27 YouTube YouTube UGC User Generated Content CDN Content Delivery Networks LRU Least Recently Used UGC YouTube CGM Consumer Generated Media CGM CGM U



Similar documents
CSIS (No.324) {kazuya-o, okuda, 2012 IP (LBM) IPv6 GALMA LBM GALMA GALMA 1 (LBM:Location Based Multicast) LBM IP IP GALMA (Geograp

IPSJ SIG Technical Report Vol.2015-GN-93 No.29 Vol.2015-CDS-12 No.29 Vol.2015-DCC-9 No /1/27 1,a) 1 1 LAN IP 1), 2), 3), 4), 5) [

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

,, WIX. 3. Web Index 3. 1 WIX WIX XML URL, 1., keyword, URL target., WIX, header,, WIX. 1 entry keyword 1 target 1 keyword target., entry, 1 1. WIX [2

APR. JUL. AUG. MAY JUN. 2

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

& Vol.2 No (Mar. 2012) 1,a) , Bluetooth A Health Management Service by Cell Phones and Its Us

23

IPSJ SIG Technical Report Vol.2013-HCI-152 No /3/13 1,a) 1,b) 2,c) / GPS Bluetooth(BT) WiFi BT WiFi 1. Bluetooth WiFi 1 / 1 2 a)

¥ì¥·¥Ô¤Î¸À¸ì½èÍý¤Î¸½¾õ

IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info

Run-Based Trieから構成される 決定木の枝刈り法

2

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

極地研 no174.indd

IPSJ SIG Technical Report Vol.2013-CE-122 No.16 Vol.2013-CLE-11 No /12/14 Android 1,a) 1 1 GPS LAN 2 LAN Android,,, Android, HTML5 LAN 1. ICT(I

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,

ActionScript Flash Player 8 ActionScript3.0 ActionScript Flash Video ActionScript.swf swf FlashPlayer AVM(Actionscript Virtual Machine) Windows

( )

シリコンバレーとルート128における地域産業システムのその後の展開―経営学輪講 Saxenian (1994)

DEIM Forum 2012 E Web Extracting Modification of Objec

IPSJ SIG Technical Report Vol.2017-HCI-173 No.5 Vol.2017-EC-44 No /6/1 1,a) 1,2,b) 3,c) 1,d) 3D * 1* Graduate School of Engineerin

Wikipedia YahooQA MAD 4)5) MAD Web 6) 3. YAMAHA 7) 8) Vocaloid PV YouTube 1 minato minato ussy 3D MAD F EDis ussy

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

Web

HASC2012corpus HASC Challenge 2010,2011 HASC2011corpus( 116, 4898), HASC2012corpus( 136, 7668) HASC2012corpus HASC2012corpus

[9]SNS SNS SNS Twitter SNS SIR Twitter SNS Twitter Twitter Twitter Huberman [5] Akioka Twitter []Akioka Twitter Twitter Twitter Kawk Twitter

WebRTC P2P Web Proxy P2P Web Proxy WebRTC WebRTC Web, HTTP, WebRTC, P2P i

ICT a) Caption Presentation Method with Speech Expression Utilizing Speech Bubble Shapes for Video Content Yuko KONYA a) and Itiro SIIO 1. Graduate Sc

BOK body of knowledge, BOK BOK BOK 1 CC2001 computing curricula 2001 [1] BOK IT BOK 2008 ITBOK [2] social infomatics SI BOK BOK BOK WikiBOK BO

求人面接資料PPT

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

IPSJ SIG Technical Report Vol.2011-IOT-12 No /3/ , 6 Construction and Operation of Large Scale Web Contents Distribution Platfo

YouTube [7] A B [8] [8] YouTube () ( ) YouTube YouTube YouTube YouTube Data API [6] ( 1) ( ) YouTube ( 1 YouTube ) 2011

2 3, 4, [1] [2] [3]., [4], () [3], [5]. Mel Frequency Cepstral Coefficients (MFCC) [9] Logan [4] MFCC MFCC Flexer [10] Bogdanov2010 [3] [14],,,

スライド 1

[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So

Transcription:

YouTube 2016 2 16

27 YouTube YouTube UGC User Generated Content CDN Content Delivery Networks LRU Least Recently Used UGC YouTube CGM Consumer Generated Media CGM CGM UGC UGC YouTube k-means YouTube YouTube 1

3 10 YouTube k-means 2

1 6 2 YouTube 8 2.1.............................. 8 2.2....................... 10 2.3 k-means............. 17 3 YouTube 22 3.1............................. 22 3.2........................ 22 3.3...................... 24 3.4...................................... 24 4 30 31 32 3

1.................................. 8 2 1 2 3 6 1 CCDF....... 11 3 1 2 3 7 14 1 CCDF....... 12 4 1 2 3 7 14 CCDF........ 12 5 1 CCDF.... 13 6 1 CCDF..... 13 7 7 CCDF.... 14 8 7 CCDF... 14 9 1 CCDF....... 15 10 1 CCDF........ 15 11 7 CCDF....... 16 12 7 CCDF..... 16 13 24 1 5 k-means................. 19 14 48 1 5 k-means................. 20 15 72 1 5 k-means................. 21 16.......... 23 17 Y = 3 d............. 27 18 d = 7 Y................. 28 19 d = 14 Y................ 29 4

1.................................. 24 2 3 7.. 26 3 3 14. 26 5

1 YouTube[1] UGC User Generated Content OTT Over The Top (YouTube ) ISP Internet Service Provider CDN Contents Delivery Networks LRU Least Recently Used [2] UGC CGM Consumer Generated Media) CGM UGC VoD Video-on-Demand UGC [3] Digg[4] [5] YouTube 6

YouTube 3 [6] YouTube 1 [7] YouTube [8] Digg YouTube 30 [9] [8] x x [8] [10] YouTube [11] [12] 1 k-means YouTube [12] 1 1 k-means 7

1: 2 YouTube YouTube YouTube YouTube 2.1 YouTube YouTube 1 YouTube API YouTube Data API version3.0 [13] 1 1 1-2015 10 14 2015 12 16 1 87, 830-2015 12 25 2016 1 21 1 40, 900 8

1 1 1 1 ID YouTube API ID ID ( ID ) 1 1 YouTube API 1 1 YouTube API 1 87, 830 1 1 1 1 30 8 10 1 5 7 1 YouTube [14] 1 ( 9

1, 000km) 30 ID ID 1 JP WestUS EastUS GB FR DE BR IN 2.2 1 2 3 6 1 2 1 2 3 7 14 1 3 2 1 SNS Social Networking Service 3 1 2 3 7 14 4 0 3 4 7 8 11 12 15 16 19 20 23 1 5 10

1 0.1 1hour 2hour 3hour 6hour CCDF 0.01 0.001 0.0001 1e-005 1 10 100 1000 10000 100000 1x10 6 1x10 7 View count 2: 1 2 3 6 1 CCDF 1 6 7 7 1 20 23 16 19 7 8 7 1 9 1 10 7 11 7 12 11

1 0.1 1day 2day 3day 7day 14day CCDF 0.01 0.001 0.0001 1e-005 1 10 100 1000 10000 100000 1x10 6 1x10 7 View count 3: 1 2 3 7 14 1 CCDF 1 0.1 1day 2day 3day 7day 14day CCDF 0.01 0.001 0.0001 1e-005 1 10 100 1000 10000 100000 1x10 6 1x10 7 1x10 8 Total view count 4: 1 2 3 7 14 CCDF 12

1 0.1 0-3hour 4-7hour 8-11hour 12-15hour 16-19hour 20-23hour CCDF 0.01 0.001 0.0001 1e-005 1 10 100 1000 10000 100000 1x10 6 1x10 7 View count 5: 1 CCDF 1 0.1 0-3hour 4-7hour 8-11hour 12-15hour 16-19hour 20-23hour CCDF 0.01 0.001 0.0001 1e-005 1 10 100 1000 10000 100000 1x10 6 1x10 7 View count 6: 1 CCDF 13

1 0.1 0-3hour 4-7hour 8-11hour 12-15hour 16-19hour 20-23hour CCDF 0.01 0.001 0.0001 1e-005 1 10 100 1000 10000 100000 1x10 6 1x10 7 View count 7: 7 CCDF 1 0.1 0-3hour 4-7hour 8-11hour 12-15hour 16-19hour 20-23hour CCDF 0.01 0.001 0.0001 1e-005 10 100 1000 10000 100000 1x10 6 1x10 7 1x10 8 Total view count 8: 7 CCDF 14

CCDF 1 0.1 0.01 WestUS(5541) EastUS(9829) GB(4145) JP(3505) FR(5153) DE(4217) BR(2783) IN(5727) 0.001 0.0001 1 10 100 1000 10000 100000 1x10 6 View count 9: 1 CCDF CCDF 1 0.1 0.01 WestUS(5541) EastUS(9829) GB(4145) JP(3505) FR(5153) DE(4217) BR(2783) IN(5727) 0.001 0.0001 1 10 100 1000 10000 100000 1x10 6 View count 10: 1 CCDF 15

CCDF 1 0.1 0.01 WestUS(5541) EastUS(9829) GB(4145) JP(3505) FR(5153) DE(4217) BR(2783) IN(5727) 0.001 0.0001 1 10 100 1000 10000 100000 1x10 6 View count 11: 7 CCDF CCDF 1 0.1 0.01 WestUS(5541) EastUS(9829) GB(4145) JP(3505) FR(5153) DE(4217) BR(2783) IN(5727) 0.001 0.0001 10 100 1000 10000 100000 1x10 6 1x10 7 Total view count 12: 7 CCDF 16

2.3 k-means n k-means YouTube [12] 1 k-means 1 k-means v n 0 1 n v k-means 5 24 13 13(a) 1 5 16 1 13(b) 5 24 24 SNS 24 30 13(c) 13(a) 5 7 13(d) 5 24 5 48 14 14(a) 3 17

1 14(b) 3 4 12 3 3 30 14(c) 3 7 14(d) 3 5 72 15 15(a) 3 1 15(b) 3 30 15(c) 3 7 15(d) 3 72 24 48 3 7 10, 000 3 18

Normalized view count 1 0.8 0.6 0.4 0.2 cluster1 (29225) cluster2 (15564) cluster3 (17590) cluster4 (15036) cluster5 (10415) View count 3500 3000 2500 2000 1500 1000 500 cluster1 (29225) cluster2 (15564) cluster3 (17590) cluster4 (15036) cluster5 (10415) 0 4 8 12 16 20 24 Hour 0 0 24 48 72 96 120 144 168 Hour after upload (a) (b) 1 25000 20000 cluster1 (29225) cluster2 (15564) cluster3 (17590) cluster4 (15036) cluster5 (10415) 1 0.1 cluster1 (29225) cluster2 (15564) cluster3 (17590) cluster4 (15036) cluster5 (10415) View count 15000 10000 CCDF 0.01 0.001 5000 0.0001 0 0 5 10 15 20 25 30 Day after upload 1e-005 1 10 100 1000 10000 100000 1e+006 1e+007 View count (c) 1 (d) 7 13: 24 1 5 k-means 19

Normalized view count 1 0.8 0.6 0.4 0.2 cluster1 (25656) cluster2 (16873) cluster3 (12446) cluster4 (20304) cluster5 (12551) View count 4000 3500 3000 2500 2000 1500 1000 500 cluster1 (25656) cluster2 (16873) cluster3 (12446) cluster4 (20304) cluster5 (12551) 0 6 12 18 24 30 36 42 48 Hour 0 0 24 48 72 96 120 144 168 Hour after upload (a) (b) 1 30000 25000 cluster1(25656) cluster2(16873) cluster3(12446) cluster4(20304) cluster5(12551) 1 0.1 cluster1 (25656) cluster2 (16873) cluster3 (12446) cluster4 (20304) cluster5 (12551) View count 20000 15000 10000 CCDF 0.01 0.001 5000 0.0001 0 0 5 10 15 20 25 30 Day after upload 1e-005 1 10 100 1000 10000 100000 1e+006 1e+007 View count (c) 1 (d) 7 14: 48 1 5 k-means 20

Normalized view count 1 0.8 0.6 0.4 0.2 cluster1 (27234) cluster2 (12079) cluster3 (10727) cluster4 (18786) cluster5 (19004) View count 3000 2500 2000 1500 1000 500 cluster1 (27234) cluster2 (12079) cluster3 (10727) cluster4 (18786) cluster5 (19004) 0 6 12 18 24 30 36 42 48 54 60 66 72 Hour 0 0 24 48 72 96 120 144 168 Hour after upload (a) (b) 1 30000 25000 cluster1 (27234) cluster2 (12079) cluster3 (10727) cluster4 (18786) cluster5 (19004) 1 0.1 cluster1 (27234) cluster2 (12079) cluster3 (10727) cluster4 (18786) cluster5 (19004) View count 20000 15000 10000 CCDF 0.01 0.001 5000 0.0001 0 0 5 10 15 20 25 30 Day after upload 1e-005 1 10 100 1000 10000 100000 1e+006 1e+007 View count (c) 1 (d) 7 15: 72 1 5 k-means 21

3 YouTube Y 3.1 A B P (B A) P (B A) = P (B)P (A B) P (A) n F 1,, F n C p(c F 1,, F n ) p(c F 1,, F n ) = p(c)p(f 1,, F n C) p(f 1,, F n ) C p(c, F 1,, F n ) = p(c)p(f 1 C)p(F 2 C)p(F 3 C) C classify classify(f 1,, f n ) = arg max c n p(c = c) p(f i = f i C = c) (1) i=1 3.2 16 H Y d H Y + d H Y Y Y 22

16: 1. 2. YouTube Data API 1 3. Y YouTube Data API 1 1 4. Y d YouTube Data API 1 1 5. 1 Y + d Y 1 6. 1 Y d d 23

1: ID Y Y =H 1 2 Y =L abcdefghijk 1.0 0.5 0.4 5 H lmnopqrstuv 0.5 0.2 0.0 3 L wxyz1234567 0.2 0.8 0.6 4 H 3.3 1 d 1 1% 2 d d 1% 3.1 n F 1,, F n 2.3 Y v Y 0 1 Y Y Y + 1 3.4 87, 830 p(c = c) p(f i = f i C = c) p(c = c) p(f i = f i C = c) 3.1 1 classify NBC: Naive Bayes Classifier VCS: View Count based Selection 24

Y d = 7 Y = 3 2 3 8 1% 2 8 7 1% 3 7 d = 14 Y = 3 3 3 15 1% 2 15 15 1% 3 14 Y = 3 d 1 17(a) 2 17(b) 1 2 d = 7 Y 1 18(a) 2 18(b) Y/3 25

2: 3 7 8 1% 2 8 1% 0.785 0.956 0.697 0.860 3: 3 14 15 1% 2 15 1% 0.707 0.933 0.674 0.837 3 Y d = 14 Y 1 19(a) 2 19(b) d = 7 Y 3 26

1 0.8 Accuracy 0.6 0.4 0.2 NBC 0 7 14 VCS 21 d 28 (a) d 1 0.8 Accuracy 0.6 0.4 0.2 NBC 0 7 14 VCS 21 d 28 (b) d 17: Y = 3 d 27

1 NBC VCS 0.8 Accuracy 0.6 0.4 0.2 0 3 6 9 12 15 18 21 24 Y (hour) (a) d 1 NBC VCS 0.8 Accuracy 0.6 0.4 0.2 0 3 6 9 12 15 18 21 24 Y (hour) (b) d 18: d = 7 Y 28

1 NBC VCS 0.8 Accuracy 0.6 0.4 0.2 0 3 6 9 12 15 18 21 24 Y (hour) (a) d 1 NBC VCS 0.8 Accuracy 0.6 0.4 0.2 0 3 6 9 12 15 18 21 24 Y (hour) (b) d 19: d = 14 Y 29

4 YouTube 1 k-means 3 Good 30

NTT 31

[1] YouTube. https://www.youtube.com/. [2] N. Kamiyama, R. Kawahara, T. Mori, and H. Hasegawa, Multicast Pre-distribution VoD System, IEICE transactions on communications, vol. E96-B, pp. 1459 1471, June 2013. [3] K. Lerman and T. Hogg, Using a Model of Social Dynamics to Predict Popularity of News, in Proceedings of the nineteenth international conference on World Wide Web, pp. 621 630, Apr. 2010. [4] Digg. http://digg.com/. [5] F. Figueiredo, F. Benevenuto, and J. M. Almeida, The tube over time: characterizing popularity growth of YouTube videos, in Proceedings of the fourth ACM international conference on Web search and data mining, pp. 745 754, Feb. 2011. [6] Y. Borghol, S. Mitra, S. Ardon, N. Carlsson, D. Eager, and A. Mahanti, Characterizing and modelling popularity of user-generated videos, Performance Evaluation, vol. 68, pp. 1037 1055, Nov. 2011. [7] G. Gürsun, M. Crovella, and I. Matta, Describing and forecasting video access patterns, in Proceedings of IEEE INFOCOM, pp. 16 20, Apr. 2011. [8] G. Szabo and B. A. Huberman, Predicting the popularity of online content, Communications of the ACM, vol. 53, pp. 80 88, Aug. 2010. [9] H. Pinto, J. M. Almeida, and M. A. Gonçalves, Using early view patterns to predict the popularity of youtube videos, in Proceedings of the sixth ACM international conference on Web search and data mining, pp. 365 374, Feb. 2013. [10] G. Chatzopoulou, C. Sheng, and M. Faloutsos, A first step towards understanding popularity in YouTube, in Proceedings of INFOCOM IEEE Conference on Computer Communications Workshops, pp. 1 6, Mar. 2010. [11] J. M. Tirado, D. Higuero, F. Isaila, and J. Carretero, Multi-model prediction for enhancing content locality in elastic server infrastructures, in Proceedings of the 32

eighteenth International Conference on High Performance Computing, pp. 1 9, Dec. 2011. [12] Y. Kitade, Analyzing popularity dynamics of YouTube content and its application to content cache design, Master s thesis, Graduate School of Information Science and Technology, Osaka University, Feb. 2015. [13] YouTube Data API. https://developers.google.com/youtube/v3/. [14] YouTube Help. https://support.google.com/youtube/answer/2991785/. 33