Liénard-Wiechert,etc 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) 1 c 2 E (x, t) t = µ 0 j 0 (x, t) (3) E (x, t) = 1

Similar documents
Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

TOP URL 1

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2


1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

Note.tex 2008/09/19( )

Gmech08.dvi

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

meiji_resume_1.PDF

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

QMII_10.dvi

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

TOP URL 1

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

IA

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

0 0. 0

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

pdf

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

201711grade1ouyou.pdf

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

液晶の物理1:連続体理論(弾性,粘性)

量子力学 問題

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

振動と波動

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e


Microsoft Word - 11問題表紙(選択).docx

phs.dvi

II 2 II

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

Z: Q: R: C: sin 6 5 ζ a, b

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx


all.dvi



I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Z: Q: R: C:

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

arxiv: v1(astro-ph.co)


untitled

TOP URL 1

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ


n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

構造と連続体の力学基礎

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

H.Haken Synergetics 2nd (1978)

( ) ( )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( )

: , 2.0, 3.0, 2.0, (%) ( 2.

( ) ,

30

Untitled

Gmech08.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

高知工科大学電子 光システム工学科

Transcription:

Liénard-Wiehert,et Maxwell Maxwell MKS E x, t + B x, t t B x, t B x, t E x, t t µ j x, t 3 E x, t ε ρ x, t 4 ε µ ε µ E B ρ j A x, t φ x, t A x, t E x, t φ x, t 5 t B x, t A x, t 6 B A A A E t A φ A x, t + φ x, t t 7

Maxwell t A x, t A A t A B + E t + t φ B + E t + t φ t µ j x, t φ x, t φ φ t E t A + A t ε ρ x, t φ t t t A x, t µ j x, t 8 φ x, t ε ρ x, t 9 3 Green A x, t Fouroer A x, ω A x, t A x, ω π Eq.8 Eq.9 Fourier A x, ω e iωt dω A x, t e iωt dt A x, ω + ω A x, ω µ j x, ω φ x, ω + ω φ x, ω ρ x, ω ε 3 j ρ Eq. Eq.3 A φ Green G x, ω G x, ω + ω G x, ω δ3 x δxδyδz 4 δ 3 x δ δx π e ikx dk, δ 3 x π 3 e ik x d 3 k, f x f x δx x d 3 x

4 Maxwell Green A x, ω µ φ x, ω ε d 3 x Gx x, ω j x, ω 5 d 3 x Gx x, ω ρ x, ω 6 Eq.4 x, ω x x, ω µ j x, ω d 3 x µ d 3 x Gx x j x, ω + µ d 3 x ω Gx x j x, ω µ d 3 x δ 3 x x j x, ω [ ] ] µ d 3 x Gx x j x, ω + [µ ω d 3 x Gx x j x, ω µ j x, ω A x, ω + ω A x, ω µ j x, ω Eq. Eq.4 x, ω x x, ω ρ x, ω/ε d 3 x d 3 x Gx x ρ x, ω + d 3 x ω ε ε Gx x ρ x, ω d 3 x δ 3 x x ρ x, ω ε [ ] [ ] d 3 x Gx x ρ x, ω + ω d 3 x Gx x ρ ε x, ω ρ x, ω ε φ x, ω + ω φ x, ω ρ x, ω ε Eq.3 Eq.4 Green G x, ω x Fourier Ĝ k, ω d 3 x e k x G x, ω, G x, ω d 3 k e ik x Ĝ k, ω π 3 ε Eq.4 d 3 k e ik x k Ĝ k, ω + ω d 3 k e ik x Ĝ k, ω δ 3 x e k x d 3 x Ĝ k, ω π 3 k ω π 3 k µ 7 G x, ω π 3 dk eik x k µ π 3 k dk + k k µ ω / r x k x krν ν os θ dν eikrν k µ ke ikr 4iπ r k µ dk k ±µ k

exp [ik R k l r] exp ik R r exp k i r exp k l r ke ikr k µ dk C ke ikr k µ dk [ C Cauhy e ikr k + µ dk + C e ikr ] k µ dk 4. k lim ɛ + e ikr dk lim k ± µ iɛ ɛ + C e ikr dk πie iµr k ± µ iɛ lim ɛ + e i kr dk lim k ± µ + iɛ ɛ + C e i kr k ± µ + iɛ dk lim ɛ + lim ɛ + e i kr + k ± µ iɛ dk P e i kr + k ± µ + iɛ dk P P e ikr dk + lim k ± µ ɛ + π e ikr dk + lim k ± µ ɛ + π f k µ ɛ dk lim k ± µ ɛ + e µ+ɛeiφ r ɛe iφ e µ+ɛeiφ r ɛe iφ f k + k ± µ dk + µ+ɛ iɛe iφ e ikr dφ P dk + iπe iµr k ± µ iɛe iφ e ikr dφ P dk iπe iµr k ± µ f k k ± µ dk Cauhy s Prinipal Values e ikr P dk iπe iµr k ± µ f x lim ɛ + f x + x x ± iɛ dx P f x x x dx iπ f x x x ± iɛ P iπδx x x x

4. running wave G ± x, ω 4iπ r lim ke ikr ɛ + k µ ± iɛ dk 4iπ r lim ɛ + ke ikr k µ ± iɛ dk ±iɛ ɛ > ɛ + G ± x, ω 4iπ r lim ke ikr ɛ + k µ ± iɛ dk [ 4iπ r lim πi ke ikr ] ɛ + k ± µ ± iɛ k±µ±iɛ 4iπ r lim πi ± µ ± iɛ ei[±µ±iɛ]r [ ] ±µe i±µr ɛ + ± µ ± iɛ ± µ ± iɛ 4iπ r πi ±µ ± µ e±iµr 4πr e ±i ω x 4π x G x, ω k G ± x, ω 4iπ r lim ke ikr ɛ + k iɛ µ dk { 4iπ r lim e ikr ɛ + k µ ± iɛ + e ikr k µ ± iɛ } dk 8 G + x, ω G + x, ω { 4iπ r lim e ikr ɛ + k µ + iɛ + os µr 4πr e ikr } dk k µ + iɛ 4iπ r iπ e iµr + e iµr 9 G x, ω G x, ω 4.3 G k, µ π 3 k + µ Fourier G x, µ d 3 k G k, µ e ik x d 3 eik x k π 3 k + µ π 3 k sinkr dk ξ sin ξ π k + µ kr π r ξ + r µ dξ π dφ k dk dξ kr ξ, dk r π dθ sin θ eikr os θ k + µ ξ sin ξ ξ + r µ ξ sin ξ ξ + r µ dξ ξ sin ξ ξ + r µ dξ

ξ sin ξ ξ + r µ dξ ze CR iz z + dz ze CR iz z + dz z e iz R sin θ C R z + CR dz Re R dz z Re iθ θ π, dz z θ dθ ire iθ dθ Rdθ π R R r sin θ Re < R R R R Rdθ R π/ π R < e R sin θ dθ + π π/ R R π R R e R sin θ dθ R e R sin ψ dψ R R πr R R π/ π/ π e R sin θ dθ + e R sin θ dθ π/ e R sin θ dθ ξ sin ξ ξ + r µ dξ Im [ πir+irµ ] { ξ sin ξ ze dξ Im πi iz } z irµ ξ + r µ z + irµ z irµ z+irµ ] Im [πi irµe rµ Im irµ [πi e rµ ] πe rµ G x, ω π r ξ sin ξ ξ + r µ dξ π r πe µr e µr 4π r t ht ht π dx eixt x iɛ, ɛ > t > ht > π dx eixt x iɛ πi πie t < ht < 4.4 t t t t ± x x

Eq.8 G ± x, ω Eq.8 ] A x, t [µ d 3 x Gx x, ω j x, ω e iωt dω µ dω e iωt d V V 3 x + G ± x, ω j x, t e iωt dt π µ d 3 x + 4π V x x dt j x, t + dω e iω ± x x +t t π µ d 3 x dt δ t t x x j x, t 4π V x x 3 µ d 3 x j x, t 4π V x x 4 Eq.9 [ ] + φ x, t d 3 x Gx x, ω ρ x, ω e iωt dω ε dω e iωt d ε V V 3 x G ± x, ω π d 3 x + 4πε V x x dt ρ x, t + dω e iω ± x x +t t π d 3 x dt δ t t x x ρ x, t 4πε V x x d 3 x ρ x, t 4πε V x x Eq.3 Eq.5 Eq. δ t t ρ x, t e iωt dt 5 6 4.5 Liénard-Wiehert ρ x, t q δ x x t, j x, t qut δ x x t 7 t h x, t, t t t + x x t Rx, t x x t, nx, t x x t Rx, t, ut dx t dt βt Eq.3 Eq.5 δ dt δ f t gt d f dt d f δ f g t f i d f t i dt gt i f ti 8

A x, t µ dt δ hx, t, t qut 4π x x t µ 4π d dt t t + x x t qut Rx, t µ qut 4π nt βt Rx, t hx,t,t φ x, t dt δ hx, t, t q 4πε x x t q 4πε d dt t t + x x t Rx, t q 4πε nt βt Rx, t hx,t,t hx,t,t hx,t,t 9 3 Eq.9 Eq.3 Liénard-Wiehert 5 Eq.5 E x, t q β t nt βt 4πε κ 3 t R x, t + q nt [ nt βt βt ] 4πε κ 3 t Rx, t 3 κt nt βt 3 5. φ x, t x 4πε dt [ δ hx, t, t ] q x Rx, t + 4πε dt δ hx, t, t [ ] q x Rx, t dt δ hx, t, t [ ] q 4πε x Rx, t dt δ hx, t, t qn x 4πε R x, t q n x 4πε d dt t t + x x t R x, t q n x hx,t,t 4πε nt βt R x, t q n x 4πε κt R x, t hx,t,t hx,t,t

4πε hx,t,t dt [ δ hx, t, t ] q x Rx, t q dt 4πε q + dy dt n x 4πε dy Rx, t y δt y, y t + x x t q + dy dt n x 4πε y dy Rx, t δt y q [ ] dt n x 4πε t dt Rx, t q t [ dt hx,t,t 4πε t t dt q [ ] n x 4πε κt t κt Rx, t dt t dt t κt [ δ t t + x x t ] x ] n x Rx, t hx,t,t Rx, t φ x, t q [ ] n x x 4πε κt t κt Rx, t hx,t,t q 4πε κt n x R x, t hx,t,t 33 5. nt t t nt ṅt x x t t Rx, t ut Rx, t + x x t βt + nt nt βt Rx, t ẋt Rx, t + x x t drx, t d dt drx, t x x t ẋt R x, t Rx, t Rx, t 34 n n β n n β β n n t nt nt nt βt Rx, t 35

5.3 A x, t t t A x, t qµ 4π q 4πε { δ t t + Rx, t ut } Rx, t { δ dt t dt ut Rx, t Rx, t t t + Rx, } t q dt βt { 4πε Rx, t Rx, t δ t t + Rx, } t q + dy dt βt 4πε dy Rx, t y δt y, y t + x x t q + dy dt βt 4πε y dt Rx, t δt y q [ dt βt ] 4πε t dt Rx, t q t [ dt hx,t,t 4πε t t dt q [ βt ] 4πε κt t κt Rx, t hx,t,t βt ] Rx, t hx,y,t 6 Eq.5 A x, t E x, t φ x, t t Eq.6 B x, t A x, t µ q 4π q 4πε q 4πε V d 3 x dt nt ut q [ nt 4πε R x, t κt + κt t dt δ x x t nt ut Rx, t dt nt βt [ δ t t Rx,t nt βt ] κt Rx, t Rx, t δ t t Rx,t Rx, t + R x, t Rx, t Rx, t δ E x, t B x, t q [ βt nt 4πε R x, t κt + βt nt ] κt t Rx, t κt E x, t Eq.35 E x, t q [ nt 4πε R x, t κt + nt nt βt + nt R x, t κ t κt t κt Rx, t δ t t Rx,t Rx, t t t Rx, ] t κt t βt κt Rx, t ]

t nt R x, t κt + nt nt βt nt κt R x, t κ t R x, t κ t + nt nt βt R x, t κ t nt κ t R x, t nt nt βt nt nt βt κ t R x, t nt κ t R x, t βt κ t R x, t E x, t q [ nt 4πε R x, t κ t + nt κt t κt Rx, t βt R x, t κ t κt t βt κt Rx, t ] 36 Eq.36 d dt βt βt d κt dt Rx, t dκt dt Rx, t + κt drx, t dt nt nt ut Rx, t { d dt nt βt ut + nt ut nt nt ut ut Rx, t β t nt βt Rx, t nt βt R } Rx, t κt nt ut nt nt ut ut ut + nt ut R nt nt ut ut E x, t t E x, t q [ n 4πε R κ + n κ t β κr R κ ] β κ t κr t q [ n 4πε R κ + n β n β R n β κ κ R β R κ { β κ κr + β β t nt βt Rx, t nt βt } ] κ R q 4πε q 4πε q 4πε q 4πε [ n β n nβ + n β n n β β + ββ n β β κ 3 R + n n β β n β β n β ] κ 3 R t ṅ β R + κn β n β + R κṅ + κ n κ 3 R + q [ ] n β n β κ β 37 4πε κ 3 R t t n β β n β n β β n n β + κ 3 R κ 3 R t β n β κ 3 R + q n { n β β } 4πε 38 κ 3 R t t Eq.3 /R t

7 Eq.36 B x, t q [ βt 4πε R x, t κ t + κt Eq.36 Eq.39 t βt Rx, t κt ] nt 39 B x, t nt E x, t 4 Eq.4 8 Poynting Vetor Larmor Poynting Vetor P x, t E x, t B x, t µ 4 4πR Eq.3 Eq.4 /R Poynting Vetor /R [ E rad x, t q nx, t nx, t βx, t βx, t ] 4πε κ 3 x, t Rx, t 4 B x, t nx, t E rad x, t 43 Poynting Vetor P x, t E rad x, t B rad x, t µ E {n E rad} µ E rad n n E rad E rad µ β κ E rad µ n, E rad n E n 44 P x, t [ q n n β ] n [ q n β n β ] n µ 4πµ R µ 4πµ R [ q β os Θ n β ] n q β os Θ + β β os Θ n µ 4πµ R µ 4πµ R µ q 4πµ β sin Θ R n 45

Θ n β dω ds ndω n n R dω q P ds P x, t R 6π 3 µ ε q u π dθ sin 3 Θ q u 8πε 3 8πε 3 lim R π π dφ π dθ R sin Θ u sin Θ R 3 sin Θ sin 3Θ dθ q u 4 4 8πε 3 3 q u 6πε q u 46 3 3 4πε 3 Eq.46 Larmor 9 MKS gs Gauss MKS gs Gauss MKS Gauusian B MKS B Gaussian ε 4π µ 4π µ ε Thomson k ω E E exp [i k x ωt], B B exp [i k x ωt] 47 Eq. k k, ω k E + B t i k E iωb B k E k 48 Eq.4 ρ E i k E k E 49 w E D + B H

w E D + B H ε E + B ε E + µ µ E ε E 5 m q a qe inident m n dω Eq.45 β a/ P sattered x, t q β sin Θ n q a sin Θ n µ 4πµ r µ 4πµ r q ε 4πε m E inident sin Θ n r r ε E inident sin Θ n 5 r Θ n a r q e q 4πε m 5. Eq.5 P x, t P x, t n dσ Ω j sattered r dω P sattered r dω r j inident w sin Θ dω 53 dσ Ω dω r sin Θ 54 σ T dω dσ Ω π πr dθ sin 3 Θ 8π 3 r 55 q e σ T Thomson λ m σ T 8 3 α e 4πε e π 8 4πε m 3 α πλ 56 α

z κ n θ x o φ ϕ Θ E y Thomson. κ k/k z z x y E B xy E x ϕ n z θ n xy x φ n sin θ os φ, sin θ sin φ, os θ, E E os ϕ, E sin ϕ, os Θ n E sin θ os φ os ϕ + sin θ sin φ sin ϕ sin θ os φ os ϕ + sin φ sin ϕ n E sin θ os φ ϕ ϕ sin Θ sin θ os φ ϕ 57 π sin Θ sin θ os φ ϕ { sin θ os φ ϕ } dϕ π π { sin + os [ φ ϕ ] } dϕ π π π sin θ π + os θ { π + sin φ sin φ [ π sin θ sin { φ ϕ} π + } sin θ ] π

dσ Ω dω r sin Θ r + os θ 58 unpolarized θ.3 Eq.4 E sattered x, t q nx, t [ nx, t βx, t βx, t ] 4πε κ 3 x, t Rx, t q nx, t 4πε nx, t qe inidentx, t m κ 3 x, t Rx, t q nx, t nx, t βx, t 4πε κ 3 x, t Rx, t β β 59 E sattered E sattered n, E sattered E inident Bremsstrahlung Ze v b a Ze mb t oll b v Larmor Ze Wb P t oll e Ze b 6πε 3 mb v e 6 Z 6πε 3 m v b 3 6 N e v N Z dp dv N zn e v e6 Z N Z N e 6πε 3 m π e 6 Wb πb db b min b db e6 Z [ N Z N e b min 6πε 3 m π ] b b min N 3 ε m 3 e N Z Z 6 b min b min b min mv

dp dv N 3 ε m 3 e N Z Z v b min 3 ε m 3 e 6 e 6 N en Z Z 8π 3 4πε e 4πε 3 mv mv vn e N Z Z 8π 3 4πε α 3 λ rd WvN en Z Z 6 W mv, λ ed de Broglie mv Gaunt fator g B g B dp dv 6π 3 3 4πε g B α 3 λ ed WvN en Z Z 63