本文/2 研究紹介(鷺坂・他)306-314C

Similar documents

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

16 (16) poly-si mJ/cm 2 ELA poly-si super cooled liquid, SCL [3] a-si poly-si [4] solid phase crystalization, SPC [5] mJ/cm 2 SPC SCL (di

スライド 1

T05_Nd-Fe-B磁石.indd

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

Vol. 21, No. 2 (2014) W 3 mm SUS304 Ni 650 HV 810 HV Ni Ni Table1 Ni Ni μm SUS mm w 50 mm l 3 mm t 2.2 Fig. 1 XY Fig. 3 Sch

SAXS Table 1 DSC POM SAXSSAXS PF BL-10C BL-15A Fig. 2 LC12 DSC SAXS 138 C T iso T iso SAXS q=1.4 nm -1 q=(4π/λ)sin(θ/2), λ:, θ: Fig. 3 LC12 T iso Figu

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

C-2 NiS A, NSRRC B, SL C, D, E, F A, B, Yen-Fa Liao B, Ku-Ding Tsuei B, C, C, D, D, E, F, A NiS 260 K V 2 O 3 MIT [1] MIT MIT NiS MIT NiS Ni 3 S 2 Ni

Surface Morphology for Poly-L-lactide Fibers Subjected to Hydrolysis Suong-Hyu Hyon Institute for Frontier Medical Sciences, Kyoto University 53, Shog

1.7 D D 2 100m 10 9 ev f(x) xf(x) = c(s)x (s 1) (x + 1) (s 4.5) (1) s age parameter x f(x) ev 10 9 ev 2

本文/8 研究紹介(大竹)  136−144C

特-4.indd

J. Jpn. Inst. Light Met. 65(6): (2015)

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

<8B5A8F70985F95B632936EE7B22E696E6464>

藤村氏(論文1).indd

Table 1. St-VAc blockcopolymers Table 2. Stability of dispersion of blockcopolymers in unsaturated polyester

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

2 94

Fig. 1. Relation between fatigue crack propagation rate and stress intensity factor range. Fig. 2. Effect of stress ratio on fatigue crack opening rat

X線分析の進歩36 別刷

無電解めっきとレーザー照射による有機樹脂板上へのCuマイクロパターン形成

1

X線分析の進歩45

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

untitled

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

日立金属技報 Vol.34

Fig. 2 Effect of oxygen partial pressure on interfacial tensions between molten copper and fayalite slag (Fe/Si0 2=1.23) at 1473 K. Fig. s Effect or o

Netsu Sokutei 19 (4) Thermal Transitions and Stability of Fatty Acid-Containing and Defatted Bovine Serum Albumin (BSA) Michiko Kodama, Shinji

Corrosion Wear of Alloy Tool Steel (SKD 11) Coated with VC and Precipitation Hardening Stainless Steel (SUS 630) in Sodium Chloride Aqueous Solution T

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

untitled

Evaluation of Anisotropy and Preferred Orientation of Carbon and Graphite Materials Yoshihiro Hishiyama Fig.1 Diffraction condition in Fourier space.

Research Reports on Information Science and Electrical Engineering of Kyushu University Vol.11, No.1, March 2006 Numerical Analysis of Scattering Atom

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

Time Variation of Earthquake Volume and Energy-Density with Special Reference to Tohnankai and Mikawa Earthquake Akira IKAMi and Kumizi IIDA Departmen

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

(1) 2

untitled

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6

PowerPoint プレゼンテーション

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

CHEMOTHERAPY APR. 1984

薄膜結晶成長の基礎4.dvi

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

1

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

製紙用填料及び顔料の熱分解挙動.PDF

untitled

304 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /., No.0, -*. -*3 (,**1) 58 * ** *** : * : ** *** Development of Sorting System Based on Potato Starch C

news

untitled

10生活環境研究報告.indd

Fig.2 Optical-microscope image of the Y face-cross sec- tion of the bulk domain structure of a 0.4-mm-thick MgO-LiNbO3 crystal after chemical etching.

<8ED089EF8B D312D30914F95742E696E6464>

474 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No.3,.1..2* (,**0) 24 Measurement of Deterioration of Frying Oil Using Electrical Properties Yoshio

PFニュース indd

特-7.indd

untitled

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

16_.....E...._.I.v2006

Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a

日本赤十字看護学会誌 第7巻第1号 「病院勤務の女性看護職の年令,経験年数,職業アイデンティティ,看護専門職的自律性,バーンアウトの関連」

日本赤十字看護学会誌 第7巻第1号 若年妊婦の妊娠・分娩・育児期におけるケアニーズの分析-ドゥーラの役割の検討に向けて-

01_辻

走査型プローブ顕微鏡によるラテックス/デンプンブレンドフィルムの相分離状態の観察

IPSJ SIG Technical Report An Evaluation Method for the Degree of Strain of an Action Scene Mao Kuroda, 1 Takeshi Takai 1 and Takashi Matsuyama 1

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

Structural Studies of Graphite Intercalation Compounds of Fluorine by Transmission Electron Microscopy Tetsuya Isshiki, Fujio Okino, Yoshiyuki Hattori

技術研究報告第26号

*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe

248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Metho

橡

29 Short-time prediction of time series data for binary option trade

IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU CFD PIV IHI M

Oda

特-3.indd


,,.,,.,..,.,,,.,, Aldous,.,,.,,.,,, NPO,,.,,,,,,.,,,,.,,,,..,,,,.,

obtained for the liniarization, and was found to have a remarkably wider dynamic range (order of approximately 103) than that of conventional screen/f


untitled

Terahertz Color Scanner Takeshi YASUI Terahertz THz spectroscopic imaging is an interesting new tool for nondestructive testing, security screening, b

物理予稿01-

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a


Microsoft PowerPoint - 14.菅谷修正.pptx

Vol. 19, No. 3 (2012) 207 Fig. 2 Procedures for minute wiring onto polyimide substrate. Fig. 3 Ink - jet printing apparatus as part of laser sintering

04_奥田順也.indd

結晶成長学からの提案

Transcription:

Vol. 26, No. 6, pp. 306 314, 2005 Si 100 305 0047 1 2 1 2005 2 24 Phase Manipulation on Si(100) Surfaces and their Ground State Structure Keisuke SAGISAKA and Daisuke FUJITA Nanomaterials Laboratory, NationalInstitute for Materials Science 1 2 1 Sengen, Tsukuba, Ibaraki 305 0047 (Received February 24, 2005) Scanning tunneling microscopy (STM) and spectroscopy (STS) were used to study the surface phase manipulation between c(4 2) and p(2 2) on the Si(100) surfaces at 6 K. We found that there is a correlation between the sample voltage range that induced p(2 2) (c(4 2)) and the energy position of the π (π )state with respect to the Fermi level. This suggests that electron injection into the π state caused the emergence of p(2 2), while the hole injection into π state retrieved the c(4 2) surfaces. Moreover, field emission from the STM tip and the subsequent STM observation confirmed that electron beam irradiation onto the Si(100) surfaces caused flip-flop motion of dimers. Such findings resolved recent controversy in the observations of the Si(100) surfaces at low temperatures using STM and low energy electron diffraction. We concluded that the c(4 2) structure is the most stable and the p(2 2) phase is a meta-stable structure. 1 STM STM STM Si 100 STM Si 100 2 1 Si 1 2 Fig. 1 b Fig. 1 c E-mail: SAGISAKA.Keisuke@nims.go.jp 2 1 2 200 K 3 2 STM Fig. 1 f c 4 2 Fig. 1 d p 2 2 Fig. 1 e c 4 2 p 2 2 Fig. 1 f p 2 2 c 4 2 200 K STM c 4 2 2

307 Fig. 1. (a) (e) Schematic models for Si(100) reconstruction. (a) Ideal surface, (b) 2 1 symmetric dimer, (c) 2 1 asymmetric dimer, (d) c(4 2), (e) p(2 2), (f) STM image of Si(100) surface. 4 6 c 4 2 c 4 2 p 2 2 mev 7 STM c 4 2 p 2 2 Yokoyama Takayanagi 5 K 8 Shigekawa 9K n p 2 2 40 K c 4 2 p 2 2 9 c 4 2 STM 10 STM Matsumoto LEED 40 K 4 2 11 Si 100 Si 100 STM c 4 2 p 2 2 12 Fig. 2. A series of empty state images of Si(100) observed with an increasing sample voltage at 6 K. Sample voltage: (a) 0.75 V, (b) 0.9 V, (c) 1.0 V, (d) 1.1 V, (e) 1.2 V, and (f) 1.6 V, Tunneling current: 5.0 na, Sample: 0.01 Ω cm (P-doped). p 2 2 STM 13 670 mk c 4 2 14 Si 100 STM 2 p 2 2 Fig. 2 a 6 K V 0.75 V I 5.0 na n Si 100 0.01 Ω cm STM c 4 2 p 2 2 0.05 V 3

308 26 6 2005 c 4 2 p 2 2 Fig. 2 b V 0.9 V p 2 2 Fig. 2 c d p 2 2 V 1.2 V Fig. 2 e V 1.6 V Fig. 2 f STM 2 STM Si 100 1 STM Qin 15 Hata 5 Fig. 2 STM 1 2 4 nm 10 20 V STM 1 STM 30 30 nm c 4 2 p 2 2 Fig. 3 2 3 Fig. 3 a 0.01 Ω cm Fig. 2 I 0.05 na V 0.43 V c 4 2 90 p 2 2 10 V 0.6 V p 2 2 V 0.9 V p 2 2 V 1.0 V Fig. 2 f Fig. 3. Domain populations of c(4 2), p(2 2), and flip-flop dimers as a function of the sample voltage. Sample: (a) 0.01 Ω cm (P-doped), (b) 0.001 Ω cm (Asdoped). 4

309 I 0.5 na 5.0 na STM I 5 pa 100 na Fig. 3 b 0.001 Ω cm 0.01 Ω cm STM Ge 100 16 17 Takagi 17 Fig. 3 I 0.05 na 5.0 na 0.23 nm Fig. 3 a Fig. 3 b Fig. 3 Fig. 2 Fig. 3 a 0.01 Ω cm Si 100 STM STS Fig. 4 6 K 0.01 Ω cm 0.001 Ω cm STS Si 100 2 1 25 3 π π 1 π 2 18 19 20 22 π 2 Fujimoto π2 STM 22 Fig. 4. STS spectra from the Si(100) surface at 6 K as a function of the set point current. Sample: (a) 0.01 Ω cm (P-doped), (b) 0.001 Ω cm (As-doped). 0.01 Ω cm Fig. 3 a I 0.05 na 5.0 na π π 2 0.3 ev 5

310 26 6 2005 0.6 ev 23 n Si 100 π1 π1 1eV π 2 21 22 π 1 0.001 Ω cm 24 Fig. 3 Fig. 4 π 1 π 2 p 2 2 p 2 2 π2 p 2 2 π 1 π 2 Fig. 2 STM Fig. 5 a 0.001 Ω cm V 0.9 V 1 0.1 V V 0.3 V STM 4 p 2 2 V 0.9 V 1 V 0.3 V Fig. 5 b Fig. 5 a p 2 2 Fig. 5. Empty state images of the Si(100) surface at 6 K recorded with V= 0.3 V. (a) After the sample voltage was decremented from V= 0.9 V to 0.3 V by 0.1 V every one frame, (b) Immediately after the surface was scanned with V= 0.9 V, (c) Immediately after the surface of (b) was scanned with V= 1.2 V. Sample: 0.001 Wcm (As-doped), Tunneling current: 5.0 na. 0.1 0.2 ev 25 26 π p 2 2 p 2 2 6

311 Fig. 5 b p 2 2 c 4 2 p 2 2 c 4 2 Fig. 5 a c 4 2 p 2 2 12 27 STM π 2 STM Fig. 2 f Fig. 5 b Fig. 5 c Fig. 5 b V 1.2 V 1 V 0.3 V STM c 4 2 V 0.3 V π 2 STM p 2 2 3 STM Fig. 6 a 6K 0.01 Ω cm p 2 2 STM V 0.8 Fig. 6. (a) (b) Empty state images of the Si(100) surface at 6 K (a) before and (b) after a pulse voltage of 0.8 V (5-ms duration) was applied. Sample: 0.01 Ω cm (P-doped), Sample voltage: 0.55 V, Tunneling current: 0.5 na. (c) The size of the affected area by a pulse voltage as a function of the applied pulse voltage. The inset shows monitored tunneling current when a pulse voltage of 1.0 Vwasapplied. 7

312 26 6 2005 V 5 ms STM Fig. 6 b Fig. 6 a c 4 2 Fig. 6 c c 4 2 p 2 2 1 Fig. 4 a STS π π Fig. 6 c V 1.0 V 1.0 na 0.1 na 0.5 na 0.06 na π c 4 2 4 Si 100 π 1 π 2 π p 2 2 π c 4 2 π c 4 2 p 2 2 c 4 2 1 c 4 2 p 2 2 mev dimer 7 4 6 Nara 28 Seino 29 c 4 2 p 2 2 Nara c 4 2 28 p 2 2 c 4 2 Fig. 2 Fig. 5 p 2 2 p 2 2 STM Fig. 6 c 4 2 30 19 7 21 22 π π 1eV π π 31 π 1 32 33 π 2 π p 2 2 π c 4 2 Fig. 5 π c 4 2 π p 2 2 8

313 5 Si 100 LEED 40 K 11 STM Si 100 LEED Yoshida Fig. 2 p 2 2 10 p 2 2 c 4 2 STM Fig. 7 a p 2 2 5 STM Fig. 7 b 50 nm LEED V 60 V I 0.1 µa 5 STM Fig. 7 c p 2 2 c 4 2 Fig. 7 3 STM Fig. 7 c 4 2 c 4 2 Fig. 7 c c 4 2 p 2 2 c 4 2 p 2 2 p 2 2 LEED c 4 2 Fig. 7. Empty state images of the Si(100) surface at 6 K. (a) the initial surface of p(2 2), (b) 5 min after the tip was kept away from the tunneling region, (c) after 5- min electron beam irradiation by field emission from the STM tip (V= 60 V, I=0.1 µa, tip-surface distance: approximately 50 nm). Sample: 0.01 Ω cm (Pdoped), Sample voltage: 0.6 V, Tunneling current: 1.0 na. 11 c 4 2 c 4 2 9

314 26 6 2005 Fig. 7 c c 4 2 LEED Mizuno 34 6 STM Si 100 Si 100 c 4 2 p 2 2 Ge 100 40 K 35 Ge 100 80 K 16 17 Si π1 π 1 π 1 p 2 2 33 1) R.M. Tromp, R.J. Hamers and J.E. Demuth: Phys. Rev. Lett. 55, 1303 (1985). 2) R.J. Hamers, R.M. Tromp and J.E. Demuth: Phys. Rev. B 34, 5343 (1986). 3) R.A. Wolkow: Phys. Rev. Lett. 68, 2636 (1992). 4) H. Tochihara, T. Amakusa and M. Iwatsuki: Phys. Rev. B 50, R12262 (1994). 5) K. Hata, S. Yasuda and H. Shigekawa: Phys. Rev. B 60, 8164 (1999). 6) D. Badt, H. Wengelnik and H. Neddermeyer: J. Vac. Sci. Technol. B 12, 2015 (1994). 7) A. Ramstad, G. Brocks and P.J. Kelly: Phys. Rev. B 51, 14504 (1995). 8) T. Yokoyama and K. Takayanagi: Phys. Rev. B 61, R 5078 (2000). 9) K. Hata, S. Yoshida and H. Shigekawa: Phys. Rev. Lett. 89, 286104 (2002). 10) S. Yoshida, T. Kimura, O. Takeuchi, K. Hata, H. Oigawa, T. Nagamura, H. Sakama and H. Shigekawa: Phys. Rev. B 70, 235411 (2004). 11) M. Matsumoto, K. Fukutani and T. Okano: Phys. Rev. Lett. 90, 106103 (2003). 12) K. Sagisaka, M. Kitahara and D. Fujita: Jpn. J. Appl. Phys. 42, L126 (2003). 13) K. Sagisaka, D. Fujita and G. Kido: Phys. Rev. Lett. 91, 146103 (2003). 14) K. Sagisaka, M. Kitahara, D. Fujita, G. Kido and N. Koguchi: Nanotechnology 15, S375 (2004). 15) X.R. Qin and M.G. Lagally: Phys. Rev. B 59, 7293 (1999). 16) Y. Takagi, Y. Yoshimoto, K. Nakatsuji and F. Komori: J. Phys. Soc. Jpn. 72, 2425 (2003). 17) Y. Takagi, Y. Yoshimoto, K. Nakatsuji and F. Komori: Surf. Sci. 559, 1(2004). 18) K. Hata, Y. Shibata and H. Shigekawa: Phys. Rev. B 64, 235310 (2001). 19) L.S.O. Johansson and B. Reihl: Surf. Sci. 269 270, 810 (1992). 20) H. Kageshima and M. Tsukada: Phys. Rev. B 46, 6928 (1992). 21) J.E. Northrup: Phys. Rev. B 47, R10032 (1993). 22) Y. Fujimoto, H. Okada, K. Endo, T. Ono, S. Tsukamoto and K. Hirose: Mater. Trans. 42, 2247 (2001). 23) M. McEllistrem, G. Haase, D. Chen and R.J. Hamers: Phys. Rev. Lett. 70, 2471 (1993). 24) S.M. Sze: Semiconductor Devices, Physics and Technology 2 nd Ed. (Wiley, 2001). 25) G.S. Hwang: Surf. Sci. 465, L789 (2000). 26) K. Hata, Y. Sainoo and H. Shigekawa: Phys. Rev. Lett. 86, 3084 (2001). 27) H. Shigekawa, K. Miyake, M. Ishida, K. Hata, H. Oigawa, Y. Nannichi, R. Yoshizaki, A. Kawazu, T. Abe, T. Ozawa and T. Nagamura: Jpn. J. Appl. Phys. 35, L1081 (1996). 28) J. Nara, H. Momida and T. Ohno: manuscript in preparation. 29) K. Seino, W.G. Schmidt and F. Bechstedt: Phys. Rev. Lett. 93, 036101 (2004). 30) L.S.O. Johansson, R.I.G. Uhrberg, P. Martensson and G. V. Hansson: Phys. Rev. B 42, 1305 (1990). 31) F.J. Himpsel and Th. Fauster: J. Vac. Sci. Technol. A 2, 815 (1984). 32) T. Yokoyama, M. Okamoto and K. Takayanagi: Phys. Rev. Lett. 81, 3423 (1998). 33) K. Sagisaka and D. Fujita: in press. 34) S. Mizuno, T. Shirasawa, Y. Shiraishi and H. Tochihara: Phys. Rev. B 69, 241306 (R) (2004). 35) K. Sagisaka, D. Fujita, G. Kido and N. Koguchi: Surf. Sci. 566 568, 767 (2004). 10