Grund.dvi



Similar documents
日本内科学会雑誌第98巻第3号

日本内科学会雑誌第101巻第12号

tnbp59-17_Web:プO1/ky079888509610003201

放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

Vol. 43 No. 2 Feb. 2002,, MIDI A Probabilistic-model-based Quantization Method for Estimating the Position of Onset Time in a Score Masatoshi Hamanaka

3 3 i

一般演題(ポスター)

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January

ito.dvi

日本内科学会雑誌第102巻第10号

「産業上利用することができる発明」の審査の運用指針(案)

yakuri06023‡Ì…R…s†[

jigp60-★WEB用★/ky494773452500058730

プログラム




第86回日本感染症学会総会学術集会後抄録(II)

第85 回日本感染症学会総会学術集会後抄録(III)

27巻3号/FUJSYU03‐107(プログラム)

第101回 日本美容外科学会誌/nbgkp‐01(大扉)

パーキンソン病治療ガイドライン2002

本文27/A(CD-ROM

tnbp59-20_Web:P1/ky108679509610002943

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

I II III 28 29


& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

WPA(Win Probability Added) 1 WPA WPA ( ) WPA WPA WPA WPA WPA

50. (km) A B C C 7 B A 0

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


soturon.dvi

.,,, [12].,, [13].,,.,, meal[10]., [11], SNS.,., [14].,,.,,.,,,.,,., Cami-log, , [15], A/D (Powerlab ; ), F- (F-150M, ), ( PC ).,, Chart5(ADIns

特-3.indd

ESD-巻頭言[ ].indd

kiyo5_1-masuzawa.indd

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

1 P2 P P3P4 P5P8 P9P10 P11 P12

日本糖尿病学会誌第58巻第3号


フリーソフトでつくる音声認識システム ( 第 2 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

2003/3 Vol. J86 D II No Fig. 1 An exterior view of eye scanner. CCD [7] CCD PC USB PC PC USB RS-232C PC

受賞講演要旨2012cs3

Microsoft Word - 第56回日本脂質生化学会プログラムv1.doc


SOM SOM(Self-Organizing Maps) SOM SOM SOM SOM SOM SOM i

Self-Organizing Map:SOM SOM..

日本糖尿病学会誌第58巻第2号

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

Accuracy Improvement by Compound Discriminant Functions for Resembling Character Recognition Takashi NAKAJIMA, Tetsushi WAKABAYASHI, Fumitaka KIMURA,

IPSJ SIG Technical Report NetMAS NetMAS NetMAS One-dimensional Pedestrian Model for Fast Evacuation Simulator Shunsuke Soeda, 1 Tomohisa Yam

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i

i


Wide Scanner TWAIN Source ユーザーズガイド

日本分子第4巻2号_10ポスター発表.indd

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

86 7 I ( 13 ) II ( )

Ł\”ƒ-2005

Vol. 43 No. 7 July 2002 ATR-MATRIX,,, ATR ITL ATR-MATRIX ATR-MATRIX 90% ATR-MATRIX Development and Evaluation of ATR-MATRIX Speech Translation System

(1) (2) (3) (4) (5) 2.1 ( ) 2

(Frequecy Tabulatios)

第1部 一般的コメント

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

目次

II

kut-paper-template.dvi

COM COM 4) 5) COM COM 3 4) 5) COM COM 6) 7) 10) COM Bonanza 6) Bonanza Hearts COM 7) 10) Hearts 3 2,000 4,000

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,


untitled

表1票4.qx4

福祉行財政と福祉計画[第3版]

dプログラム_1

第1章 国民年金における無年金


( ), ( ) Patrol Mobile Robot To Greet Passing People Takemi KIMURA(Univ. of Tsukuba), and Akihisa OHYA(Univ. of Tsukuba) Abstract This research aims a

第85 回日本感染症学会総会学術集会後抄録(I)

行列代数2010A

( ) 1.1 Polychoric Correlation Polyserial Correlation Graded Response Model Partial Credit Model Tetrachoric Correlation ( ) 2 x y x y s r 1 x 2

日本内科学会雑誌第97巻第3号

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o

橡ミュラー列伝Ⅰ.PDF


[1] SBS [2] SBS Random Forests[3] Random Forests ii

II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル


PR映画-1

- 2 -



1 (1) (2)

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

12) NP 2 MCI MCI 1 START Simple Triage And Rapid Treatment 3) START MCI c 2010 Information Processing Society of Japan

第89回日本感染症学会学術講演会後抄録(I)

東アジアへの視点

Transcription:

24

24 23 411M133

i 1 1 1.1........................................ 1 2 4 2.1...................................... 4 2.2.................................. 6 2.2.1........................... 6 2.2.2 viterbi........................... 9 2.3................................... 10 3 12 3.1...................................... 12 3.2...................................... 16 3.2.1................................ 16 3.2.2................................ 21 3.2.3.................................. 23 3.3...................................... 26 4 29

ii 30 32

iii 2.1 Algorithm for the proposed method (NS chart)................ 5 2.2 left-to-righthmm................................. 6 2.3 Timing of likelihood calculation......................... 10 3.1 The system of the small autonomous mobile robot MieC......... 13 3.2 Joystick map................................... 14 3.3 Two routes of straight and slalom for the experiment............. 15 3.4 The transition probability matrix........................ 16 3.5 The emission probability matrix (Output matrix)............... 17 3.6 The emission probability matrix S = 100, n = 30............... 19 3.7 The comparison between the learning data and the estimation data for slalom 20 3.8 The comparison between the learning data and the estimation data for straight...................................... 20 3.10 Transition of the likelihood on slalom...................... 21 3.9 Transition of the likelihood on straight..................... 22 3.11 Route for verifying the validity of the forcefeedback.............. 23 3.12 Joystick map in polar coordinate........................ 24 3.13 Transition of the likelihood for the curve course................ 26 3.14 Choice of the course............................... 27

iv 3.1.................................... 24 3.2......................... 25 3.3.............................. 27

1 1 1 ( HMM) 1.1

1 2 [1] 2

1 3. ( HMM) HMM DNA ([2][3][4]) [5] [6][7] HMM HMM [8] HMM HMM 2 3

2 4 2 2.1 HMM HMM

2 5 NS Fig. 2.1 Time Loop Observe human operation Select the maximum likelihood HMM Low Learn as a new model The likelihood High generates a maximum likelihood route Force feedback Correction by human Fig. 2.1 Algorithm for the proposed method (NS chart) Forward-Probability Backward-Probability Viterbi

2 6 2.2 2.2.1 HMM HMM O = {o 1,...,o N } ( ) S = {s 1,...,s N } s n s n 1 p(s n s n 1 ) A i s i j s j a ij A = {a ij } (1 i,j N) s i Π = {π i } i o b i (o) B = b i (1 i,j N,1 t T) λ = (A,B,Π) left-toright HMM Fig. 2.2 s 1 Fig. 2.2 left-to-righthmm HMM Baum-Welch Baum-Welch Forward-Backward

2 7 Probability Backward-Probability α β λ α β α t (j) = P(o 1,o 2,...,o t,s t = j λ) (2.1) β t (i) = P(o t+1,o t+2,...,o T,s t = i λ) (2.2) λ t O = o 1,o 2,...,o t s j λ s i t O = o t+1,o t+2,...,o T α β Forward Probability α 1 (i) = π i (2.3) N α t+1 (j) = α t (i)a ij b j (o t+1 ) (2.4) i=1 Backward P robability β T (i) = 1 (2.5) β t (i) = N a ij b i (o t+1 )β t+1 (j) (2.6) j=1 i = 1,2,...,N j = 1,2,...,N t = 1,2,...,T α

2 8 ξ γ ξ t (i,j) = α t(i)a ij b j (o t+1 )β t+1 (j) P(O λ) (2.7) γ t (i) = N ξ t (i,j) (2.8) j=1 P(O λ) = N α T (i) (2.9) i=1 ξ γ t s i t+1 s j t s i λ = (A,B,Π) π i = γ 1 (i) (2.10) ā ij = bj (k) = T 1 t=1 ξ t(i,j) T 1 t=1 γ t(i) T t=1,s.t.o t=v k γ t (j) T t=1 γ t(j) (2.11) (2.12) v = {v 1,v 2,...,v k } λ gradient left-to-right Ergodic

2 9 2.2.2 viterbi viterbi viterbi O = {o 1,o 2,...,o T } Q = {q 1,q 2,...,q T } viterbi t q t = S i δ t (i) = max q1,q 2,...,q t 1 Pr[q 1,q 2,...,q t 1 = S i,o 1,O 2,...,O t λ] (2.13) t δ t (i) ψ t (i) δ 1 (i) = π i b i (O 1 ), i = 1,...,N (2.14) ψ 1 (i) = 0 (2.15) δ t (j) = max 1 i N [δ t 1 (i)a ij ]b j (O t ), t = 2,...,T, j = 1,...,N (2.16) ψ t (j) = argmax 1 i N [δ t 1 (i)a ij ], t = 2,...,T, j = 1,...,N (2.17) T P qt P = max 1 i N [δ T (i)] (2.18) q T = argmax 1 i N [δ T (i)] (2.19)

2 10 q t = ψ t (q t+1 ), t = T 1,T 2,...,1 (2.20) viterbi t+1 B 2.3 Fig. 2.3 Fig. 2.3 Timing of likelihood calculation

2 11 t O = {o 1,o 2,...,o t } P(o 1,o 2,...,o t λ) λ

3 12 3 3.1 MieC (Fig. 3.1)

3 13 Fig. 3.1 The system of the small autonomous mobile robot MieC MieC 2 CCD (Logicool QCAM-200R) LAN CPU FPGA CPU FPGA MieC (Logitech FORCE 3D PRO) Fig. 3.2 x,y [0-255] 8

3 14 Fig. 3.2 Joystick map Force-FeedBack Fig. 3.3 2 HMM HMM

3 15 Fig. 3.3 Two routes of straight and slalom for the experiment MieC t O = o 1,o 2,...,o t 2 HMM Foward-Probability 20 192[step](19.2[sec])

3 16 3.2 3.2.1 λ A i j (3.1) (3.2) a 11 a 12 a 1N. a.. 21 a2n A ij =. a ij., i = 1,...,N (3.1)..... a N1 a N2 a NN B j (v k ) = b 11 b 12 a 1K b 21... a2k. b jk...... b N1 b N2 a NK, j = 1,...,N, k = 1,...,K(3.2) n 1 1 [0-255] Fig. 3.4 Fig. 3.5 S(j) S(j) S(j) S(i) S(i) S(i) (a)initial model (b)learned model (c)learned model n = 0 n = 5 n = 30 Fig. 3.4 The transition probability matrix

3 17 v(k) S(j) (a)initial model v(k) S(j) (b)learned model n = 5 v(k) S(j) (c)learned model n = 30 Fig. 3.5 The emission probability matrix (Output matrix) S(i) S(j) 20x20 i j i j

3 18 S(j) v(k) j k S(j) v(k) x 20x64 flat start left-to-right HMM Fig. 3.4(a) 2 0.5 Fig. 3.5(a) 6 Fig. 3.4(b) Fig. 3.4(c) Fig. 3.5 20 S = 100 Fig. 3.6

3 19 v(k) S(j) Fig. 3.6 The emission probability matrix S = 100, n = 30 viterbi Fig. 3.7 Fig. 3.8

3 20 40 35 learning data output data 30 25 symbol 20 15 10 5 0 0 20 40 60 80 100 120 140 160 180 200 step Fig. 3.7 The comparison between the learning data and the estimation data for slalom 35 30 learning data output data 25 20 symbol 15 10 5 0 0 20 40 60 80 100 120 140 160 180 200 step Fig. 3.8 The comparison between the learning data and the estimation data for straight HMM HMM 96.3% 97.9%

3 21 3.2.2 Fig. 3.9 Fig. 3.10 HMM HMM Fig. 3.9 HMM 1 0.01 0.0001 straighthmm slalomhmm 1e-06 likehood 1e-08 1e-10 1e-12 1e-14 1e-16 0 5 10 15 20 25 30 35 40 step Fig. 3.10 Transition of the likelihood on slalom

3 22 1 0.01 0.0001 straighthmm slalomhmm 1e-06 likehood 1e-08 1e-10 1e-12 1e-14 1e-16 0 5 10 15 20 25 30 35 40 step Fig. 3.9 Transition of the likelihood on straight HMM Fig. 3.10 HMM 0 HMM HMM HMM

3 23 3.2.3 MieC Force-Feedback 4 0 [-5 +5] Fig. 3.11 80cm 80cm 40cm Fig. 3.11 Route for verifying the validity of the forcefeedback

3 24 Table 3.2.3 Table 3.1 [ -5 +5 ] Force-Feedback Fig. 3.12 360[ ] 15[ ] 24 3 36 37 27 28 29 26 14 15 16 17 18 30 25 13 24 12 3 4 5 6 7 12 8 11 10 9 20 19 31 36 23 22 21 32 35 34 33 Fig. 3.12 Joystick map in polar coordinate Table 3.2.3

3 25 Table 3.2 A B C D 3 2-2 0 0.75 0 0 0 0 0-2 4 1 3 1.5 0 0 0 0 0 4 Force-Feedback

3 26 3.3 3 3.2.3 3.2.3 37 20 160[step](16.0[sec]) Fig. 3.13 1 1e-20 Curve model Straight model 1e-40 likelihood 1e-60 1e-80 1e-100 1e-120 0 20 40 60 80 100 120 140 step Fig. 3.13 Transition of the likelihood for the curve course 40[step] Fig. 3.14 40[cm] 60[cm]

3 27 Straight model Corve model Fig. 3.14 Choice of the course Table 3.3 A B C D 5 2 2 3 3 0 0 0 0 0 4 5 3 5 4.25 0 0 0 0 0 3.2.3

3 28

4 29 4 HMM HMM

30 [1] Vol. 13 No. 4 1995 pp.545-552 [2] Hidden Markov Model. MVE, 97(207), 95-100, 1997-07-25 [3] HMM GMM [4] DNA Vol.40 No.2 1999 pp750-767 [5] HMM (D-II) vol.j85-d-ii no.7 July 2002 pp.1265-1270 [6] Vol.22 No.2 pp.256 263 2004 [7] vol.27 No.5

31 pp.564-574 2009 [8],, / (C ) 67 656 (2001-4) No.00-0257(173-180) [9] C.M. : Pattern Recognition and Machine Learning.,pp.323-349,2006 [10] :,,pp.112-128,2007

32