現代物理化学 1-1(4)16.ppt

Similar documents
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

日本内科学会雑誌第102巻第4号

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

untitled

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

第86回日本感染症学会総会学術集会後抄録(I)

tnbp59-21_Web:P2/ky132379509610002944

1

パーキンソン病治療ガイドライン2002

日本内科学会雑誌第97巻第7号

研修コーナー

日本内科学会雑誌第98巻第4号

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

Microsoft Word - 11問題表紙(選択).docx

i 18 2H 2 + O 2 2H 2 + ( ) 3K

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

Note.tex 2008/09/19( )

master.dvi

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

genron-3

30


untitled

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [


O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

物理化学I-第12回(13).ppt

プログラム

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1


KENZOU

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

H21環境地球化学6_雲と雨_ ppt

液晶の物理1:連続体理論(弾性,粘性)

( ) ( )

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

( ) Loewner SLE 13 February

The Physics of Atmospheres CAPTER :

空き容量一覧表(154kV以上)

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

2011de.dvi


1 2

本文/目次(裏白)

1

pdf

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

DVIOUT-HYOU

K E N Z OU

K 1 mk(

B ver B


N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

TGS(Tri-glycine sulfate, TGS)

概況

nsg04-28/ky208684356100043077

Lecture 12. Properties of Expanders

( ) ) AGD 2) 7) 1


Transcription:

(pdf)

pdf pdf http://www1.doshisha.ac.jp/~bukka/lecture/index.html http://www.doshisha.ac.jp/ Duet -1-1-1 2-a.

1-1-2 EU E = K E + P E + U ΔE K E = 0P E ΔE = ΔU U U = εn ΔU ΔU = Q + W, du = d 'Q + d 'W Q, d Q Q, d Q W, d W W, d W ΔUΔU 1-1-3

1-1-4 PV d 'W = P e dv ( d 'W = P e dv ) dx P (as) A P e 2.2(P > P e ) d W d 'W = F e dx = (AP e )dx = P e (Adx) = P e dv P e dv = Adx PVPdV 1-1-5 P 1,, TP 2,, T P > P e = 0 W = d'w = P e dv = 0 P > P e = W = d'w = P e P P e dv = P e dv = P e ( ) = P e ΔV W r = d'w r = P e dv = P dv r : reversible,

nrt W r = d'w r = P e dv = P dv = V dv (P = nrt / V ) T nrt W r = d'w r = P e dv = P dv = V dv = nrt ln 1-1-6 P e ~ V P + a n 2 V V nb ( ) = nrt P = nrt V nb a n 2 V W r = P e dv = P dv = nrt / (V nb) a(n / V ) 2 dv = nrt ln nb nb + 1 an2 1 1-1-7 d W P e [N m ] dv [m ] P e dv γ [N m ] da [m ] γ da f [N] dl [m] fdl Δφ [V] dq [C] Δφ dq H [A m ] dm [Wb m] HdM

-2-1 µ (T, P 0 ) < µ l (T, P 0 ) l [G m (T, P0 ) < G m (T, P 0 )] P V µ (T, P) = µ l (T, P) [G m (T, P) = l Gm (T, P)] P V 4-a. G m (T, P) = l Gm (T, P) T, V da=(µ µ l )dn < 0 da = 0 T, PdG=(µ µ l )dn < 0 dg = 0 P e = P ± dpt e = T ± dt T 2-2 (a) (b) P e < P (c) P e = P dp 1

2-3 (P a, V a )(P b, V b )(P a, V a ) ΔU = 0 2-4 µ (T, P 0 ) < µ l (T, P 0 ) l [G m (T, P0 ) < G m (T, P 0 )] P V µ (T, P) = µ l (T, P) [G m (T, P) = l Gm (T, P)] P V 4-a. G m (T, P) = l Gm (T, P) W 1 = 0, Q 1 = ΔU v Δ P e = P (Δ = Δ < 0) W 2 = P e Δ > 0, Q 2 = ΔH v < 0 ΔU = Q + W = 0 Q = W = W 1 + W 2 Q [= (Q 1 + Q 2 )] Q = W 1 + W 2 = P e Δ = P e Δ > 0 P e = P W 1 = PΔ > 0, Q 1 = ΔH v > 0 P e = P (Δ = Δ < 0) W 2 = PΔ > 0, Q 2 = ΔH v < 0 ΔU = Q + W = 0 Q = W = W 1 + W 2 Q [= (Q 1 + Q 2 )] Q = W 1 + W 2 = PΔ PΔ = 0 2

T, V ldn l > 0dn () n = n l + n, dn = dn l + dn = 0, dn l = dn = dn(l ) > 0 2-5 α α β β da = µ i dni + µ i dni +, 0α µ i (T, P) = 0α Gi,m (T, P) α α Gm (T, P) = Gm da = G l A ( m G m )dn(l ) = (Δ l Gm )dn(l ) = n(l ) dn(l ) T,V da < 0, G m G m l ( ) l < 0 G m (T, P0 ) < G m (T, P 0 ) 4-b. A, G VP T PG m G m dg m = G m P dp = V m dp T V l ( m >> V m > 0) da = G l ( m G m )dn(l ) = (Δ l Gm )dn(l ) = 0 2-6 P (G l G m < G m ) l m G m AA G m (T, P) = Gm l (T, P) PT 3

2-7 G m = H m TS m H m S m = H l l ( m TS m ) ( H m TS m ) ( ) T S l ( m S m ) = Δ l Hm T Δ l Sm Δ l Gm = G m G m l = H m H m l Δ l Hm > 0, Δ l Sm > 0, but Δ l Gm < 0 T Δ l Sm > Δ l Hm Δ l Hm Δ l Sm Δ l Gm = Δ l Hm T Δ l Sm = 0 [i.e., G m (T, P) = Gm l (T, P)] Δ l Sm = Q r / T t = Δ l Hm / T t 2-8 P, T G dg = 0 µ (T, P 0 ) < µ l (T, P 0 ) l [G m (T, P0 ) < G m (T, P 0 )] P V µ (T, P) = µ l (T, P) [G m (T, P) = l Gm (T, P)] P V 4-a. G m (T, P) = l Gm (T, P) dg = (µ µ l )dn(l ) = (G m l Gm)dn(l ) = 0 G m (T, P) = l Gm (T, P) G = A+PV 4-b. A, G 4

G m G m = U m + PV m TS m = H m TS m = A m + PV m dg m = du m + d(pv m ) d(ts m ) = (TdS m PdV m ) + (PdV m + V m dp) (TdS m + S m dt ) = S m dt + V m dp = G m / T ( ) P = S m S l m >> S m ( G m / P) T = V m V l m >> V m G m / T ( ) P dt + ( G m / P) T dp ( > 0) > 0 ( ) 2-9 G m dg m = S m dt G m dg m = V m dp G m G m (T, P) = l Gm (T, P) G m (T + dt, P + dp) = l Gm dg l m = dg m (T + dt, P + dp) 2-10 dg l m = dg m and dg m = S m dt + V m dp S S m dt + V m dp = S l m dt + V l m, V m (T, P) m dp dp dt = S m l S m V l m V m = Δ l S m = Δ l Hm Δ l Vm T Δ l Vm (Δ l Vm = V l m V m dp dt = Δ l Hm = Δ l H m TV m RT 2 P dp P = Δ l Hm RT 2 dt, P dp = P 0 P (Δ l Hm = constant) ln P P 0 = Δ l H m R 1 T 1 T 0, V m = RT / P) T T 0 Δ l Hm RT 2 dt ln P = Δ l H m RT + C ( P vs t ) 5

2-11 P = A exp Δ l Hm RT ln P = Δ l Hm RT + C ( P vs t ) 2-12 T b P e P e T b 1 atm (0.1 MPa) T b0 ln P e 1 = Δ l Hm 1 1 R T 0, b T b ln P e = Δ l Hm + C RT b Δ l Hm RT b = Δ l Sm R 10.5 4PDF 6

PT -3-1 dp dt = S β m α Sm β V m α = Δ β α Sm = Δ β α Hm β β Vm Δ αvm T Δ αvm - P P e l s s l α β β β Δ α Hm > 0, Δ αvm > 0, dp / dt > 0 PT Δ l s V m < 0 Δ l s V m 0 ln P P 0 = Δ α β H m R 1 T 1 T 0, lnp = Δ α β H m RT + C CO 2 H 2 O S 3-2 T c P c V c T c P c 1-10. CO 2 PV m

3-3 218 2 kbar 3-4

T, P T, PG m T, P dn (> 0) αβ dg = (G m β Gm α )dn 3-5 dg < 0, dg = 0, i.e., G m β < Gm α i.e., G m β = Gm α β G m dg m = G m T dt + G m P P dp = S m dt + V m dp T G m G m T = S m < 0 S l m >> S m > S s m > 0 P ( ) G m G m P ( ) = V m > 0 V l m >> V m > V s m > 0 T 3-6 P P G m T G m P ( ) = S m < 0 P S l m >> S m > S s m > 0 = V m > 0 T V l m >> V m > V s m > 0 ( ) T, PG m 2