『共形場理論』

Similar documents
l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

TOP URL 1


x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

TOP URL 1

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

TOP URL 1



6.1 (P (P (P (P (P (P (, P (, P.

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

SO(2)

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

gr09.dvi

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

6.1 (P (P (P (P (P (P (, P (, P.101

TOP URL 1

QMII_10.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

( ) ( )


arxiv: v1(astro-ph.co)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

Part () () Γ Part ,


変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

201711grade1ouyou.pdf

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

mobius1

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

tnbp59-21_Web:P2/ky132379509610002944

phs.dvi

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

notekiso1_09.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

A


Gmech08.dvi

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

パーキンソン病治療ガイドライン2002

研修コーナー

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

meiji_resume_1.PDF

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Gmech08.dvi

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


Z: Q: R: C: 3. Green Cauchy

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

液晶の物理1:連続体理論(弾性,粘性)

all.dvi

all.dvi

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

77

i

DVIOUT-HYOU

重力方向に基づくコントローラの向き決定方法

newmain.dvi

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

2011de.dvi

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

koji07-01.dvi

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

Z: Q: R: C:

,,..,. 1

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

量子力学 問題

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou


I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

Transcription:

T (z) SL(2, C) T (z)

SU(2)

S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1

N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4

1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4

1 = = 1.3 2 M 1 1 ϕ : x M x M ϕ 1 diffeomorphism M M N T μ 1,,μ N (x )=T ν1,,ν N (x) xν 1 x μ 1 xνn x μ N, 1.1 x, x 2 [14, 15, 16] [18]

1.2 T μ 1,,μ N (x ) dx μ 1 dx μ N = T ν1,,ν N (x) dx ν 1 dx ν N, T T ν1,,ν N (x) dx ν 1 dx ν N T ϕ 3 ϕ T (ϕ T ) μ1,,μ N (x) T ν1,,ν N (ϕ(x)) ϕ(x)ν 1 x μ ϕ(x)νn. 1.2 1 x μ N 1.21.1 ϕ μ (x)=x μ +ɛv μ (x) ɛ v v μ (x) ɛ 2 ϕ T (x) =T (x)+ɛδ v T (x)+o(ɛ 2 ) 1.3 δ v T 1.2 2 (ϕ T ) μν (x) T μν (x) ) = T αβ (x+ɛv) (δ αμ +ɛ )(δ vα x (x) βν +ɛ vβ μ x (x) T ν μν (x) ] [ = ɛ v ρ (x) x ρ T μν(x)+t αν (x) vα x μ (x)+t μβ(x) vβ x ν (x) +O(ɛ 2 ), δv T μν (x) =v ρ (x) x T μν(x)+t ρ αν (x) vα x (x)+t μβ(x) vβ (x), 1.4 μ xν N 3 pull-back ϕ(x) 1.3

1 δ v T μ1,,μ N (x)=v ν (x) x T ν μ 1,,μ N (x)+ N j=1 T μ1,,μ j 1,ν j,μ j+1,,μ N (x) vν j (x) x μ j 1.5, d M ds 2 =g μν (x)dx μ dx ν ϕ ρ(x) conformal transformation (ϕ g) μν (x) =e ρ(x) g μν (x). 1.6 isometry g μν (x) g μν (x) =e ρ(x) g μν (x) 1.7 2 g(u, v) g(u, v) cos θ = =. 1.8 g(u, u) g(v, v) g(u, u) g(v, v) g(u, v) g(u, v)=g μν u μ v ν = 4 conformal 4 ρ(x)

1.2 ϕ(x) μ =x μ +ɛv μ (x) 1.6σ(x) δ v g μν (x) =σ(x)g μν (x), 1.4δ v g μν δ v g μν = v ρ ρ g μν +g αν μ v α +g μβ ν v β μ v ν + ν v μ, μ v ν (x)+ ν v μ (x) =σ(x)g μν (x), 1.9 1.10 1.9 2 μ 5 1.10σ(x)= 2 d ρv ρ (x) ɛ μ (x) μ v ν (x)+ ν v μ (x) = 2 d ρv ρ (x)g μν (x), 1.11 v μ (x) g μν conformal Killing vector field 6 d g μν (x)=δ μν 1.11 μ v ν (x)+ ν v μ (x) = 2 d ρv ρ (x)δ μν, 1.12 1.1 d d>2 5 1.9 2 δ v g μν ρ g μν =0 6 δ v g μν (x) μ v ν (x)+ ν v μ (x) =0

1.1 d a μ x μ =x μ +a μ d ω μν x ν d(d 1) (ω x μ =Λ μ ν xν, (Λ t Λ=I) μν = ω νμ ) 2 ɛx μ x μ =λx μ 1 x 2 b μ 2(b x)x μ x μ = xμ + x 2 b μ d 1+2b x+ b 2 x 2 d SO(d, 2) 1.1 1 (d+1)(d+2) SO(d, 2) 2 2 1.12 v 1 x 1 = v2 x 2, v 1 x 2 = v2 x 1 1.13 v z v 1 +iv 2 z x 1 +ix 2 ( z=x 1 ix 2 ) 1.13 z z = 1 ( i 2 x 1 x 2 ), z z = 1 ( +i 2 x 1 ), x 2 1.14 z vz =0, 1.15 2 z z f(z), z z f(z), ( z f(z) = z f(z) =0) z, z 2

1.2 ds 2 = 1 2 dz 2, (z, z) (f(z, z), f(z, z)), f z f= z f=0 f ds 2 f (ds 2 )= 1 f f dz 2 z z dz 1 2 f 2 z ds 2, 1.16 f 2 z e ρ 1.16 2 =1 U =C U\{0} z=0 z ϕ(z) z+ ɛ n z n+1. 1.17 n Z z 1.17 7 l n z n+1, n Z. 1.18 z 7 =1 v(x) =v μ (x) x, μ

1 [l m,l n ]=(m n)l m+n, (m, n Z). 1.19 1.18 2 2 CP 1 C { } z=0 1.17 n 1 v(z) = ɛ n z n+1 z. n= 1 z= w= 1 w=0 z v z (z) z =vw (w) w v w (w) =v z (z) w z = vz (z) ( 1z ) = ɛ 2 n z n 1 = ɛ n w n+1, n Z n Z w=0 n 1 1.17ɛ 1, ɛ 0, ɛ 1 {l 1,l 0,l 1 } 1.19 sl(2) [l 0,l ±1 ]= l ±1, [l 1,l 1 ]=2l 0. 1.20 6 sl(2) sl(2) SL(2, C) 1 z {( ) a b SL(2, C) SO(2, 2) = a, b, c, d C, ad bc =1} c d 1.21

1.2 SL(2, C) v z (z)=ɛ 1 z =z+a 2 v z (z)=ɛ 0 z, (ɛ 0 ir) z =cz, ( c =1) 1 v z (z)=ɛ 0 z, (ɛ 0 R) z =cz, (c>0) 1 v z (z)=ɛ 1 z 2 z = z 1 bz 2 z az+b cz+d. 1.22 1.2 c z z =cz, c C\{0} 2 1.3.1 z z (h, h) [21] ( ) dz Φ(z, z) =Φ (z, z h ( d z ) h ). 1.23 dz d z Φ(z, z)dz h d z h 1.24

1 h h 2 8 1.23 h h 2 1.231.1 ω ω(z)dz=ω (z )dz 2 Q Q(z)dz 2 =Q (z )dz 2 (h=1, h=0) (h=2, h =0) z z = e iθ z, z z = e iθ z, θ R, 1.25 1.231.25 Φ(z, z) =Φ (z, z )e iθ(h h) 1.26 Φ s=h h SO(2)=U(1) s e isθ z z = λz, z z = λ z, λ > 0 1.27 Φ(z, z) =Φ (z, z )λ (h+ h) 1.28 Φ Δ=h+ h h, h Δ s h+ h = Δ, h h = s. 1.29 8 h, h 0 h, h