1798 July 2005 7) 13) Ota 7) Giacomo 9) 14) 17) 2. Navier-Stokes 2.1 Navier-Stokes 18) 3 Navier-Stokes V t + (V V) = 1 ρ p + ν 2 V (1) t V= (u, v, w)



Similar documents
IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

空力騒音シミュレータの開発

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU CFD PIV IHI M

[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

橡最終原稿.PDF

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

floating horizon algorithm 1 DEM [ 01] [Luebke01] LDI Layered Depth Image [Shade98] DEM Digital Elevation Model Height field

1 3DCG [2] 3DCG CG 3DCG [3] 3DCG 3 3 API 2 3DCG 3 (1) Saito [4] (a) 1920x1080 (b) 1280x720 (c) 640x360 (d) 320x G-Buffer Decaudin[5] G-Buffer D

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

GPGPU

塗装深み感の要因解析

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

特-3.indd

,,.,.,,.,.,.,.,,.,..,,,, i

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

2 ( ) i

Effects of Light and Soil Moisture Condition on the Growth of Seedlings for Quercus serrata and Quercus variabilis NISHIMURA, Naoyuki*, OTA, Takeshi**

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

0801297,繊維学会ファイバ11月号/報文-01-青山

倉田.indd

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Web Basic Web SAS-2 Web SAS-2 i

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

Vol. 48 No. 4 Apr LAN TCP/IP LAN TCP/IP 1 PC TCP/IP 1 PC User-mode Linux 12 Development of a System to Visualize Computer Network Behavior for L

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

( )


特集_02-03.Q3C

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

工学的な設計のための流れと熱の数値シミュレーション

A5 PDF.pwd

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2012-CG-147 No /6/22 CG,.,,.,..,.,,. Keyframe Control of Cumulus Clouds based on Computational Fluid Dy

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

4.1 % 7.5 %

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test conditions except for t

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h

16_.....E...._.I.v2006

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme

27 VR Effects of the position of viewpoint on self body in VR environment

IPSJ SIG Technical Report Vol.2009-BIO-17 No /5/26 DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing

Fig. 2 Gaussian surfaces with different standard deviations

untitled

Fig.l Music score for ensemble Fig.Z Definition of each indicator Table I Correlation coefficient between hitting lag variation /,(n) and hitting cycl

fiš„v5.dvi

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

04_奥田順也.indd

電子マネーと通信産業の戦略

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

25 Removal of the fricative sounds that occur in the electronic stethoscope

perature was about 2.5 Ž higher than that of the control irrespective of wind speed. With increasing wind speeds of more than 1m/s, the leaf temperatu

揃 Lag [hour] Lag [day] 35

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int

[ 30 p. 1-8 (2012)] / ** *** Numerical Analysis of Metal Transfer Phenomena - critical condition between globular and spray transfer mode - by KADOTA

LRT LRT 9 N LRT LRT km km 17 18km Vol.7 No.3 200

<82E682B15F8FBC88E48D828BB42E696E6464>

1..FEM FEM 3. 4.

Bull. of Nippon Sport Sci. Univ. 47 (1) Devising musical expression in teaching methods for elementary music An attempt at shared teaching

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

JFE.dvi

Lytro [11] The Franken Camera [12] 2.2 Creative Coding Community Creative Coding Community [13]-[19] Sketch Fork 2.3 [20]-[23] 3. ourcam 3.1 ou


16−ª1“ƒ-07‘¬ŠÑ

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

Consideration of Cycle in Efficiency of Minority Game T. Harada and T. Murata (Kansai University) Abstract In this study, we observe cycle in efficien


1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

Kyushu Communication Studies 第2号

Core Ethics Vol.

36


IPSJ SIG Technical Report Vol.2014-ARC-213 No.24 Vol.2014-HPC-147 No /12/10 GPU 1,a) 1,b) 1,c) 1,d) GPU GPU Structure Of Array Array Of

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

Present Situation and Problems on Aseismic Design of Pile Foundation By H. Hokugo, F. Ohsugi, A. Omika, S. Nomura, Y. Fukuda Concrete Journal, Vol. 29

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

Transcription:

Vol. 46 No. 7 July 2005 CG Navier-Stokes Computer Animation of Swaying Trees Based on Physical Simulation Yasuhiro Akagi, Syo Sanami and Katsuhiro Kitajima This paper presents a series of techniques for generating animations of trees swaying in the wind, in consideration of the influences that the tree shapes and leaf sizes give to the air current. To do the simulation of the wind around a tree having a complicated shape, it is necessary to consider the influence that some objects obstructing the wind such as leaves or branches give. Generally, the following problem occurs when we use the incompressible Navier-Stokes equations in a physical simulation model of the wind. Computational complexity increases because of considering the details of tree shapes, so it is difficult to generate the animations in real-time. Therefore, this paper proposes a novel method that reduces the computational complexity and realizes an animation in real-time, by means of a boundary condition map expressing space distribution of resistances from tree models automatically. In this case, we make a model as simple resistances decreasing the wind velocity from the parts that have similar shapes like leaves and branches. And also, it has another advantage that the influences between a tree and others can be rapidly calculated by using a hierarchical calculation method. Finally, through many experiments using these methods, it is shown that real-time animations of swaying trees in the wind can be realized. 1. CG Weber 1) Tokyo Agriculture and Technology University 2) 4) 5),6) 1797

1798 July 2005 7) 13) Ota 7) Giacomo 9) 14) 17) 2. Navier-Stokes 2.1 Navier-Stokes 18) 3 Navier-Stokes V t + (V V) = 1 ρ p + ν 2 V (1) t V= (u, v, w) p ρ ν = (,, x y z) (1) V V (2) V = u x + v y + w =0 (2) z (1) (2) 3 2.2 Navier-Stokes (1) (2) 19) SMAC 20) 2.2.1 (1) (2) Navier-Stokes 6 1 6 2.2.2 SMAC SMAC 1 SMAC

Vol. 46 No. 7 1799 n (5) p t+1 p t V t (3) ( V t = V t + t 1 ρ pt (V t V t ) ) + ν 2 V t (6) 1 Fig. 1 Staggered cell. (1) t V V t t +1 V t+1 ( V t+1 = V t + t 1 ρ pt+1 (V t V t ) + ν 2 V t ) (3) (3) (V t V t ) ν 2 V t p t+1 (3) divergence V t+1 V t t ( ) p = 2 t+1 ρ + ( (V t V t )+ν 2 V t) (4) V (2) V t 0 p t+1 V t V t+1 =0 (4) V t+1 =0 ( ) p 2 t+1 = 1 ρ t Vt + ( (V t V t )+ν 2 V t) (5) (5) t n V t+1 = V t t φ (7) φ = pt+1 p t ρ (8) (6) Navier-Stokes t +1 p t (7) V t φ Navier-Stokes V t+1 (7) (5) 2 φ = 1 t Vt (9) (9) V t φ (i, j, k) φ i 1,j,k 2φ i,j,k + φ i+1,j,k x 2 + φ i,j 1,k 2φ i,j,k + φ i,j+1,k y 2 + φ i,j,k 1 2φ i,j,k + φ i,j,k+1 z ( 2 = 1 u t + i 1 ut,j,k i+ 2 1 2,j,k t x + + v t + i,j 1 vt,k i,j+ 2 1 2,k y w t i,j,k 1 + w t i,j,k+ 2 1 2 z ) (10) φ SOR φ (5) p t+1 (8) p t+1 = ρφ + p t p t+1 (7) V t+1 V t+1

1800 July 2005 2.2.3 Sommerfeld No-Slip 2.3 2.2 Navier- Stokes V t (6) 1 3.2 3. 3.1 3.2 3.3 3.1 21) 1 2 Fig. 2 Bend of branch. 3.1.1 CG 1 2 3 Terashima 22)

Vol. 46 No. 7 1801 Table 1 1 Calculation time of the wind with a grid size. grid size 10 3 0.0016 20 3 0.12 30 3 1.13 40 3 7.08 50 3 28.74 60 3 65.81 calculation time (sec.) 3 Fig. 3 Transmission of a force added to a branch. 4 Fig. 4 Tree model. 3 3.1.2 3.1.3 23) 4 1 8 4 3.2 2 3.1 3.2.1 2 1 1 1 1 6m 1 SMAC 60 3 10 cm 1 1 1

1802 July 2005 M F l a: Ordinary grids and boundary conditions to compute the wind. b: Using virtual resistance to reduce the amount of grids. 5 Fig. 5 Virtual resistance. 3.2.2 5 5 1 3.2.3 F l = M Vt (11) t F l (6) SMAC CG 3.2.4 1 No-Slip Sc Sb V t+1 t = Vt t Sb Sc (12) (12) V t+1 3.2.5 (1) (2) SMAC (3) (6) (4) (5)

Vol. 46 No. 7 1803 3.3 3.3.1 6 1 1 3.3.2 Level of Detail LOD LOD LOD LOD LOD 4. 3 25,000 2 4.1 1 2 1 4.1.1 3 1 7 Table 2 2 Specification of the experiment environment. CPU Pentium4-2.53 GHz Memory 512 Mbyte Fig. 6 6 Hierarchical calculation. VGA OS Radeon9600 Windows2000

1804 July 2005 Wind velocity (a: 0m/s, b: 5m/s, c: 10m/s, d: 20m/s) Fig. 7 7 Variations of the bend of a branch by each wind velocity. Wind velocity (b: 5 m/s, c: 10 m/s, d: 20 m/s) 9 8 Fig. 9 Motion of a branch in each tree of Fig. 8. Wind velocity (a: 0m/s, b: 5m/s, c: 10m/s, d: 20m/s) 8 Fig. 8 Differences of the sway of a tree by each wind velocity. a: Normal size b: Large size 10 Fig. 10 Difference of the sway of a tree at each leaf size. 3 8 8 1 9 8 b 5m/s 8 c 10 m/s 8 d 20 m/s 9 4.1.2 10 a b 2 a b 2 4 10 a b 1 11 10 b (11) 10 a

Vol. 46 No. 7 1805 a: No wall b: Wall is placed 11 Fig. 11 Motion of a branch with large leaves. 12 Fig. 12 Influence of a wall on the sway of a tree, when it is placed on the upwind side. a 1/3 4.2 4.1 1 4.2.1 12 a b b 4.2.2 2 13 2 13 b 13 13 a a: Upper wind b: Lower wind 13 Fig. 13 Influence from the tree on the upwind side on the difference of the sway of branches. 4.3 4.3.1 SMAC 3 15 3 12fps 1 SMAC

1806 July 2005 3 Table 3 Creation time of the animation at each grid size. grid size BCM (sec.) SMAC (sec.) 10 3 0.062 0.0016 15 3 0.078 0.014 20 3 0.156 0.12 25 3 0.469 0.41 30 3 1.203 1.13 BCM: Boundary Condition Map Grid size (a: 5 3,b:10 3,c: 20 3 ) Fig. 15 15 Difference of the sway of a tree at each grid size. 14 Fig. 14 Experimental verification of the acceleration technique. 4 Table 4 Calculation time in each case. Method Calculation time (s) BCM 3.43 BCM+HC 0.822 BCM+HC+LOD 0.708 BCM: Boundary Condition Map HC: Hierarchical Calculation LOD: Level of Detail 4.3.2 LOD LOD 14 4 LOD 3 1 50 20 50 10 4 10 20 20 20 LOD 2 15 15 15 4 3 3 1 LOD 4.3.3 5 3 10 3 20 3 3 15 5 3 10 3 20 3 5 3 1 1m 80 cm 5cm 1 10 3 2 3

Vol. 46 No. 7 1807 SMAC LOD 5. (1) Navier-Stokes SMAC (2) (3) LOD 2 (4) 1 14 2002 1) Weber, J. and Penn, J.: Creation and rendering of realistic trees, Proc. SIGGRAPH 95 Conference, pp.119 128 (1995). 2) Soler, C., Sillion, F., Blaise, F. and Dereffye: A physiological plant growth simulation engine based on accurate radiant energy transfer, Tech. Rep., Vol.4116, INRIA (2001). 3) CG D-II Vol.76, No.8, pp.1722 1734 (1993). 4) D-II Vol.79, No.8, pp.1362 1373 (1996). 5) MVE pp.25 32 (1997). 6) Shlyakhter, I., Rozenoer, M., Dorsey, J. and Teller, S.: Reconstructing 3D Tree Models from Instrumented Photographs, IEEE Computer Graphics and Applications, Vol.21, No.3, pp.53 61 (2001). 7) Ota, S., Tamura, M., Fujita, K., Muraoka, K., Fujimoto, T. and Chiba, N.: 1/f β Noise- Based Real-Time Animation of Trees Swaying in Wind Fields, Proc. Computer Graphics International, pp.52 59 (2003). 8) Shinya, M. and Fournier, A.: Stochastic motion-motion under the influence of wind, Computer Graphics Forum, pp.c119 C128 (1992). 9) Giacomo, T.D., Capo, S. and Faure, F.: An Interactive Forest, Eurographics Workshop on

1808 July 2005 Computer Animation and Simulation, pp.65 74 (2001). 10) Sakaguchi, T. and Ohya, J.: Modeling and Animation of Botanical Trees for Interactive Virtual Environments, Symposium on Virtual Reality Software and Technology, pp.139 146 (1999). 11) D-II Vol.80, No.7, pp.1843 1851 (1997). 12) Perbet, F. and Cani, M.: Animating Prairies in Real-Time, Proc. Conference on the 2001 Symposium on Interactive 3D Graphics, pp.103 110 (2001). 13) I Vol.22, No.5, pp.475 483 (1993). 14) Stam, J.: Stable Fluids, SIGGRAPH 99, pp.121 128 (1999). 15) Foster, N.: Animation and Rendering of Complex Water Surfaces, SIGGRAPH 02, pp.736 744 (2002). 16) Witting, P.: Computational Fluid Dynamics in a Traditional Animation Environment, SIGGRAPH 99, pp.129 136 (1999). 17) Rudolf, M.J. and JacekRaczkowski: Modeling the Motion of Dense Smoke in the Wind Field, Computer Graphics Forum 2000, Vol.19, No.3, pp.21 29 (2000). 18) (1995). 19) (1999). 20) Amsden, A.A., Harlow and F.H: The SMAC Method: A Numerical Technique for Calculating Incompressible Fluid Flows, LA-4370 (1970). 21) Perttunen, J., Sievanen, R. and Nikinmaa, E.: LIGNUM: A tree model based on simple structural units, Annals of Botany, Vol.77, pp.87 98 (1996). 22) Terashima, I., Kimura, K., Sone, K., Noguchi, K., Ishida, A., Uemura, A. and Matsumoto, Y.: Differential analyses of the effects of the light environment on development of deciduous trees: Basic studies for tree growth modeling, Diversity and Interaction in a Temperate Forest Community, Vol.158, pp.187 200 (2002). 23) Akagi, Y., Sanami, S. and Kitajima, K.: Study on generation of tree shapes with analysis of common features of species, NICOGRAPH International 2005, pp.101 106 (2005). 16 Fig. 16 Trees like a Japanese cedar. 17 Fig. 17 Trees like a camphor tree. A.1 4 A.1.1 16 A.1.2 17 ( 16 9 17 ) ( 17 5 9 ) 13 15 CG 15 10 14 15 CAD

Vol. 46 No. 7 1809 46 51 59 6 16 17 3D CAD 3D CG