) [J] 6 Table No. 1 5 Table No. 2 4 Table No. 4 3 Table No Table No (b) Fig.4.4.1(a)4.4.10(f) 4 [J] 4 30

36 cm 24.0cm 31

37 cm

38 Fig

39 3 Reaction force Joint position Angle Angle acceleration Acceleration Joint moment Fig. 5.1Joint moment calculation process Body parameter (1997)17 34

40 Fig.5.2 N x N y ( xn, y N x, y ( Am Am (, y A A) ) ) x ϑ m M A ( y y ) N A θ ( y y ) Am A ( x A, ya ) ( A m x & x ( x, y Am Am ) m y & y g ( x x A) N ( x x ) A Am I A ( x, y N N Fig. 5.2Force balance in the foot at stance phase N y ) N x 35

41 M A M A = I & &θ + m && x x( y A y Am ) + m y (& y + g)( x Am x A ) N y y ) N ( x x ) (4.1) x ( A N y N A N ϑ I & θ 4 N ( y ) x x A y N 2 m & x x ( y A y Am ) 3 m (& y y + g)( x Am x A ) 5 N ( x x A ) y N M A N ( x x A ) (4.2) y N x 6 N y 6 Fig

42 A X 1 1 A i X i x, y ),( x i, y ) ( 1 1 i ( x, y A A) M A x 1, y ) ( 1 A X 1 1 ( x 1 x A ) ( x, y A A ) A X i i ( x x ) A Fig. 5.3Force balance in the foot at stance phase i ( i x i, y ) A Fig. 5.3 ( A i X i ) ( ) N y M A 37

43 ) ( 6 1 A i i i i A x x A X M = 4.3 ( ),( ), 1 A i A x x x x L L 5.5 M A 3 7m 1 60mm90mm 3 Fig Quick MAG EFP-S-2KNSA12 1 ( ) (4.3) A i 38

44 23 180[cm] 70[kg] 1 3-dimensional operation analysis system (Quick MAG ) Force plate Fig.5.4Example of experiment scenery 39

45 5.6 [msec] 1/10 [1/10 N] [Nm] Quick MAG Fig (a)-5.5.3(e) 3 Quick MAG Fig (a) 5.5.2(a) 5.5.3(a) 6 Table No.1 5 Table No.2 4 Table No.4 3 Table No.14 2 Table No Quick MAG 3 Quick MAG Quick MAG [msec] 40

46 1 1200[msec] Quick MAG Quick MAG cm Quick MAG Fig (a)-5.5.6(e) 3 Quick MAG Fig (a) 5.5.5(a)5.5.6(a) 6 Table No.1 5Table

47 No.2 4 Table No.4 3 Table No.14 2 Table No.23 Fig.5.5.4(a)5.5.4(c) Quick MAG mm Fig.5.5.4(a)-5.5.4(c) Fig (a)-5.5.7(e) 3 Quick MAG Fig (a) 42

48 6 Table No.1 5Table No.2 4 Table No.4 3 Table No.14 2 Table No Quick MAG Fig (a)-5.5.8(e) 3 Quick MAG Fig (a) 6 Table No.1 5Table No.2 4 Table No.4 3 Table No.14 2 Table No Quick MAG 3 43

49 5.6.5 Fig (a)-5.5.9(e) 3 Quick MAG Fig (a) 6 Table No.1 5Table No.2 4 Table No.4 3 Table No.14 2 Table No Quick MAG Fig (a) (e) 3 Quick MAG Fig (a) 6 Table No.1 5Table No.2 4 Table No.4 3 Table No.14 2 Table No

50 5.6.7 Fig (a) (e) 3 Quick MAG Fig (a) 6 Table No.1 5Table No.2 4 Table No.4 3 Table No.14 2 Table No Quick MAG Fig (a) (e) 3 Quick MAG Fig (a) 6 Table No.1 5Table No.2 4 Table No.4 3 Table No.14 2 Table No.23 Quick MAG 45

51 3 Table 5.1 Table 5.1 Distance accuracy of 3-dimensional measurement system 1997 p

52

53 ) 1/10 2) 48

54 49

55 3 Quick MAG 50

56 1 (1997)167 2 (1998)51 3 (1998) (2001) MOOK6 (2000) MOOK6 (2000)19 9 (1997)3 10 (2002) (1998)51 12 (2002) (2002) D- Vol.J84-D-No.2 (2001) MBE (1997) MBE97-89 (1997) PRU94-61 (1994) (1996)278 19http:// 20http:// 21 (GAITRite) FAP(Functional Ambulation 51

57 Profile) 25 (1998) C (1986) A (1986) A (1987) A (1990) A (1986) C. I. Franks R. P. Betts T. DuckworthMicroprocessor-based image processing system for dynamic foot pressure studiesmedical & Biological Engineering & Computing21 (1983) K. M. PatilM. S. SrinathNew image-processing system for analysis, display and measurement of static and dynamic foot pressuremedical & Biological Engineering & Computing28 (1990) (2002) (1989)78 31 (1989)79 32 (2002) A (1986) (1977) (2002) (1979) RA 52

58 29 (1986) (1982) (1998)52 41http:// 42 (2002) http:// 44 (F-SCAN) (1997) (F-SCAN) 25 (1998) (1985) http:// 48http:// 49http:// (1977) (1979) S. MiyazakiA. IshidaCapacitive transducer for continuous measurement of vertical foot forcemedical & Biological Engineering & Computing22 (1984) (1982) (1998) )96 58 Takayuki Turu, Koreaki Yamakuma, Yasuhiro OnikiDynamic Pressure Distribution beneath the Foot during Walking 39(2) (1990)

59 12 (1985) (1994) (1973) 62 MOOK6 (2000)33 63 (2002) MOOK6 (2000)33 65 MOOK6 (2000)31 66 MOOK6 (2000)34 67 (2002) (1995) (7)

60 Table Experiment result of Subject A 1 Table Experiment result of Subject B 2 Table Experiment result of Subject C 3 Table Experiment result of Subject D 4 Table Experiment result of Subject E 5 Table Experiment result of Subject F 6 Table Experiment result of Subject G 7 Table Experiment result of Subject H 8 Table Experiment result of Subject I 9 Table Experiment result of Subject J 10 Table Experiment result of all Subject average 11 Fig The area ratio of each portion of Subject A s plantar 12 Fig The area ratio of each portion of Subject B s plantar 12 Fig The area ratio of each portion of Subject C s plantar 12 Fig The area ratio of each portion of Subject D s plantar 13 Fig The area ratio of each portion of Subject E s plantar 13 Fig The area ratio of each portion of Subject F s plantar 13 Fig The area ratio of each portion of Subject G s plantar 14 Fig The area ratio of each portion of Subject H s plantar 14 Fig The area ratio of each portion of Subject I s plantar 14 Fig The area ratio of each portion of Subject J s plantar 15 Fig The average of the area ratio of each portion of all subjects plantar15 Fig (a) Ground reaction force of Subject A (6 sensors) 16 Fig (b) Ground reaction force of Subject A (5 sensors) 16 Fig (c) Ground reaction force of Subject A (4 sensors) 16 Fig (d) Ground reaction force of Subject A (3 sensors) 17 Fig (e) Ground reaction force of Subject A (2 sensors) 17

61 Fig (a) Ground reaction force of Subject B (6 sensors) 18 Fig (b) Ground reaction force of Subject B (5 sensors) 18 Fig (c) Ground reaction force of Subject B (4 sensors) 18 Fig (d) Ground reaction force of Subject B (3 sensors) 19 Fig (e) Ground reaction force of Subject B (2 sensors) 19 Fig (a) Ground reaction force of Subject C (6 sensors) 20 Fig (b) Ground reaction force of Subject C (5 sensors) 20 Fig (c) Ground reaction force of Subject C (4 sensors) 20 Fig (d) Ground reaction force of Subject C (3 sensors) 21 Fig (e) Ground reaction force of Subject C (2 sensors) 21 Fig (a) Ground reaction force of Subject D (6 sensors) 22 Fig (b) Ground reaction force of Subject D (5 sensors) 22 Fig (c) Ground reaction force of Subject D (4 sensors) 22 Fig (d) Ground reaction force of Subject D (3 sensors) 23 Fig (e) Ground reaction force of Subject D (2 sensors) 23 Fig (a) Ground reaction force of Subject E (6 sensors) 24 Fig (b) Ground reaction force of Subject E (5 sensors) 24 Fig (c) Ground reaction force of Subject E (4 sensors) 24 Fig (d) Ground reaction force of Subject E (3 sensors) 25 Fig (e) Ground reaction force of Subject E (2 sensors) 25 Fig (a) Ground reaction force of Subject F (6 sensors) 26 Fig (b) Ground reaction force of Subject F (5 sensors) 26 Fig (c) Ground reaction force of Subject F (4 sensors) 26 Fig (d) Ground reaction force of Subject F (3 sensors) 27 Fig (e) Ground reaction force of Subject F (2 sensors) 27 Fig (a) Ground reaction force of Subject G (6 sensors) 28 Fig (b) Ground reaction force of Subject G (5 sensors) 28 Fig (c) Ground reaction force of Subject G (4 sensors) 28 Fig (d) Ground reaction force of Subject G (3 sensors) 29 Fig (e) Ground reaction force of Subject G (2 sensors) 29

62 Fig (a) Ground reaction force of Subject H (6 sensors) 30 Fig (b) Ground reaction force of Subject H (5 sensors) 30 Fig (c) Ground reaction force of Subject H (4 sensors) 30 Fig (d) Ground reaction force of Subject H (3 sensors) 31 Fig (e) Ground reaction force of Subject H (2 sensors) 31 Fig (a) Ground reaction force of Subject I (6 sensors) 32 Fig (b) Ground reaction force of Subject I (5 sensors) 32 Fig (c) Ground reaction force of Subject I (4 sensors) 32 Fig (d) Ground reaction force of Subject I (3 sensors) 33 Fig (e) Ground reaction force of Subject I (2 sensors) 33 Fig (a) Ground reaction force of Subject J (6 sensors) 34 Fig (b) Ground reaction force of Subject J (5 sensors) 34 Fig (c) Ground reaction force of Subject J (4 sensors) 34 Fig (d) Ground reaction force of Subject J (3 sensors)35 Fig (e) Ground reaction force of Subject J (2 sensors) 35 Fig (a)normal gait (6 sensors) 36 Fig (b)normal gait (5 sensors) 36 Fig (c)normal gait (4 sensors) 36 Fig (d)normal gait (3 sensors) 37 Fig (e)normal gait (2 sensors) 37 Fig (a)normal gait (6 sensors) 38 Fig (b)normal gait (5 sensors) 38 Fig (c)normal gait (4 sensors) 38 Fig (d)normal gait (3 sensors) 39 Fig (e)normal gait (2 sensors) 39 Fig (a)normal gait (6 sensors) 40 Fig (b)normal gait (5 sensors) 40 Fig (c)normal gait (4 sensors) 40 Fig (d)normal gait (3 sensors) 41 Fig (e)normal gait (2 sensors) 41

63 Fig (a)regulation gait A (6 sensors) 42 Fig (b)regulation gait A (5 sensors) 42 Fig (c)regulation gait A (4 sensors) 42 Fig (d)regulation gait A (3 sensors) 43 Fig (e)regulation gait A (2 sensors) 43 Fig (a)regulation gait A (6 sensors) 44 Fig (b)regulation gait A (5 sensors) 44 Fig (c)regulation gait A (4 sensors) 44 Fig (d)regulation gait A (3 sensors) 45 Fig (e)regulation gait A (2 sensors) 45 Fig (a)regulation gait A (6 sensors) 46 Fig (b)regulation gait A (5 sensors) 46 Fig (c)regulation gait A (4 sensors) 46 Fig (d)regulation gait A (3 sensors) 47 Fig (e)regulation gait A (2 sensors) 47 Fig (a)regulation gait B (6 sensors) Fig (b)regulation gait B (5 sensors) Fig (c)regulation gait B (4 sensors) 48 Fig (d)regulation gait B (3 sensors) Fig (e)regulation gait B (2 sensors) Fig (a)regulation gait C (6 sensors) Fig (b)regulation gait C (5 sensors) Fig (c)regulation gait C (4 sensors) 50 Fig (d)regulation gait C (3 sensors) Fig (e)regulation gait C (2 sensors) Fig (a)backward gait (6 sensors) 52 Fig (a)backward gait (5 sensors) 52 Fig (a)backward gait (4 sensors) 52 Fig (a)backward gait (3 sensors) 53 Fig (a)backward gait (2 sensors) 53

64 Fig (a)Regulation gait D (6 sensors) 54 Fig (b)Regulation gait D (5 sensors) 54 Fig (c)Regulation gait D (4 sensors) Fig (d)Regulation gait D (3 sensors) 55 Fig (e)Regulation gait D (2 sensors) 55 Fig (a)Stairs going up (6 sensors) 56 Fig (b)Stairs going up (5 sensors) 56 Fig (c)Stairs going up (4 sensors) 56 Fig (d)Stairs going up (3 sensors) 57 Fig (e)Stairs going up (2 sensors) 57 Fig (a)Stairs going up (6 sensors) 58 Fig (b)Stairs going up (5 sensors) 58 Fig (c)Stairs going up (4 sensors) 58 Fig (d)Stairs going up (3 sensors) 59 Fig (e)Stairs going up (2 sensors) 59

65 Table 4.2.1Experiment Result of subject A 1

66 Table 4.2.2Experiment Result of subject B 2

67 Table 4.2.3Experiment Result of subject C 3

68 Table 4.2.4Experiment Result of subject D 4

69 Table 4.2.5Experiment Result of subject E 5

70 Table 4.2.6Experiment Result of subject F 6

71 Table 4.2.7Experiment Result of subject G 7

72 Table 4.2.8Experiment Result of subject H 8

73 Table 4.2.9Experiment Result of subject I 9

74 Table Experiment Result of subject 10

75 Table Experiments result of all subjects average 11

76 Fig The area ratio of each portion of Subject A s plantar Fig The area ratio of each portion of Subject B s plantar Fig The area ratio of each portion of Subject C s plantar 12

77 Fig The area ratio of each portion of Subject D s plantar Fig The area ratio of each portion of Subject E s plantar Fig The area ratio of each portion of Subject F s plantar 13

78 Fig The area ratio of each portion of Subject G s plantar Fig The area ratio of each portion of Subject H s plantar Fig The area ratio of each portion of Subject I s plantar 14

79 Fig The area ratio of each portion of Subject J s plantar Fig The average of the area ratio of each portion of all subjects plantar 15

80 Fig (a)Ground reaction force of Subject A(6 Sensors) Fig (b)Ground reaction force of Subject A(5 Sensors) Fig (c)Ground reaction force of Subject A(4 Sensors) 16

81 Fig (d)Ground reaction force of Subject A(3 Sensors) Fig (e)Ground reaction force of Subject A(2 Sensors) 17

82 Fig (a)Ground reaction force of Subject B(6 Sensors) Fig (b)Ground reaction force of Subject B(5 Sensors) Fig (c)Ground reaction force of Subject B(4 Sensors) 18

83 Fig (d)Ground reaction force of Subject B(3 Sensors) Fig (e)Ground reaction force of Subject B(2 Sensors) 19

84 Fig (a)Ground reaction force of Subject C(6 Sensors) Fig (b)Ground reaction force of Subject C(5 Sensors) Fig (c)Ground reaction force of Subject C(4 Sensors) 20

85 Fig (d)Ground reaction force of Subject C(3 Sensors) Fig (e)Ground reaction force of Subject C(2 Sensors) 21

86 Fig (a)Ground reaction force of Subject D(6 Sensors) Fig (b)Ground reaction force of Subject D(5 Sensors) Fig (c)Ground reaction force of Subject D(4 Sensors) 22

87 Fig (d)Ground reaction force of Subject D(3 Sensors) Fig (e)Ground reaction force of Subject D(2 Sensors) 23

88 Fig (a)Ground reaction force of Subject E(6 Sensors) Fig (b)Ground reaction force of Subject E(5 Sensors) Fig (c)Ground reaction force of Subject E(4 Sensors) 24

89 Fig (d)Ground reaction force of Subject E(3 Sensors) Fig (e)Ground reaction force of Subject E(2 Sensors) 25

90 Fig (a)Ground reaction force of Subject F(6 Sensors) Fig (b)Ground reaction force of Subject F(5 Sensors) Fig (c)Ground reaction force of Subject F(4 Sensors) 26

91 Fig (d)Ground reaction force of Subject F(3 Sensors) Fig (e)Ground reaction force of Subject F(2 Sensors) 27

92 Fig (a)Ground reaction force of Subject G(6 Sensors) Fig (b)Ground reaction force of Subject G(5 Sensors) Fig (c)Ground reaction force of Subject G(4 Sensors) 28

93 Fig (d)Ground reaction force of Subject G(3 Sensors) Fig (e)Ground reaction force of Subject G(2 Sensors) 29

94 Fig (a)Ground reaction force of Subject H(6 Sensors) Fig (b)Ground reaction force of Subject H(5 Sensors) Fig (c)Ground reaction force of Subject H(4 Sensors) 30

95 Fig (d)Ground reaction force of Subject H(3 Sensors) Fig (e)Ground reaction force of Subject H(2 Sensors) 31

96 Fig (a)Ground reaction force of Subject I(6 Sensors) Fig (b)Ground reaction force of Subject I(5 Sensors) Fig (c)Ground reaction force of Subject I(4 Sensors) 32

97 Fig (d)Ground reaction force of Subject I(3 Sensors) Fig (e)Ground reaction force of Subject I(2 Sensors) 33

98 Fig (a)Ground reaction force of Subject J(6 Sensors) Fig (b)Ground reaction force of Subject J(5 Sensors) Fig (c)Ground reaction force of Subject J(4 Sensors) 34

99 Fig (d)Ground reaction force of Subject J(3 Sensors) Fig (e)Ground reaction force of Subject J(2 Sensors) 35

100 Fig (a)Normal gait 6 Sensors Fig (b)Normal gait 5 Sensors Fig (c)Normal gait 4 Sensors 36

101 Fig (d)Normal gait 3 Sensors Fig (e)Normal gait 2 Sensors 37

102 Fig (a)Normal gait 6 Sensors Fig (b)Normal gait 5 Sensors Fig (c)Normal gait 3 Sensors 38

103 Fig (d)Normal gait 3 Sensors Fig (e)Normal gait 2 Sensors 39

104 Fig (a)Normal gait 6 Sensors Fig (b)Normal gait 5 Sensors Fig (c)Normal gait 4 Sensors 40

105 Fig (d)Normal gait 3 Sensors Fig (e)Normal gait 2 Sensors 41

106 Fig (a)Regulation gait A6 Sensors Fig (b)Regulation gait A5 Sensors Fig (c)Regulation gait A4 Sensors 42

107 Fig (d)Regulation gait A3 Sensors Fig (e)Regulation gait A2 Sensors 43

108 Fig (a)Regulation gait A6 Sensors Fig (b)Regulation gait A5 Sensors Fig (c)Regulation gait A4 Sensors 44

109 Fig (d)Regulation gait A3 Sensors Fig (e)Regulation gait A2 Sensors 45

110 Fig (a)Regulation gait A6 Sensors Fig (b)Regulation gait A5 Sensors Fig (c)Regulation gait A4 Sensors 46

111 Fig (d)Regulation gait A3 Sensors Fig (e)Regulation gait A2 Sensors 47

112 Fig (a)Regulation gait B6 Sensors Fig (b)Regulation gait B5 Sensors Fig (c)Regulation gait B4 Sensors 48

113 Fig (d)Regulation gait B3 Sensors Fig (e)Regulation gait B2 Sensors 49

114 Fig (a)Regulation gait C6 Sensors Fig (b)Regulation gait C5 Sensors Fig (c)Regulation gait C4 Sensors 50

115 Fig (d)Regulation gait C3 Sensors Fig (e)Regulation gait C2 Sensors 51

116 Fig (a)Backward gait6 Sensors Fig (b)Backward gait5 Sensors Fig (c)Backward gait4 Sensors 52

117 Fig (d)Backward gait3 Sensors Fig (e)Backward gait2 Sensors 53

118 Fig (a)Regulation gait D6 Sensors Fig (b)Regulation gait D5 Sensors Fig (c)Regulation gait D4 Sensors 54

119 Fig (d)Regulation gait D3 Sensors Fig (e)Regulation gait D2 Sensors 55

120 Fig (a)Stairs going up6 Sensors Fig (b)Stairs going up5 Sensors Fig (c)Stairs going up4 Sensors 56

121 Fig (d)Stairs going up3 Sensors Fig (e)Stairs going up2 Sensors 57

122 Fig (a)Stairs going down6 Sensors Fig (b)Stairs going down5 Sensors Fig (c)Stairs going down4 Sensors 58

123 Fig (d)Stairs going down3 Sensors Fig (e)Stairs going down2 Sensors 59

124

m BIG-MATHUGE- MAT 3 FDM3Zebris 4 HUGE-MAT bit 884 mm1156 mm Hz FDM3 3 2 BIG-MATHUGE- MAThttp://

m BIG-MATHUGE- MAT 3 FDM3Zebris 4 HUGE-MAT bit 884 mm1156 mm Hz FDM3 3 2 BIG-MATHUGE- MAThttp:// General remarks pecial Issues No.3Measurement Technique for Ergonomics, ection 1-3 Measurement of Body Motion Motion Measurement by using Force Censor, by 13 1 3 3 3 20148222014109 Faculty of cience and

More information

緑化計画作成の手引き 26年4月版

緑化計画作成の手引き  26年4月版 http://www.city.shibuya.tokyo.jp/env/en_eventact/midori_ryokka.html 10 11 12 13 14 15 16 17 18 19 P10 P10 1 P12 2635 Fax (1) 47 03-5388-3554 http://www2.kankyo.metro.tokyo.jp/sizen/sinseisyo/e2/tebiki.htm

More information

S-6.indd

S-6.indd Structural Health Monitoring with Fiber Optic Deformation Sensor ( SOFO ) SOFO SOFO ( SOFO V ) ( SOFO Dynamic ) 2 SOFO The fiber optic deformation sensor, SOFO, has excellent characteristics such as ease

More information

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4) 3 * 35 (3), 7 Analysis of Local Magnetic Properties and Acoustic Noise in Three-Phase Stacked Transformer Core Model Masayoshi Ishida Kenichi Sadahiro Seiji Okabe 3.7 T 5 Hz..4 3 Synopsis: Methods of local

More information

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a), Tetsuo SAWARAGI, and Yukio HORIGUCHI 1. Johansson

More information

SICE東北支部研究集会資料(2012年)

SICE東北支部研究集会資料(2012年) 77 (..3) 77- A study on disturbance compensation control of a wheeled inverted pendulum robot during arm manipulation using Extended State Observer Luis Canete Takuma Sato, Kenta Nagano,Luis Canete,Takayuki

More information

無印良品 2012 自転車 カタログ

無印良品 2012 自転車 カタログ 26 897895321,000 140cm 76.0cm 16.0kg H LED 3 263 897896025,000 140cm 76.0cm 16.5kg H 3 LED 20 8978984 8978977 19,800 134cm 73.0cm 15.0kg LED 2620 2620 8486656550 5536207483 14512372,100 8279999840 26 77342561,417

More information

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2011-MBL-57 No.27 Vol.2011-UBI-29 No /3/ A Consideration of Features for Fatigue Es

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2011-MBL-57 No.27 Vol.2011-UBI-29 No /3/ A Consideration of Features for Fatigue Es 1 1 1 1 1 5 1 2 1 A Consideration of Features for Fatigue Estimation by Gait Analysis Using Accelerometer Hidekazu Higashi, 1 Tadashi Shigeoka, 1 Tsuyoshi Itokawa, 1 Teruaki Kitasuka 1 and Masayoshi Aritsugi

More information

untitled

untitled 2M5-24 SM311 SM332 3 4 e30mm 5 e30mm [2M5-24] 0-5 -10-15 -20-150-125-100-75-50 -25 0 25 50 75 100 125 150 0-5 -10-15 -20-150-125-100-75-50 -25 0 25 50 75 100 125 150 0-5 -10-15 -20-150-125-100-75-50 -25

More information

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato

More information

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth and Foot Breadth Akiko Yamamoto Fukuoka Women's University,

More information

修士論文

修士論文 The flexible cotrol of the Quadruped Walkig Robot by Positio-Based Impedace Cotrol 1055031 1 11 12 13 14 2 21 22 23 24 25 3 31 32 33 34 4 41 42 43 44 45 5 51 52 53 54 6 61 62 63 64 7 71 72 8 9 10 1 1.1

More information

日立金属技報 Vol.34

日立金属技報 Vol.34 Influence of Misorientation Angle between Adjacent Grains on Magnetization Reversal in Nd-Fe-B Sintered Magnet Tomohito Maki Rintaro Ishii Mitsutoshi Natsumeda Takeshi Nishiuchi Ryo Uchikoshi Masaaki Takezawa

More information

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6) 1 2 1 3 Experimental Evaluation of Convenient Strain Measurement Using a Magnet for Digital Public Art Junghyun Kim, 1 Makoto Iida, 2 Takeshi Naemura 1 and Hiroyuki Ota 3 We present a basic technology

More information

( ) 2017 2 23 : 1998 1 23 ii All Rights Reserved (c) Yoichi OKABE 1998-present. ( ) ( ) Web iii iv ( ) (G) 1998 1 23 : 1998 12 30 : TeX 2007 1 27 : 2011 9 26 : 2012 4 15 : 2012 5 6 : 2015 4 25 : v 1 1

More information

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 Li 2 B 4 O 7 (LBO) *, ** * ** ** Optical Scatterer and Crystal Growth Technology of LBO Single Crystal For Development with Optical Application

More information

iR-ADV 8105 / 8095 / 8085 PRO 製品カタログ

iR-ADV 8105 / 8095 / 8085 PRO 製品カタログ PRICE 105ppm 95ppm 85ppm 75ppm 65ppm 55ppm PRINT SPEED 1 POWERFUL Q U I C K S M A R T 105 100 200 COPY PRINT SCAN 95 100 200 85 100 200 2 POWERFUL 1 4 2 5 3 6 A B A B 7 B A 3 QUICK 1 4 5 2 3 6 7 4 SMART

More information

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055 1 1 1 2 DCRA 1. 1.1 1) 1 Tactile Interface with Air Jets for Floating Images Aya Higuchi, 1 Nomin, 1 Sandor Markon 1 and Satoshi Maekawa 2 The new optical device DCRA can display floating images in free

More information

スペースプラズマ研究会-赤星.ppt

スペースプラズマ研究会-赤星.ppt 14 1 1 1 1 Pauline Faure 1 1 2 3 (1: 2: JAXA 3: IHI) IHI (C)(No.21560819) ISAS(JAXA) ISO TC20/SC14 / (Spall) 60~90% 2 (Cone) 1% (Jetting) CDV11227 Committee Draft for Comments CDV11227 Witness plate Sabot

More information

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.

More information

main.dvi

main.dvi A 1/4 1 1/ 1/1 1 9 6 (Vergence) (Convergence) (Divergence) ( ) ( ) 97 1) S. Fukushima, M. Takahashi, and H. Yoshikawa: A STUDY ON VR-BASED MUTUAL ADAPTIVE CAI SYSTEM FOR NUCLEAR POWER PLANT, Proc. of FIFTH

More information

248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Metho

248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Metho 248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Method in Reverse Multiple Emulsion Masato Tanaka*, Yoshinari

More information

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting

More information

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ 51 206 51 63 2007 GIS 51 1 60 52 2 60 1 52 3 61 2 52 61 3 58 61 4 58 Summary 63 60 20022005 2004 40km 7,10025 2002 2005 19 3 19 GIS 2005GIS 2006 2002 2004 GIS 52 2062007 1 2004 GIS Fig.1 GIS ESRIArcView

More information

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system Study of Health Monitoring of Vehicle Structure by Using Feature Extraction based on Discrete Wavelet Transform Akihisa TABATA *4, Yoshio AOKI, Kazutaka ANDO and Masataka KATO Department of Precision Machinery

More information

07_学術.indd

07_学術.indd Arts and Sciences computed radiography CRpresampled MTF Measurement of presampled MTFs with computed radiography (CR) by contrast method using smoothed square-wave. 1 16813 1, 2 1 1 1 2 Key words: contrast

More information

Microsoft Word JELS2009再再投稿丸島スタイル適用01_32-43a.doc

Microsoft Word JELS2009再再投稿丸島スタイル適用01_32-43a.doc Research in Experimental Phonetics and Linguistics 2: 32-43 (2010) N4a N4a P2 normal normal normal 1. 1.1 1999 (1996) 1 1.2 (2008) (ibid.) * 2009 8 8 1 (ibid.) 32 (1999) 2 1.3 N4a ERP N4a 3 ( 2005) 4 2.

More information

塗装深み感の要因解析

塗装深み感の要因解析 17 Analysis of Factors for Paint Depth Feeling Takashi Wada, Mikiko Kawasumi, Taka-aki Suzuki ( ) ( ) ( ) The appearance and quality of objects are controlled by paint coatings on the surfaces of the objects.

More information

IPSJ SIG Technical Report Vol.2012-HCI-149 No /7/20 1 1,2 1 (HMD: Head Mounted Display) HMD HMD,,,, An Information Presentation Method for Weara

IPSJ SIG Technical Report Vol.2012-HCI-149 No /7/20 1 1,2 1 (HMD: Head Mounted Display) HMD HMD,,,, An Information Presentation Method for Weara 1 1,2 1 (: Head Mounted Display),,,, An Information Presentation Method for Wearable Displays Considering Surrounding Conditions in Wearable Computing Environments Masayuki Nakao 1 Tsutomu Terada 1,2 Masahiko

More information

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 24 11 10 24 12 10 30 1 0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 23% 29% 71% 67% 6% 4% n=1525 n=1137 6% +6% -4% -2% 21% 30% 5% 35% 6% 6% 11% 40% 37% 36 172 166 371 213 226 177 54 382 704 216

More information

10 117 5 1 121841 4 15 12 7 27 12 6 31856 8 21 1983-2 - 321899 12 21656 2 45 9 2 131816 4 91812 11 20 1887 461971 11 3 2 161703 11 13 98 3 16201700-3 - 2 35 6 7 8 9 12 13 12 481973 12 2 571982 161703 11

More information

no15

no15 Development of High Performance Catalyst Temperature Sensor for NOx Catalyst Control Atsushi KURANO Kaoru KUZUOKA Sotoo TAKAHASHI Itsuhei OGATA In order to meet each countrys low emission vehicle regulations

More information

ニチベイ 高遮蔽ブラインド セレーノグランツ 25・35

ニチベイ 高遮蔽ブラインド セレーノグランツ 25・35 Glanz 2015 61 3 6.5 3 35mm 3 300cm400cm 6.5 1cm 35mm 35mm 25mm 25 35 C059S C011S C472S C471S C474S C473S C476S C475S C410S C411S C211S C210S C012S C061S C209S C413S C063S C407S C051S C013S C054S C408S

More information

180 140 22

180 140 22 21 180 140 22 23 25 50 1 3 350 140 500cm 600 140 24 25 26 27 28 29 30 31 1/12 8.3 1/15 6.7 10 1/8 12.5 1/20 140 90 75 150 60 150 10 30 15 35 2,000 30 32 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 % 100 50 33.3

More information

<82D282A982C1746F95F18D908F57967B95B E696E6464>

<82D282A982C1746F95F18D908F57967B95B E696E6464> 1 2 (90cm 70cm 2015) 3 (68cm 28cm 30cm 12kg 2015) (77.5 109.5cm 2015) 4 (22cm 50cm 50cm 4.6kg 2015) (45cm 62.5cm 2015) (47.4cm 62.5cm 2014) 5 (28.5cm 23.5cm) (45cm 62cm 2015) (97cm 107cm 2015) 6 7 8 9

More information

6 12 10661 93100 227213202 222208197 85kg cm 20 64.521 106856142 2 1 4 3 9767 100 35 cm 7747 208198 90kg 23 5828 10661 93100 cm 227213202 10639 61 64.521 85kg 78kg 70kg 61 100 197204.5 cm 15 61

More information

 

  10 44 1.2 5 4 5 3 6-1 - 1 2 3 4 5 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 TEL TEL 1 2 TEL FAX TEL FAX TEL FAX 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 1 2 3 4 5 6 ( ) ( ) 2

More information

第5章 樹脂化ドラムメータの開発

第5章 樹脂化ドラムメータの開発 5-1 5-2 5-2-1 5-2-2 5-2-3 5-3 5-3-1 5-3-2 5-3-3 5-3-4 ) 5-3-5 5-4 5-4-1 5-4-2 5-4-3 5-5 5-5-1 5-6 127 5-1 K 128 5-2 5-3 5-4 5-5 5-6 5-2-1 5-2 1) 3mm 13 200rph 5-2 Fig. 5-1 See-through Drum Fig. 5-2 1L

More information

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive An Application of Multiple Induction Motor Control with a Single Inverter to an Unmanned Vehicle Propulsion Akira KUMAMOTO* and Yoshihisa HIRANE* This paper is concerned with a new scheme of independent

More information

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析 Analysis of Piston Oil Film Behavior by Using Laser Induced Fluorescence Method Shuzou Sanda, Akinori Saito ( Laser Induced Fluorescence Method LIF ) LIF Scanning -LIF Abstract Analysis of the oil film

More information

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation

More information

AFO AFO 4 2.3AFO 5 3 AFO 3.1 AFO

AFO AFO 4 2.3AFO 5 3 AFO 3.1 AFO 17 1060126 1 1 2 2 AFO 2.1 3 2.2AFO 4 2.3AFO 5 3 AFO 3.1 AFO 6 3.2 6 3.3 7 3.4 8 3.5 9 4.1 14 4.2 17 4.3 18 4.4 18 5.1 19 5.2 19 5.3 19 5.4 21 6.1 22 23 24 1 1 (Ankle-foot orthosis AFO) 1) AFO(Fig.1) AFO

More information

橡

橡 CO2 Laser Treatment of Tinea Pedis Masahiro UEDA:,' Kiyotaka KITAMURA** and Yukihiro GOKOH*** Table I Specifications 1. Kind of Laser 2. Wavelength of Lasers. Power of Laser. Radiation Mode. Pulse Duration.

More information

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会 1. 1(1) 1(2)[1] 1992 [2] 1992 [3] 100 100 比率 (%) 80 60 40 変形腐食亀裂 相対損傷数 80 60 40 変形腐食亀裂 20 20 0 0 5 10 15 20 25 船齢 ( 年 ) 0 0 5 10 15 20 25 船齢 ( 年 ) (1) Ratio of Each Damage (2) Number of Damage Fig.1 Relation

More information

Development of Analysis Equipment for the Reprocessing Plant using Microchips Microchip, Analysis, Reprocessing, Thermal Lens, Uranium, Plutonium Development of Analysis Equipment for the Reprocessing

More information

Fig. 1. Example of characters superimposed on delivery slip.

Fig. 1. Example of characters superimposed on delivery slip. Extraction of Handwritten Character String Superimposed on Delivery Slip Data Ken-ichi MATSUO, Non-member, Katsuhiko UEDA, Non-member (Nara National College of Technology), Michio UMEDA, Member (Osaka

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information

Vol. No. Honda, et al.,

Vol. No. Honda, et al., A Study of Effects of Foot Bath before Exercise on Fall Prevention Yoko Honda Yoko Aso Aki Ibe Megumi Katayama Tomoko Tamaru Key Words fall prevention, foot bath, elderly, fall prevention programs Honda,

More information

untitled

untitled 1 2 3 4 5 130mm 32mm UV-irradiation UV-cationic cure UV-cationic cure UV-cationic cure Thermal cationic Reaction heat cure Thermal cationic Cation Reaction heat cure Cation (a) UV-curing of

More information

untitled

untitled ) 56 71 71 71 SI 135 62 71 103 85 64 27 49 133 55 89 59 50 57 75 23 76 59 55 71 47 55 168 57 103 50 50 104 68 88 73 168 56 47 71 80 55 75 67 46 59 62 55 100 47 76 174 46 50 85 15 5 15 0 5 0 SI Spectrum

More information

Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO

Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO and Masaru KOBAYASHI Chassis Engineering Management

More information

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space Characteristics of Hydrostatic Bearing/Seal Parts of Hydraulic Pumps and Motors for Water Hydraulic Systems (2nd Report, Theory) Xiongying WANG, Atsushi YAMAGUCHI In this paper, the characteristics of

More information

12_26.dvi

12_26.dvi Vol. 48 No. 12 Dec. 2007 WSCS Generation of Spatial Distance ( Maai ) by Emergence of Co-existing Feeling and Expression of Rhythm Shiroh Itai and Yoshiyuki Miwa We have investigated the generation of

More information

index

index 1-01 1-02 1-03 1-04 1-05 1-06 1-07 1-08 1-09 1-10 1-11 1-12 1-13 1-14 1-15 1-16 1-17 1-18 1-19 5 6 7 7 7 7 8 8 9 9 10 10 10 11 11 12 12 12 13 13 13 13 5-01 5-02 5-03 5-04 5-05 25 26 26 26 26 6-01 6-02

More information

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i 25 Estimation scheme of indoor positioning using difference of times which chirp signals arrive 114348 214 3 6 , (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,,

More information

. ) ) ) 4) ON DC 6 µm DC [4]. 8 NaPiOn 4

. ) ) ) 4) ON DC 6 µm DC [4]. 8 NaPiOn 4 6- - E-mail: tam@ishss.doshisha.ac.jp, {skaneda,hhaga}@mail.doshisha.ac.jp ON, OFF.5[m].5[m].8[m] 9 8% Human Location/Height Detection using Analog type Pyroelectric Sensors Shinya OKUDA, Shigeo KANEDA,

More information

HIS-CCBASEver2

HIS-CCBASEver2 Information Access Interface in the Immersive Virtual World Tetsuro Ogi, *1*2*3 Koji Yamamoto, *3*4 Tadashi Yamanouchi *3 and Michitaka Hirose *2 Abstract - In this study, in order to access database server

More information

Table 1 Properties of Shrink Films on Market Fig. 2 Comparison of Shrinkage curves of PS and PET films. Fig. 3 Schematic diagram of "Variations in bot

Table 1 Properties of Shrink Films on Market Fig. 2 Comparison of Shrinkage curves of PS and PET films. Fig. 3 Schematic diagram of Variations in bot Bowing Reduction in Biaxial Stretching Process of Styrenic Shrink Film and Its Properties YAMADA Hirofumi TAKEI Toshio and MORITA Tsuyoshi Trimming weight of PET bottle is tried from the trends of aseptic

More information

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm Neutron Visual Sensing Techniques Making Good Use of Computer Science J-PARC CT CT-PET TB IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm cm cm barn cm thn/ cm s n/ cm

More information

SICE東北支部研究集会資料(2012年)

SICE東北支部研究集会資料(2012年) 273 (2012.6.29) 273-8 Relation between calculation task load and gait parameter during dual-task Yuta Tsushima, Manami Shibata Koichi Sagawa * *Hirosaki Univresity graduate school science and technogy

More information

Reaction Mechanism and Liquefaction Process of Coal Yosuke MAEKAWA

Reaction Mechanism and Liquefaction Process of Coal Yosuke MAEKAWA Reaction Mechanism and Liquefaction Process of Coal Yosuke MAEKAWA Fig.2 Produced gas composition of vitrinite hydrogenation at 400 Ž Fig.1 Symplified average structural model of Taiheiyo coal hydrogenation

More information

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yuichiro KITAGAWA Department of Human and Mechanical

More information

013858,繊維学会誌ファイバー1月/報文-02-古金谷

013858,繊維学会誌ファイバー1月/報文-02-古金谷 Development of Non-Contact Measuring Method for Final Twist Number of Double Ply Staple Yarn Keizo Koganeya 1, Youichi Yukishita 1, Hirotaka Fujisaki 1, Yasunori Jintoku 2, Hironori Okuno 2, and Motoharu

More information

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

(MIRU2008) HOG Histograms of Oriented Gradients (HOG) (MIRU2008) 2008 7 HOG - - E-mail: katsu0920@me.cs.scitec.kobe-u.ac.jp, {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human

More information

VIRTUALLY INVISIBLE 300 WIRELESS SURROUND SPEAKERS

VIRTUALLY INVISIBLE 300 WIRELESS SURROUND SPEAKERS VIRTUALLY INVISIBLE 300 WIRELESS SURROUND SPEAKERS 1. 2. 3. 4. 5. 6. 7. 8. ( ) 9. 10. 11. 12. 2000m 2 - This device complies with part 15 of the FCC Rules and with Industry Canada license-exempt RSS standard(s).

More information

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6 JSPE-54-04 Factor Analysis of Relationhsip between One's Visual Estimation and Three Dimensional Surface Roughness Properties on Belt Sanded Surface Motoyoshi HASEGAWA and Masatoshi SHIRAYAMA This paper

More information

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake supplied to the engine, and as such are critical elements

More information

SICE東北支部研究集会資料(2012年)

SICE東北支部研究集会資料(2012年) 273 (212.6.29) 273-5 Motion measurement of nordic walking using inertial sensor, Takuya Tateyama, Koichi Sagawa * *Graduate School of Science and Technology Hirosaki University : (inertial sensor), (motion

More information

3D UbiCode (Ubiquitous+Code) RFID ResBe (Remote entertainment space Behavior evaluation) 2 UbiCode Fig. 2 UbiCode 2. UbiCode 2. 1 UbiCode UbiCode 2. 2

3D UbiCode (Ubiquitous+Code) RFID ResBe (Remote entertainment space Behavior evaluation) 2 UbiCode Fig. 2 UbiCode 2. UbiCode 2. 1 UbiCode UbiCode 2. 2 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS HCG HUMAN COMMUNICATION GROUP SYMPOSIUM. UbiCode 243 0292 1030 E-mail: {ubicode,koide}@shirai.la, {otsuka,shirai}@ic.kanagawa-it.ac.jp

More information

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa-shi,

More information

07.報文_及川ら-二校目.indd

07.報文_及川ら-二校目.indd 8 01 01 4 4 1 5 16 18 6 006 H 18 4 011 H 6 4 1 5 1 5 007 H 19 5 009 1 5 006 007 009 011 9 10 4 000 H 1 4 5 004 H 16 4 004 009 H 1 5 4 4 5 1 4 006 011 1 1 4m 5m 10m 007 1 7 009 009 1 5 10 1 000kg 10a 006

More information

Advanced Visual Inspection Technology with 2-Dimensional Motion Images for Film-shaped Products Sumitomo Chemical Co., Ltd. Industrial Technology & Re

Advanced Visual Inspection Technology with 2-Dimensional Motion Images for Film-shaped Products Sumitomo Chemical Co., Ltd. Industrial Technology & Re Advanced Visual Inspection Technology with 2-Dimensional Motion Images for Film-shaped Products Sumitomo Chemical Co., Ltd. Industrial Technology & Research Laboratory Osamu HIROSE Maya OZAKI This paper

More information

発表資料

発表資料 Dual-arm Manipulation Planning Kensuke Harada, Weiwei Wan and Ixchel G. Ramiez-Alpizar Manipulation Research Group National Institute of Advanced Industrial Science and Technology (AIST) 1 Today s Talk

More information

Vol. 51 No (2000) Thermo-Physiological Responses of the Foot under C Thermal Conditions Fusako IWASAKI, Yuri NANAMEKI,* Tomoko KOSHIB

Vol. 51 No (2000) Thermo-Physiological Responses of the Foot under C Thermal Conditions Fusako IWASAKI, Yuri NANAMEKI,* Tomoko KOSHIB Vol. 51 No. 7 587-593 (2000) Thermo-Physiological Responses of the Foot under 22-34 C Thermal Conditions Fusako IWASAKI, Yuri NANAMEKI,* Tomoko KOSHIBA and Teruko TAMURA * Junior College Division, Bunka

More information

COP (1 COP 2 3 (2 COP ± ±7.4cm 62.9±8.9kg 7m 3 Fig cm ±0cm -13cm Fig. 1 Gait condition

COP (1 COP 2 3 (2 COP ± ±7.4cm 62.9±8.9kg 7m 3 Fig cm ±0cm -13cm Fig. 1 Gait condition A method for evaluating the effects of leg motion on center of foot pressure during walking 06M40191 Hiroki WATANABE COP : Center Of Pressure COP COP 11 +13cm 0cm -13cm 7m 44 9 2 3 COP COM COM : Center

More information

05-01.知的文書処理技術.doc

05-01.知的文書処理技術.doc 31 5.1 5.1.1 FEP [76], [78], [88]-[92] [75] AI [76] [78], [92]. 5.1.2 5.1.2.1 JFK JFK grouping Table 5-1-1 Table 5-1-1Category of JFK Type Group G0 GJ GF GB JFK Type K J or JK F or FK JF or JFK parsing

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

(1) 1.1

(1) 1.1 1 1 1.1 1.1.1 1.1 ( ) ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) ( ) ( ) ( ) 2 1 1.1.2 (1) 1.1 1.1 3 (2) 1.2 4 1 (3) 1.3 ( ) ( ) (4) 1.1 5 (5) ( ) 1.4 6 1 (6) 1.5 (7) ( ) (8) 1.1 7 1.1.3

More information

Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of jo

Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of jo IIC--7 Precise Positioning Control of High-order Pitching Mode for High-Precision Stage Yushi Seki, Hiroshi Fujimoto (The University of Tokyo), Hideaki Nishino, Kazuaki Saiki (Nikon) Abstract Precision

More information

untitled

untitled Ver.1 29/5/2009 1 UNISEC (UNIversity Space Engineering Consortium) UNITEC-1 (UNIsec Technological Experiment Carrier-1) 2010 5 UNITEC-1 GHz C CW UNISEC AMSAT UNITEC-1 TBD CW UNITEC-1, 2 1. UNITEC-1 UNISEC

More information

Report2009_Softsensor.dvi

Report2009_Softsensor.dvi / http://www-pse.cheme.kyoto-u.ac.jp/ kano/ 2009 03 Copyright c 2009 Manabu Kano. All rights reserved. / 1 1 soft-sensor NIR Process Analytical Technology PAT NIR / 2 2 2.1 x m (m =1, 2,,M) 1 y M y = a

More information

日本感性工学会論文誌

日本感性工学会論文誌 Vol.16 No.5 pp.457-4632017 doi: 10.5057/jjske.TJSKE-D-17-00072 A Study to Investigate Influence of Consciousness When Wearing Various Clothes on Walking Hiroaki YOSHIDA*, Chikako OHSARA** and Masayoshi

More information

GPGPU

GPGPU GPGPU 2013 1008 2015 1 23 Abstract In recent years, with the advance of microscope technology, the alive cells have been able to observe. On the other hand, from the standpoint of image processing, the

More information

原稿.indd

原稿.indd OTEC 18(2013),5968 小型の波浪発電を想定した浮体運動の最大化を目的とした浮体形状に関する研究 59 *1 *1 *2 Studies on the floating body shape to maximize the kinetic energy that are intended to be small wave power generator Shunya NISHIZAWA

More information

『赤すぐ』『妊すぐ』<出産・育児トレンド調査2003>

『赤すぐ』『妊すぐ』<出産・育児トレンド調査2003> 79.9 1.6 UP 86.6% 7.0 UP 61.3% 12.7UP 18-24 3 66.6 3.0 UP 38.7 0.7 UP 14.8 1.9 UP 13.3 0.3UP 4 1 024 1.23 0.01down Topics 5 79.9 1.6UP 7.0 UP 12.7U 3.5 0.4 UP 3.4 0.4 UP 6 73.1% 5.7 UP 75.0% 71.2% 7 53.9%

More information

2 The Characteristics of Two Negative Peaks on Visual Evoked Potentials with Depth Perception Yoichi MIYAWAKI, Yasuyuki YANAGIDA, Taro MAEDA, and Susu

2 The Characteristics of Two Negative Peaks on Visual Evoked Potentials with Depth Perception Yoichi MIYAWAKI, Yasuyuki YANAGIDA, Taro MAEDA, and Susu 2 The Characteristics of Two Negative Peaks on Visual Evoked Potentials with Depth Perception Yoichi MIYAWAKI, Yasuyuki YANAGIDA, Taro MAEDA, and Susumu TACHI Random-Dot Stereogram 200 ms 40 180 ms 280

More information

18 A Study on the Running and Jumping by a One-leg Robot ( )

18 A Study on the Running and Jumping by a One-leg Robot ( ) 18 A Study on the Running and Jumping by a One-leg Robot ( ) 109535 1...3 1.1...3 1....4 1.3...4...5.1...5....6 3...7 3.1 CAD...7 3.1.1...7 3.1.CAD...7 3.1.3...9 3.1.4...10 3.1.5... 11 3.1.6...1 3....1

More information

1章

1章 19 1 11 12 2 21 22 3 31 32 33 1 2 34 4 41 42 43 44 5 51 52 53 54 55 56 57 6 61 62 63 64 65 7 8 81 82 11,,,,,,,,, 12,,,,,,,,,, Table121,,,,,,2 21 Table121 Noncontact mechanism (5) ( ) (1),,,,,,,,,,,,,,,,,,,,,,,,,,,,,

More information

K02LE indd

K02LE indd I Linear Stage Table of Contents 1. Features... 1 2. Description of part Number... 1 3. Maximum Speed Limit... 2 4. Specifications... 3 5. Accuracy Grade... 4 6. Motor and Motor Adaptor Flange... 4 6-1

More information

3_23.dvi

3_23.dvi Vol. 52 No. 3 1234 1244 (Mar. 2011) 1 1 mixi 1 Casual Scheduling Management and Shared System Using Avatar Takashi Yoshino 1 and Takayuki Yamano 1 Conventional scheduling management and shared systems

More information

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973) Journal of the Geodetic Society of Japan Vol. 27, No. 3, (1981), pp. 183-191 Research on Fault Movement by means of Aero-Triangulation ( T) (An experiment on the earthquake fault of the Izu-Oshima Kinkai

More information

光学

光学 Image Recognition for On-Board Cameras and Distance Measurement Using Stereo Camera Takeshi SHIMA Haruki MATONO Shinji KAKEGAWA and Tatsuhiko MONJI Active safety systems for vehicles using outside detection

More information