; 200 µs 0 1 ms 4 exponential 80 km 5 4 10 7 m/s 10 km 1 ms 5 E k N = e z/h n 6 ; N, H n :, z: ( ) 1 0 7 t ρ + (σe) = 0 E σ 1 σ σ σ e e (1/H e+1/h n )



Similar documents
MTI-HandBook [ : ( ) ] 1 ( km) GPS ( ) GPS Kelley [1989] [2002] 18 MTI c Mesosphere Thermosphere Ionosphere (MTI) Research Group, Japan 2 Rayl

Takeshi Kudo 1, Yukihiro Takahashi 1, Mitsuteru Sato 1, Taishi Yamada 1, Nui Kobayashi 1, Yusuke Sanmiya 1, Tomohiro Inoue 2, H C Stenbaek- Nielsen 3,

0946: : : :30 UT 1004:30 UT global expansion global expansion pseudo breakup pseudo breakup 3 1: Kotzebue UT [Sh

2301/1     目次・広告

テクノ東京21-2005年5月号


esba.dvi

46 Y Y Y Y 3.1 R Y Figures mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y Y Figure 5-

24.15章.微分方程式

訪問看護ステーションにおける安全性及び安定的なサービス提供の確保に関する調査研究事業報告書

TCSE4~5

untitled

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb

untitled

REALV5_A4…p_Ł\1_4A_OCF

untitled

「都市から地方への人材誘致・移住促進に関する調査」

<91498EE88CA D815B2E786C73>

〔 大 会 役 員 〕

橡本体資料+参考条文.PDF

Lecture on


- 2 -


PR映画-1

II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル



1 (1) (2)

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU SPring


EndoPaper.pdf


dvipsj.4131.dvi


1 2 2 (Dielecrics) Maxwell ( ) D H

untitled

6. [1] (cal) (J) (kwh) ( ( 3 t N(t) dt dn ( ) dn N dt N 0 = λ dt (3.1) N(t) = N 0 e λt (3.2) λ (decay constant), λ [λ] = 1/s


1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation)

‚æ1‘Íp

0302TH0130.indd

基礎数学I

i I

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,, r + r


0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

Ł\”ƒ-2005

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +


ii

3

aisatu.pdf

Sigma

Sigma

油圧1.indd

ckd2010表1-491入稿

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved.

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

Microsoft Word - 15.宮崎貴紀子

σ f n λ f λ f = 1 nσ f. (4.1) 2. E n, m 1 generation,t g v t g = λ f v = 1 (4.2) vnσ f E = 1 2 mv2 2E v = m t g = 1

(a) (b) X Ag + + X AgX F < Cl < Br < I Li + + X LiX F > Cl > Br > I (a) (b) (c)

C-1 210C f f f f f f f f f f f f f f f f f f f f r f f f f f f f f f f f f f R R

Part. 4. () 4.. () Part ,

Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

産衛誌57-4たより.indb

S = k B (N A n c A + N B n c B ) (83) [ ] B A (N A N B ) G = N B µ 0 B (T,P)+N Aψ(T,P)+N A k B T n N A en B (84) 2 A N A 3 (83) N A N B µ B = µ 0 B(T,

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2


広域防災拠点検討会報告書030723表紙_0829_.PDF

J表紙.dpt


85 4

untitled

各位                               平成17年5月13日

チュートリアル:ノンパラメトリックベイズ

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1


縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () "64": ィャ 9997ィ

WE7281_help


白山の自然誌21 白山の禅定道




A B C E ( ) F

平成16年度 市政年報

Micro-D 小型高密度角型コネクタ


草津白根山における地磁気全磁力・自然電位観測

2

I II III 28 29

.,.,..,? 2.,.?.,...,...,.,.,.,.,,..,..,,.,,.,.,..,..,....,.,.,.,?,...,,.... Dr.Hener, i

1.7 D D 2 100m 10 9 ev f(x) xf(x) = c(s)x (s 1) (x + 1) (s 4.5) (1) s age parameter x f(x) ev 10 9 ev 2



Transcription:

- [ : ( ) ] 1 (contact) (interaction) 1 2 19 MTI c Mesosphere Thermosphere Ionosphere (MTI) Research Group, Japan 1 2 (1) : (2 ) (2) : (3 ) (3) : (2, 3 ) (4) : - (4 ) 2 3 3 X 1

; 200 µs 0 1 ms 4 exponential 80 km 5 4 10 7 m/s 10 km 1 ms 5 E k N = e z/h n 6 ; N, H n :, z: ( ) 1 0 7 t ρ + (σe) = 0 E σ 1 σ σ σ e e (1/H e+1/h n )z 4 (5) E H (1 1) + O(ε) (1) z3 ; H σ 1 O(ε) ; 6 E k0 /N 0 ; 100 km N 2:O 2 = 8 : 2 (Nσ) 1 7 X 2

E altitude, km 90 80 breakdown 70 60 50 40 30 20 10 0 10 0 10 1 10 2 10 3 10 4 10 5 10 6 electric field, V/m 1: E T 1 8 ε 0 /σ T T ε 0 /σ H H E > E k 2 T ε 0 /σ e (1/H e+1/h n )z, H E k e z/h n 8 T H (He+Hn)/He (2) H e, H n (H e + H n )/H e 2 3 ; T em, T el T ε 0 /σ(z cr ) T th T em T el 9 T th z cr 9 90 km T el ε 0 /σ X 3

z ii i. field relaxation t r (z) < T iii Electric field E E k 2: H T ε 0 /σ(z) < T (i) T ii H (iii) (70 90 km) H H discharge time T, s 10-2 10-3 10-4 10-5 No sprite Halo electrostatic limit 100 1000 charge moment H, C km Streamer 3: H T (2) ; T 100 µs H 4 (e.g. Cummer and Lyons, 2005) 400-600 C km Hiraki and Fukunishi, 2006, 3 H 100 C km 10 (2) T H 2 T T ; (detect) H : H T return stroke (1 ms ) 10 X 4

continuing current (up to 100 ms) ( M-component ) Ohkubo et al. (2005) 3 11 e.g. Pasko et al., 2000; Hayakawa 11 et al., 2007 12-1ms CCD (Moudry et al., 2003; Cummer et al., 2006, 4 ) main branch tendril main branch tendril ; bead second branch 90 km leaf 5 ms main branch (i) main branch & second branch, (ii) tendril (i), (ii) 12 X 5

4: CCD (Cummer et al., 2006)main branch tendril main branch, tendril second branch, bead ; 13 main branch 13 ( H/z 3 ) ( exp( z/h n )) main branch ; 10 km km (1) z 3 14 14 X 6

( ) VHF (van der Velde et al., 2006) main branch main branch second branch tendril 15 main branch-tendril 15 10 km 16 main branch 4 17 3 5 16 17 X 7

T electron field E T c No sprite critical point Halo Structured H H c 5: (No sprite) (Halo); (Structured) T T cr n e 0 Halo (critical point) m (i) m = 0 (ii) (iii) m 0 m H T 18 (T cr, H cr ) (T > T cr, H > H cr ) T T cr m T 18 m H T m z 1,2 r 1 ; 6 z 1 z 2 T 19 (r, z) E = H 1 + 3 cos 2 θ 2πε 0 (z 2 + r 2 ) 3/2 = H 4z 2 + r 2 2πε 0 (z 2 + r 2 ) 2 (3) r = 0 E k = E 0 e z/hn H πε 0 z1 3 = E 0 e z 1/H n ( H ) z 1 H n ln πε 0 z1,0 3 E 0 z 1 ln H H n + const (4) 19 X 8

z 2 Halo z 2 z 1 z 1 r 1 E E k 6: Halo-No sprite E E k z 1 z 2 ln z 1 z 2 ε 0 σ = T en e(z 2 )µ e (z 2 ) = ε 0 T z 2 = H eh n H e + H n ln σ ( ε0 σ 0 T z 2 = ln T H ehn He+Hn + const (5) ) = en e µ e ; n e (z) = n e0 e z/h e, µ e (z) = µ e0 e z/h n 20 Z = z 2 z 1 Z = H n ln HT He He+Hn H n ln HT 1 2 + const + const ; H e /(H e + H n ) 1/2 Z 0 r 1 z 2 E(z 2, r) = E k r 1 r 2 1 z2 2 4z2 2 20 2 µ e N e z/hn µ e N 1 H 4z2 (T ) 2 + r1 2 2πε 0 (z 2 (T ) 2 + r1 2 = b(t ) )2 b(t ) = E 0 e z 2(T )/H n r1 2 H z 2 (T ) = πε 0 b(t ) z 2(T ) 2 (6) m(t, H) m(t, H) = z2 (T ) z 1 (H) k(e/n)n e Ndz πr 2 1 z2 = const r 1 (T, H) 2 (T ) e cz νattt dz z 1 (H) c = 1 H e 1 H n = const r 1 (T, H) 2 e cz(t,h) νattt (7) k(e/n) e ν attt ; T 0 o(ε) 21 21 (5) z 2 X 9

m(t, H) (T cr, H cr ) H T T > T cr T > 0 22 z 2 H n ln T 1/2 T 0 e cz H e z 2/H n z 2 2 r2 1 m(t, H) m H r 2 1 ; Tasaki, 2007 σ 0 E σ0 = (J z=2d i=1 σ i +µ 0 H)σ 0 = (zjψ+µ 0 H)σ 0 d: µ 0 H: J σ 0 ψ ψ = tanh(βzjψ+βµ 0 H) β = β mf = 1/zJ m(β, H) 22 T T cr m T cr T cr T 0 Ψ = N i=1 σ i N ; f LR (β, H) = min 1 ψ 1 { f(β, H) µ 0 Hψ} (ψ = Ψ/N) {} m(t, H) F F m 5 X 10

van der Velde, O. A., A. Mika, S. Soula, C. Haldoupis, T. Neubert, and U. S. Inan, Observations of the relationship between sprite morphology and in-cloud lightning processes, J. Geophys. Res., 111, D15203, doi:10.1029/2005jd006879, 2006.,, http://www.gakushuin.ac. jp/ 881791/d/, 2007. Cummer, S. A., and W. A. Lyons, Implications of lightning charge moment changes for sprite initiation, J. Geophys. Res., 110, A04304, doi:10.1029/2004ja010812, 2005. Cummer, S. A., N. Jaugey, J. Li, W. A. Lyons, T. E. Nelson, and E. A. Gerken, Submillisecond imaging of sprite development and structure, Geophys. Res. Lett., 33, L04104, doi:10.1029/2005gl024969, 2006. Hayakawa, M., D. I. Iudin, E. A. Mareev, and V. Y. Trakhtengerts, Cellular automaton modeling of mesospheric optical emissions: Sprites, Phys. Plasmas, 14, 042902, 2007. Hiraki, Y., and H. Fukunishi, Theoretical criterion of charge moment change by lightning for initiation of sprites, J. Geophys. Res., 111, A11305, doi:10.1029/2006ja011729, 2006. Moudry, D., H. Stenbaek-Nielsen, D. D. Sentman, E. Wescott, Imaging of elves, halos and sprite initiation at 1ms time resolution, J. Atmos. Solar-Terr. Phys., 65, 509 518, 2003. Ohkubo, A., H. Fukunishi, Y. Takahashi, and T. Adachi, VLF/ELF sferic evidence for in-cloud discharge activity producing sprites, Geophys. Res. Lett., 32, L04812, doi:10.1029/2004gl021943, 2005. Pasko, V. P., U. S. Inan, and T. F. Bell, Fractal structure of sprites, Geophys. Res. Lett., 27, 497 500, 2000. Pasko, V. P., U. S. Inan, T. F. Bell, and Y. N. Taranenko, Sprites produced by quasielectrostatic heating and ionization in the lower ionosphere, J. Geophys. Res., 102, 4529 4561, 1997. Raizer, Y. P., Gas Discharge Physics, 1st ed., Springer-Verlag, New York, 1991. X 11