106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (



Similar documents
42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c}

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

43-03‘o’ì’¹‘®”q37†`51†i„¤‰ƒ…m†[…g†j.pwd

$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 :

: ( ) (Takeo Suzuki) Kakegawa City Education Center Sizuoka Prif ] [ 18 (1943 ) $A $ ( : ),, 1 18, , 3 $A$,, $C$

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

腎不全-第17回-表紙付.indd

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$


エコー03ランキング

Wolfram Alpha と数学教育 (数式処理と教育)


集団における人間行動の社会心理学的考察

作図ツール GC/html5 ビューア版の開発と iPad を使った教育実践 (数学ソフトウェアと教育 : 数学ソフトウェアの効果的利用に関する研究)

本文/020:デジタルデータ P78‐97

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

第52回日本生殖医学会総会・学術講演会

$/\mathrm{t}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{y}\mathrm{a}$ MIYANO E mail: hirosaki-u.ac.jp 1 ( ) ( ) 1980

\mathrm{m}_{\text{ }}$ ( ) 1. :? $\dagger_{\vee}\mathrm{a}$ (Escherichia $(E.)$ co $l\mathrm{i}$) (Bacillus $(B.)$ subtilis) $0\mu

27 1: Lewis $Le_{i}$ $\mathrm{c}\mathrm{h}_{4}$ CO $\mathrm{c}\mathrm{o}_{2}$ $\mathrm{h}_{2}$ $\mathrm{h}_{2}\mathrm{o}$ $\mathrm{n}_{2}$ O2 $Le_{i}$

a) \mathrm{e}.\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}$ -u.ac $\mathrm{f}$ 0$ (Yoshinobu Tamura) D

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用)

2. label \ref \figref \fgref graphicx \usepackage{graphicx [tb] [h] here [tb] \begin{figure*~\end{figure* \ref{fig:figure1 1: \begin{figure[

* KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1. $\mathrm{n}\mathrm{p}$ (SCP) 1,..,,,, $[1][5][10]$, [11], [4].., Fishe

宋元明代数学書と「阿蘭陀符帳」 : 蘇州号碼の日本伝来 (数学史の研究)

数学月間活動から見た教育数学

Wolfram Alpha と CDF の教育活用 (数学ソフトウェアと教育 : 数学ソフトウェアの効果的利用に関する研究)

$\overline{\circ\lambda_{\vec{a},q}^{\lambda}}f$ $\mathrm{o}$ (Gauge Tetsuo Tsuchida 1. $\text{ }..\cdot$ $\Omega\subset \mathrm{r}^

表紙4_1/加藤 〃 宮副

第85 回日本感染症学会総会学術集会後抄録(I)

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原

$\bullet$ A Distributed Sorting Algorithm on a Line Network: Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASA

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2

{K\kern-.20em\lower.5ex\hbox{E}\kern-.125em{TCindy}}による3Dモデル教材の作成 (数学ソフトウェアとその効果的教育利用に関する研究)

Transcription:

1195 2001 105-115 105 Kinki Wasan Seminar Tatsuo Shimano, Yasukuni Shimoura, Saburo Tamura, Fumitada Hayama A 2 (1574 ( 8 7 17 8 (1622 ( 1 $(1648\text{ }$ - 77 ( 1572? (1 ( ( (1 ( (1680 1746 (6 $-$.. $\square \square$? $\ovalbox{\tt\small REJECT}$ $\sqrt[\backslash ]{}\backslash$? (2 (2 $$

106 (2 ( 19 33 4 (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (

$\mathrm{b}$ $\lceil \mathrm{p}\mathrm{e}\mathrm{n}$ \rfloor 107 (1(2(3 (7 $-$ $-$ ( 4 (1(2(3 (8 ( (No. 19, t998 16 (1639 100 (1640 19 (1642 3 (1660 (9 ( 11 (9 - ( ( ( ( ( ( 3 (1575 $\zeta 7$ $\theta$

108 (10 ( 16 (1639, $-$ ( 100 (11 ( 17 (1640 (12 ( 19(1642 $-\cdot(13$ = (1112 1176 3 (1626 ( ( 2 (1662 - $-$ $\cdot$..: 1 23 16 (1639 ( 11. $\cdot$ 16. 11.: \iota

$\mathrm{c}$ 109 3 12 6 ( (70 70 70 ( \lceil? ( 70 1591 ( $(1544-1547_{\text{ }}$ 2 (1649 (, 4 (1651 1 (1661 8 (1668 (14 ( 2 (15 ( 37 (16 (, 47 (

110 ( ( ( ( ( ( ( ( ( ( ( (28 ( ( ( (17 ( 31 (18 54 (19 ( 17,1999 (19 (17(18 (19 8 11 6 (1668.12.9 (17 42 ( 50 ( (19 (14 (19 (29 (

$\mathrm{d}$ 111? (28 18 (20 (1710 (21 ( 17 (1732 (14 (19 ( $ $ $ $ $ $ 17 (1732 (22 ( 8 (1771 (23 ( ( 19 ( ( ( (

$\mathrm{e}$ 112 (4 ( (24 ( 29 (1896 ( 1960 (25 ( 12 (1937 (24 (26 ( (27 ( 1999 (14(21 (28 (27 ( No213 (28 (? 10 (1670,? 1574 1622 1648 1639

113?? 8 (1668 42 50 1627 1619 13 21-1619 21 31 42 43 50 ( 21 $70$ 1591 49 59 70 71 78? 70 1591 1639 49 1660 70 70 42 50 42 1619 25 31 43 1668 50 ( 1627 23 35

114 42 (29 (29 (20 (22 1619, 21 31 42 43 50 ( 1591 49 59 70 71 78 1591 49 70 ( 1619 25 31 43 50 1627 23 35 42

115 2 (1649 1 (1661 8 (1668, 8 21 9 1