Similar documents
untitled

14 CRT Color Constancy in the Conditions of Dierent Cone Adaptation in a CRT Display

NotePC 8 10cd=m 2 965cd=m Note-PC Weber L,M,S { i {

光学

24 Depth scaling of binocular stereopsis by observer s own movements

21 Effects of background stimuli by changing speed color matching color stimulus

2 1 ( ) 2 ( ) i

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

soturon.dvi

udc-2.dvi

28 Horizontal angle correction using straight line detection in an equirectangular image

浜松医科大学紀要

29 Short-time prediction of time series data for binary option trade

2 ( ) i

25 D Effects of viewpoints of head mounted wearable 3D display on human task performance

..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

Web Stamps 96 KJ Stamps Web Vol 8, No 1, 2004


GPGPU

23 A Comparison of Flick and Ring Document Scrolling in Touch-based Mobile Phones

ron.dvi

Sobel Canny i

™…

2015 ( 27 ) RFID RF RFID, 2., 3., 4. i

2007-Kanai-paper.dvi

<95DB8C9288E397C389C88A E696E6462>

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

kut-paper-template.dvi


20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

07_学術.indd

Web Web Web Web Web, i

1..FEM FEM 3. 4.


Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake


Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test conditions except for t

_念3)医療2009_夏.indd

28 TCG SURF Card recognition using SURF in TCG play video

220 28;29) 30 35) 26;27) % 8.0% 9 36) 8) 14) 37) O O 13 2 E S % % 2 6 1fl 2fl 3fl 3 4

技術研究報告第26号

24 Perceived depth position of autostereoscopic stimulus

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Social Networking


2 The Bulletin of Meiji University of Integrative Medicine 3, Yamashita 10 11




25 Removal of the fricative sounds that occur in the electronic stethoscope

先端社会研究 ★5★号/4.山崎

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

Javaと.NET

,,.,.,,.,.,.,.,,.,..,,,, i

26 Development of Learning Support System for Fixation of Basketball Shoot Form

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

10-渡部芳栄.indd


IPSJ SIG Technical Report An Evaluation Method for the Degree of Strain of an Action Scene Mao Kuroda, 1 Takeshi Takai 1 and Takashi Matsuyama 1

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

塗装深み感の要因解析

27 VR Effects of the position of viewpoint on self body in VR environment

SURF,,., 55%,.,., SURF(Speeded Up Robust Features), 4 (,,, ), SURF.,, 84%, 96%, 28%, 32%.,,,. SURF, i


橡

卒業論文2.dvi

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

perature was about 2.5 Ž higher than that of the control irrespective of wind speed. With increasing wind speeds of more than 1m/s, the leaf temperatu

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i

1 1 tf-idf tf-idf i

7,, i

音響部品アクセサリ本文(AC06)PDF (Page 16)

ñ{ï 01-65

) ,

untitled

main.dvi

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

日本感性工学会論文誌


49148

™…

TF-IDF TDF-IDF TDF-IDF Extracting Impression of Sightseeing Spots from Blogs for Supporting Selection of Spots to Visit in Travel Sat

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

(43) Vol.33, No.6(1977) T-239 MUTUAL DIFFUSION AND CHANGE OF THE FINE STRUCTURE OF WET SPUN ANTI-PILLING ACRYLIC FIBER DURING COAGULATION, DRAWING AND


..,,...,..,...,,.,....,,,.,.,,.,.,,,.,.,.,.,,.,,,.,,,,.,,, Becker., Becker,,,,,, Becker,.,,,,.,,.,.,,

474 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No.3,.1..2* (,**0) 24 Measurement of Deterioration of Frying Oil Using Electrical Properties Yoshio

28 Docker Design and Implementation of Program Evaluation System Using Docker Virtualized Environment

news

Title 泌尿器科領域に於ける17-Ketosteroidの研究 17-Ketosteroidの臨床的研究 第 III 篇 : 尿 Author(s) 卜部, 敏入 Citation 泌尿器科紀要 (1958), 4(1): 3-31 Issue Date URL

Therapy for Asthenopia in Cases of Convergence Insufficiency Hiroko TAKASAKI, C.O.J., Nobuko INAGAMI, C.O.J., and Kayoko TAKENAWA, C.O.J.. Orthoptic c

短距離スプリントドリルが大学生野球選手の短距離走速度向上に与える効果

ii

<4D F736F F D DB82CC88F892A38BAD937893C190AB76355F8D5A897B8CE3325F2E646F63>

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

Transcription:

14 Visual Spatial-Frequency-Tuned Channels Separated by a Shape of Luminous Impulse Response Functions 1055111 2003 2 23

1 (IRFs) IRFs IRFs 2 2 IRFs IRFs IRFs i

ISI (Inter Stimulus Interval) Burr and Morrone 0.43cpd (Gauss ) 4.90 cpd 11 IRFs 0 (0 ) 4 IRFs 0 2.23cpd ( 26ms) (48ms) (38ms) IRFs 0 Power Ratio Change Model (PRC ) Receptive Field Model ( ) PRC IRFs 0 IRFs 2.23cpd IRF 2.23cpd 4cpd IRF PRC 2cpd IRFs ii

iii

Abstract Visual Spatial-Frequency-Tuned Channels Separated by a Shape of Luminous Impulse Response Functions Masaharu Hirayama It is important to investigate the mechanisms of human visual information processing, especially for development of better human-machine interface, because the recent development of technologies enable to spend much more resources for the interface itself. For that purpose, I studied the spatial property of human vision. I tried to separate spatial channels in human vision by measuring luminous impulse response functions (IRFs) with gratings in different spatial frequencies. Because the IRFs directly indicate temporal property of visual system, I assumed that the shape of IRFs would be influenced by the spatial frequency of gratings. It is expected that human visual system has some spatial channels. Thus, IRFs are not necessarily the same in different spatial channels. These spatial channels determine the spatial property of human vision but the number of these channels are still under discussion. To obtain the luminous IRFs in various spatial frequencies, I used the doublepulse method with sinusoidal gratings in a certain spatial frequency (I used 11 different frequencies in a range from 0.43 to 4.90cpd). The gratings were displayed successively in a certain inter stimulus interval (ISI) (a range from 6.7 to 180ms). Thresholds for detection were measured in different ISIs. The stimuli were radial sinusoidal gratings with a certain spatial frequency (a range v

from 0.43 to 4.90cpd). The stimulus was displayed successively at variable inter stimulus interval (a range from 6.7 to 180ms). I used Burr and Morrone s model equation without the assumption of minimum phase to predict the IRFs. As the temporal property of the IRFs, I mainly compared the data in terms of 0 crossing time. As the result from four observers, the zero crossing time of luminous IRFs tend to be fastest at around 2 cycle per degree (cpd) (the average in all observers was 28msec). In lower spatial frequencies, it became slower (the average was 48msec). In higher spatial frequencies, it also became slower but faster than the one in lowest frequencies (the average was 38ms). The ratio of the inhibitory phase amplitude to the excitatory phase amplitude and the amplitude of the excitatory phase were also higher at around 2cpd. In addition, although it was feeble, the same tendency was obtained around 4cpd. In order to explain the change of the temporal property of the IRFs, we made two models. One was the power ratio change model, the other was the receptive-field model. In the power ratio change model (PRC model), it is assumed that the phase shift between positive phase and negative phase in the IRFs is constant because the horizontal distance in positive and negative area in a receptive field has been determined. In this model, the power ratio, which was defined as the ration of the inhibitory phase amplitude to the excitatory phase amplitude would influence to the temporal property of the IRFs. In the receptive-field model, there will be two or more spatial frequency channels which determine the detection thresholds. The thresholds at a certain spatial frequency will be determined by the amount of the output from one channel, which is the most sensitive at that frequency. As the results of these analysises to the IRFs based on the PRC and RF models, we found that the turning point of the spatial-frequency-tuned channels is at around 2.23cpd. This suggests that spatial frequency channels can be separated by the difference vi

of luminous IRFs and the turning point of spatial frequency channels can exist on around 2cpd in human visual system. key words Impulse response function, Spatial-frequency-tuned channel vii

1 1 1.1...................................... 1 1.2...................................... 2 1.3....................... 2 1.4....................... 4 1.4.1............ 7 2 11 2.1...................... 11 2.2................................ 12 2.3...................................... 13 2.4................................... 14 2.5................................. 16 2.6................................ 17 2.7................................... 17 2.8.................................. 20 2.8.1 Burr and Morrone.................... 20 2.8.2.............. 20 2.8.3................... 21 3 23 3.1 M.H............................ 23 3.2 Y.F............................ 29 3.3 T.T............................ 35 ix

3.4 T.S............................ 41 3.5.............................. 45 3.6..................... 46 4 47 4.1 IRFs..................... 47 4.1.1 M.H................. 47 4.1.2 Y.F................. 51 4.1.3 T.T................. 54 4.1.4 T.S.................. 57 4.2............................. 59 4.2.1............ 60 4.3 IRFs............................ 61 4.4 Power Ratio Change Model PRC Model............... 64 4.5 Receptive-Field Model................. 66 4.6.................................. 72 4.7.................................. 75 5 77 79 81 A IRFs 83 x

1.1................................... 3 1.2................................... 6 1.3............................. 7 1.4............................ 8 2.1.............................. 11 2.2...................... 12 2.3 CRT................ 14 2.4 A356.............................. 15 2.5........................ 16 2.6................................. 18 2.7......................... 18 2.8.............................. 19 2.9 fit............................ 21 2.10.............................. 22 3.1 M.H. 0.43cpd................................. 24 3.2 M.H. 0.89cpd................................. 24 3.3 M.H. 1.34cpd................................. 25 3.4 M.H. 1.78cpd................................. 25 3.5 M.H. 2.23cpd................................. 26 3.6 M.H. 2.67cpd................................. 26 3.7 M.H. 3.12cpd................................. 27 3.8 M.H. 3.56cpd................................. 27 xi

3.9 M.H. 4.01cpd................................. 28 3.10 M.H. 4.45cpd................................. 28 3.11 M.H. 4.90cpd................................. 29 3.12 Y.F. 0.43cpd................................. 30 3.13 Y.F. 0.89cpd................................. 30 3.14 Y.F. 1.34cpd................................. 31 3.15 Y.F. 1.78cpd................................. 31 3.16 Y.F. 2.23cpd................................. 32 3.17 Y.F. 2.67cpd................................. 32 3.18 Y.F. 3.12cpd................................. 33 3.19 Y.F. 3.56cpd................................. 33 3.20 Y.F. 4.01cpd................................. 34 3.21 Y.F. 4.45cpd................................. 34 3.22 Y.F. 4.90cpd................................. 35 3.23 T.T. 0.43cpd................................. 36 3.24 T.T. 0.89cpd................................. 36 3.25 T.T. 1.34cpd................................. 37 3.26 T.T. 1.78cpd................................. 37 3.27 T.T. 2.23cpd................................. 38 3.28 T.T. 2.67cpd................................. 38 3.29 T.T. 3.12cpd................................. 39 3.30 T.T. 3.56cpd................................. 39 3.31 T.T. 4.01cpd................................. 40 3.32 T.T. 4.45cpd................................. 40 3.33 T.T. 4.90cpd................................. 41 3.34 T.S. 0.43cpd.................................. 42 xii

3.35 T.S. 0.89cpd.................................. 42 3.36 T.S. 1.34cpd.................................. 43 3.37 T.S. 2.23cpd.................................. 43 3.38 T.S. 3.12cpd.................................. 44 3.39 T.S. 4.01cpd.................................. 44 3.40 T.S. 4.90cpd.................................. 45 4.1 M.H. CSF 0.43 0.89cpd................... 48 4.2 M.H. CSF 1.34 1.78cpd................... 48 4.3 M.H. CSF 2.23 2.67cpd................... 49 4.4 M.H. CSF 3.12 3.56cpd................... 49 4.5 M.H. CSF 4.01 4.45cpd................... 50 4.6 M.H. CSF 4.90cpd....................... 50 4.7 Y.F. CSF 0.43 0.89cpd................... 51 4.8 Y.F. CSF 1.34 1.78cpd................... 51 4.9 Y.F. CSF 2.23 2.67cpd................... 52 4.10 Y.F. CSF 3.12 3.56cpd................... 52 4.11 Y.F. CSF 4.01 4.45cpd................... 53 4.12 Y.F. CSF 4.90cpd....................... 53 4.13 T.T. CSF 0.43 0.89cpd................... 54 4.14 T.T. CSF 1.34 1.78cpd................... 54 4.15 T.T. CSF 2.23 2.67cpd................... 55 4.16 T.T. CSF 3.12 3.56cpd................... 55 4.17 T.T. CSF 4.01 4.45cpd................... 56 4.18 T.T. CSF 4.90cpd....................... 56 4.19 T.S CSF 0.43 0.89cpd.................... 57 xiii

4.20 T.S CSF 1.34 2.23cpd.................... 57 4.21 T.S CSF 3.12 4.01cpd.................... 58 4.22 T.S CSF 4.90cpd....................... 58 4.23 CSF................... 59 4.24 IRF CSF...................... 61 4.25 IRF........................... 62 4.26 IRFs 0........................ 63 4.27 Power Ratio Change Model......................... 64 4.28 IRFs...................... 65 4.29 Receptive-Field Model.................. 67 4.30 M.H. IRFs.................. 69 4.31 Y.F. IRFs.................. 69 4.32 T.T. IRFs.................. 70 4.33 T.S. IRFs.................. 71 4.34 IRFs 0......................... 73 4.35 IRFs................... 74 4.36 IRFs........................... 75 xiv

A.1 (M.H.).............................. 83 A.2 (Y.F.)............................... 84 A.3 (T.T.)............................... 85 A.4 (T.S.)............................... 86 xv

1 1.1 CRT 80% 1 HDTV( ) 1 1

1 HDTV 1.2 2 (Impulse Response Function) IRFs IRFs 1.3 1.1 I(t) N RN(t) 1 (Threshold Device) TD 2

1.3 Spatial Filter 1 R1 (t) Thereshold device Stimulus I (t) R2 (t) Spatial Filter 2 Noise RN (t) Spatial Filter N Thereshold device Thereshold device OR Response Yes No 1.1 I(t) 2 [1] N H(t) (1.1) A τ H(t) = 1 (n 1)! ( ) n 1 { ( )} A t exp τ τ (1.1) 1.1 R n (t) I(t) H(t) (1.2) R(t) = t 0 I(t )H(t t )dt (1.2) R(t) (1.3) (Detection Threshold) DT = [ t 0 1 R(t ) β dt ] 1 β (1.3) β 1.1 TD 3

1 S (1.4) (1.3) [ T S = R(t) β dt 0 ] 1 β (1.4) Wilson[1] R(t) t i R(t i ) P i R(t i ) t i R(t i ) R(t) R(t) P (t) P i (1.5) P (t) = 1 (1 r)π i (1 P i ) (1.5) t i r P i (1.6) P i = 1 (1 r) exp { R(t i ) β} (1.6) (1.6) (1.5) (1.7) { } T P = 1 (1 r) exp R(t) β dt (1.7) (1.7) T R(t) = 0 P I(t) 0 1 1.4 Kelly (1961) 77td 20Hz 4

1.4 (van Nes and Boumann, 1967) 90td 5cpd ( 3 ) (LGN) 6 ( ) LGN ( ) LGN LGN 1 2 (magnocellular layer) 3 6 (parvocellular layer) (magnocellular pathway) (parvocellular pathway) 1.2 IVcα IVcβ 5

1 V2 V3 MT blob-dominated stream interblob-domainated stream magno-domainated stream blob I II / III IV a IV b IV cα IV cβ V VI move speed magnocellular pathway retina parvocellular pathway line color 1.2 M P M V3 MT ( ) P V2 (V1) 1.3 6

1.4 High temporal frequency spatial frequency High 1.3 1.4.1 (Contrast Sensitivity Function) 1.4 7

1 Luminance Lmax L0 Lmin Position (x) 1.4 = L max L min L max + L min CSF 3 5cpd Blakemore and Campbell (1969) 3cpd De Valois (1977) 1.19cpd 1cpd 8

1.4 9

2 IRFs 2.1 2.1 on-set on-set t Luminance t Test Stimulus Masking Stimulus Time 2.1 CRT CRT RGB 11

2 2.2 Temporal Double-pulse Method 2 2 2 ISI L SOA Time Time 2.2 SOA Stimulus Onset Asynchrony first flash second flash ISI first flash second flash ISI SOA 2.2 SOA ISI Inter Stimulus Interval 2 2 t W (t) 2 12

2.3 W ( ) q(t) = W (t) W ( ) W (t) + W ( ) q(t) 2 2 (t = 0) q(t) = 1 2 (t = ) q(t) = 0 2 Uchikawa and Yoshizawa [3] SOA 2 SOA = 80ms 2 2.3 0.43 4.90 cpd SD (±SD) = 2 (x, y) = (0.33, 0.33) fixation cross 2.28 duration ISI CRT CRT 150 Hz 1 frame = 6.7ms duration first flash second flash 1frame = 6.7 ms ISI 6.7 20.0 26.6 40.0 46.7 60.0 66.7 80.0 86.7 100.0 120.1 140.1 160.1 180.1 ms 14 0.43 0.89 1.34 1.78 2.23 2.67 3.12 3.56 4.01 13

2 4.45 4.90cpd 11 0.43cpd T.S. 0.43 0.89 1.34 2.23 3.12 4.01 4.90cpd 7 CRT background (x, y) = (0.33, 0.33) 10cd/m 2 CRT 2.3 2 16 2 background (x,y) = (0.33,0.33) 2 12 2.3 CRT CRT CRT fixation cross 45 2.4 VSG2/3 Cambridge Research Systems BARCO CCID-121 14

2.4 2.4 180cm 270cm 90cm 5 mm CRT VSG2/3 PC 3 1 Room A356 CRT PC within VSG 2/3 133.86 cm 290 cm 90 cm 2.4 A356 133.86 cm CRT natural viewing eye patch 2.5 CRT = A 15

2 = C = A = C CRT left up right up left down right down To PC A B C Switch Box Observer side 2.5 A C B 2.5 Calibration CRT CRT 9 Optical Cambridge Research Systems LS-100 Minolta CT-1000 Minolta CS-1000 Minolta CRT 16

2.6 30 warm up 2.6 4 M.H. 23 years Male, 1.5 Y.F. 24 years, Male, 1.2 T.T. 21 years, Male, 1.5 T.S. 22 years, Male, 2.0 2 Plate Panel D-15 M.H. naive 2.7 2.6 17

2 1 : Dark adaptation (5 min) 2 : Pre adaptation (5 min) Only background presented 3 : Experiment start 4 : Presentation of test stimulus 5 : Interval (2 sec) Repeat from 3 to 7 until the experiment was finished 6 : Tone 7 : Observer s response 2.6 3 7 1 4 CRT 2.7 Luminance 6.7 ms 6.7 ms background 10 Beep tone ISI 2 sec Beep tone Forced Response Time 2.7 CRT cd/m 2 4AFC 4 Alternative Forced Choice 2 flash CRT 4 1 CRT 18

2.7 Two-down One-up first flash second flash 0.005 (log cd/m 2 ) step 2 reversal 5 0.025 log cd/m 2 ) 3 6 reversal 2.8 2.8 2.8 ISI 2 ISI 1 ISI 1 1 4 4 19

2 2.8 Impulse Response Functions 2.8.1 Burr and Morrone IRFs Burr and Morrone 2.1 IRF (t) = a 0 H(t)t sin{2π[a 1 t(t + 1)] a 2 } exp( a 3 t) (2.1) 2.1 0 0 H(t) H(t) = 0, t < 0; H(t) = 1, t 0 a 0 a 1 a 2 a 3 Watson[1] 2.2 [ ] T p = 1 (1 r) exp R(t, τ) β dt 0 (2.2) p Proportion of Detection I(t) 2.2 r 4AFC r = 1/4 Two-down One-up p = 2/2 2.8.2 2.2 R(t) R(t, τ) = k((irf (t) + IRF (t + τ)) 20

2.8 k ISI = τ 2 R(t) t IRF (t) τ IRF (t + τ) IRFs 2.2 β = 4.00 2 [5] 2.8.3 2.9 a 0 a 1 a 2 a 3 2.1 2.2 2 a 0 a 1 a 2 a 3 Microsoft Excel97 2.9 log ISI ms a 0 a 1 a 2 a 3 2.1 I(t) 2.10 2.9 fit 21

2 2.10 2 a 0 a 1 a 2 a 3 I(t) ms 22

3 IRFs IRFs a 0, a 1, a 2, a 3 A 3.1 M.H. M.H. 4 23

3 3.1 M.H. 0.43cpd IRF 3.2 M.H. 0.89cpd IRF 24

3.1 M.H. 3.3 M.H. 1.34cpd IRF 3.4 M.H. 1.78cpd IRF 25

3 3.5 M.H. 2.23cpd IRF 3.6 M.H. 2.67cpd IRF 26

3.1 M.H. 3.7 M.H. 3.12cpd IRF 3.8 M.H. 3.56cpd IRF 27

3 3.9 M.H. 4.01cpd IRF 3.10 M.H. 4.45cpd IRF 28

3.2 Y.F. 3.11 M.H. 4.90cpd IRF 3.2 Y.F. Y.F. 4 29

3 3.12 Y.F. 0.43cpd IRF 3.13 Y.F. 0.89cpd IRF 30

3.2 Y.F. 3.14 Y.F. 1.34cpd IRF 3.15 Y.F. 1.78cpd IRF 31

3 3.16 Y.F. 2.23cpd IRF 3.17 Y.F. 2.67cpd IRF 32

3.2 Y.F. 3.18 Y.F. 3.12cpd IRF 3.19 Y.F. 3.56cpd IRF 33

3 3.20 Y.F. 4.01cpd IRF 3.21 Y.F. 4.45cpd IRF 34

3.3 T.T. 3.22 Y.F. 4.90cpd IRF 3.3 T.T. T.T. 4 35

3 3.23 T.T. 0.43cpd IRF 3.24 T.T. 0.89cpd IRF 36

3.3 T.T. 3.25 T.T. 1.34cpd IRF 3.26 T.T. 1.78cpd IRF 37

3 3.27 T.T. 2.23cpd IRF 3.28 T.T. 2.67cpd IRF 38

3.3 T.T. 3.29 T.T. 3.12cpd IRF 3.30 T.T. 3.56cpd IRF 39

3 3.31 T.T. 4.01cpd IRF 3.32 T.T. 4.45cpd IRF 40

3.4 T.S 3.33 T.T. 4.90cpd IRF 3.4 T.S T.S. 4 T.S. 0.43, 0.89, 1.34, 2.23, 3.12, 4.01, 4.90cpd 7 41

3 3.34 T.S. 0.43cpd IRF 3.35 T.S. 0.89cpd IRF 42

3.4 T.S 3.36 T.S. 1.34cpd IRF 3.37 T.S. 2.23cpd IRF 43

3 3.38 T.S. 3.12cpd IRF 3.39 T.S. 4.01cpd IRF 44

3.5 3.40 T.S. 4.90cpd IRF 3.5 ISI 50ms 2 ISI ISI 50ms 80ms 2 ISI 130ms 2 Uchikawa and Yoshizawa[3] 45

3 CSF 0.75cpd 1.5cpd SOA = 50ms [5] IRFs 3cpd, 6cpd CSF 4.45cpd 4.90cpd IRFs 3.6 4 3 46

4 IRFs Power Ratio Change Model Receptive Field Model IRFs 4.1 IRFs IRFs 2.1 t Contrast Sensitivity Functions 2 IRFs CSFs IRSs CSFs 4.1.1 M.H. 47

4 4.1 M.H. IRFs CSF 0.43 0.89cpd 4.2 M.H. IRFs CSF 1.34 1.78cpd 48

4.1 IRFs 4.3 M.H. IRFs CSF 2.23 2.67cpd 4.4 M.H. IRFs CSF 3.12 3.56cpd 49

4 4.5 M.H. IRFs CSF 4.01 4.45cpd 4.6 M.H. IRFs CSF 4.90cpd M.H. 1.34 1.78 2.23 2.67 3.56cpd [6] CSF 0.43 50

4.1 IRFs 0.89cpd 4.1.2 Y.F. 4.7 Y.F. IRFs CSF 0.43 0.89cpd 4.8 Y.F. IRFs CSF 1.34 1.78cpd 51

4 4.9 Y.F. IRFs CSF 2.23 2.67cpd 4.10 Y.F. IRFs CSF 3.12 3.56cpd 52

4.1 IRFs 4.11 Y.F. IRFs CSF 4.01 4.45cpd 4.12 Y.F. IRFs CSF 4.90cpd Y.F. 1.34 1.78 2.23 3.12cpd 0.43 0.89 2.67 3.12 4.01cpd 3.56 4.45 4.90cpd CFS 53

4 4.1.3 T.T. 4.13 T.T. IRFs CSF 0.43 0.89cpd 4.14 T.T. IRFs CSF 1.34 1.78cpd 54

4.1 IRFs 4.15 T.T. IRFs CSF 2.23 2.67cpd 4.16 T.T. IRFs CSF 3.12 3.56cpd 55

4 4.17 T.T. IRFs CSF 4.01 4.45cpd 4.18 T.T. IRFs CSF 4.90cpd T.T. 1.78 2.67 3.56cpd 56

4.1 IRFs 4.1.4 T.S. 4.19 T.S IRFs CSF 0.43 0.89cpd 4.20 T.S IRFs CSF 1.34 2.23cpd 57

4 4.21 T.S IRFs CSF 3.12 4.01cpd 4.22 T.S IRFs CSF 4.90cpd T.S. CFS 2.23 4.01cpd 58

4.2 4.2 4.23 [5] CSF 4.23 0.75 1.5 3.0 6.0cpd Y.E. Y.O. 0.88( ) 8.8( ) 88( ) 1100( )td CSF [5] 10cd/m 2 (4.1) 59

4 (td) = (cd/m 2 ) (mm 2 ) (4.1) 10cd/m 2 3mm 22.5td 4.23 8.8td 88td CSF 4.23 0.75cpd CSF 0.89cpd CSF CSF 4.23 6.0cpd CSF CSF T.S. ( T.S. 4.90cpd ) 4.23 1.5 3.0cpd CSF 2 3cpd 2 4.2.1 IRFs CSF 4.24 60

4.3 IRFs 4.24 IRF CSF CSF CSF IRFs 4.24 CSF IRFs 4.3 IRFs IRFs 2.1 t 61

4 IRF IRFs IRFs 4.25 IRFs 0 0 4.25 IRF IRF 0 0 4.26 4 IRFs 0 ms cpd 62

4.3 IRFs 4.26 IRFs 0 ms cpd 0.43 0.89cpd IRFs 0 48ms IRFs 0 1.34cpd 2 3cpd 0 25.6ms 3cpd 0 M.H. T.T. 3.56cpd M.H. 44ms T.T. 37ms Y.F. 4.01cpd 52ms T.S. 3cpd T.S. 3 4cpd 0 3 63

4 38.8ms IRFs 0 3 1 IRFs Power Ratio Change Model Receptive-Field Model 2 4.4 Power Ratio Change Model PRC Model Power Ratio Change Model PRC 4.27 IRF Excitatory phase At the ratio of 1 to 1 The zero crossing time will be observed as "fast" Inhibitory phase At the ratio of 1 to 0.1 The zero crossing time will be observed as "slow" 4.27 Power Ratio Change Model IRF 0 IRF 0 IRFs 64

4.4 Power Ratio Change Model PRC Model IRF 0 4.27 1 : 1 IRF 0 4.27 1 : 0.1 0 IRF 4.28 4.28 IRFs 4.28 4 0.43 0.89 1.34cpd 0.5 65

4 1.78 2.23 2.76cpd 3.12 cpd 0.43 0.89 1.34cpd 0.5 M.H. 1.34cpd 0.75 1.78 2.23 2.76cpd 3.12cpd 3.56cpd 1 2.23cpd 0.43 0.89 1.34cpd 1.78 2.23 2.78cpd 5 % IRF 0.43 0.89 1.34cpd 2 4cpd 4.45 4.90cpd 3 4.5 Receptive-Field Model Receptive-Field Model 4.29 66

4.5 Receptive-Field Model Status 1 Excitatory signal : Strong Inhibitory signal : Weak Amplitude of excitatory phase : High Ratio of inhibitory to excitatory phase : Low + Status 2 Excitatory signal : more weaker than Status 1 Inhibitory signal : strong Amplitude of excitatory phase : High Ratio of inhibitory to excitatory phase : High + Status 3 Excitatory signal : weak Inhibitory signal : weak Amplitude of excitatory phase : Low Ratio of inhibitory to excitatory phase : High or Low + Status 4 + Excitatory signal : Strong Inhibitory signal : Strong Amplitude of excitatory phase : High Ratio of inhibitory to excitatory phase : High 4.29 Receptive-Field Model / 4.29 / 1. 1 IRFs 2. 1 2 67

4 1 IRFs 1 3. 2 3 2 IRFs 4. 4 2 3 IRFs 1 2 2 3 4 4 2 4 dominant IRFs 1 2 3 2 4 IRFs 4.30 4.31 4.32 4.33 68

4.5 Receptive-Field Model 4.30 M.H. IRFs M.H. IRFs 0.43cpd 1.78cpd 1.78cpd 3.12cpd 3.12cpd 4.01cpd 4.01cpd 4.90cpd 4.31 Y.F. IRFs 69

4 Y.F. IRFs 0.43cpd 1.78cpd 1.23cpd 2.23cpd 2.23cpd 3.12cpd 3.12cpd 3.56cpd 3.56cpd 4.45cpd 4.45cpd 4.90cpd 4.32 T.T. IRFs T.T. IRFs 0.43cpd 0.89cpd 0.89cpd 1.34cpd 1.34cpd 2.23cpd 2.23cpd 3.12cpd 3.12cpd 3.56cpd 3.56cpd 4.45cpd 4.45cpd 4.90cpd 70

4.5 Receptive-Field Model 4.33 T.S. IRFs T.S. IRFs 4.29 2 M.H. 1.78cpd 3.12cpd 4.01cpd 4.90cpd 2 71

4 Y.F. 1.78cpd 2.23cpd 3.12cpd 3.56cpd 4.45cpd 4.90cpd 3 T.T. 0.89cpd 1.34cpd 2.23cpd 3.12cpd 4.45cpd 4.90cpd 3 T.S. 2.23cpd 3.12cpd 4.01cpd 4.90cpd 2 4.6 IRFs IRFs IRFs 0 4.34 IRFs 0 1. (0.43, 0.89, 1.34cpd) IRFs 0 48ms 2. 2 3cpd IRFs 0 26ms 3. (4.01, 4.45, 4.90cpd) IRFs 0 39ms 72

4.6 4.34 IRFs 0 IRFs IRFs PRC PRC PRC IRFs 4.6 1. (0.43, 0.89, 1.34cpd) M.H. 1.34cpd 0.7 2. 2 3cpd 3. 3.5 4.5cpd PRC IRFs IRFs 73

4 4.35 IRFs IRFs 4.36 3 IRFs ( ) 2 cpd 4cpd T.S. IRFs 2cpd 74

4.7 4.36 IRFs IRFs IRFs 3 2cpd 4.7 1 4 75

4 2 1 attention IRFs IRFs 3 LGN Parvo cellular IRFs 76

5 2 IRFs IRFs 0 IRFs PRC 2 cpd 4cpd IRFs 1.7cpd, 4.0cpd 3 IRFs 77

79

[1] Andrew B. Watson Probability summation over time Vision Research, Vol.19 pp.515 - pp.522, 1979 [2] David C. Burr and M. Concetta Morrone Impulse-response functions for chromatic and achromatic stimuli J. Opt. Soc. Am. A / Vol.10, No.8, pp.1706 - pp.1713. 1993 [3] Keiji Uchikawa and Yoshizawa Temporal responses to chromatic and achromatic change inferred from temporal double-pulse integration J. Opt. Soc. Am. A / Vol.10, No.8, pp.1697 - pp.1696, 1993 [4] Hugh R. Wilson, David K. McFarlane and Gregory C. Phillips Spatial Frequency tuning of Orientation Selective Units estimated by oblique Masking Vision Research Vol.24, No.9, pp.873-882, 1983 [5] Yoshio Ohtani and Yoshimichi Ejima Relation between Flicker and Two-pulse Sensitivities for sinusoidal Gratings Vision Research Vol.28, No.1, pp.145 - pp.156, 1988 [6] 1998 81

A IRFs 2 Burr and Morrone IRFs IRFs a 0, a 1, a 2, a 3 A.1 ( M.H.) A.2 ( Y.F.) A.4 ( T.S.) A.3 ( T.T.) M.H. (cpd) a 0 a 1 a 2 a 3 0 (ms) 0.43 170.91 9.77 0 45.52 1.37 50.67 0.33 0.89 161.88 10.09 0 52.71 1.1 49.33 0.26 1.34 75.41 22.59 14.22 26.01 0.78 37.33 0.68 1.78 67.54 23.94 15.43 26.41 0.67 36 0.63 2.23 126.82 41.77 24.74 46.39 0.71 18.67 0.86 2.67 127.8 43.47 26.55 43.29 0.73 18.67 0.86 3.12 218.93 16.4 0 92.27 0.84 30.67 0.22 3.56 63.52 11.2 0 41.25 0.57 44 0.51 4.01 122.52 12.75 2.61 61.21 0.72 44 0.22 4.45 131.87 21.72 13.82 59.14 0.81 38.67 0.15 4.90 136.66 27.38 18.88 52.73 0.88 34.67 0.16 A.1 M.H. IRFs 4 0 83

A IRFs Y.F. (cpd) a 0 a 1 a 2 a 3 0 (ms) 0.43 93.64 11.37 1.42 43.47 0.79 46.67 0.41 0.89 64.7 9.16 0 37.79 0.63 54.67 0.42 1.34 68.62 19.32 11.76 36.63 0.63 41.33 0.38 1.78 63.29 14.05 4.5 43.01 0.53 42.67 0.44 2.23 101.07 36.23 22.89 39.7 0.67 24 0.67 2.67 63.96 34.67 22.54 28.37 0.5 25.33 0.76 3.12 62.32 12.19 2.81 47.08 0.49 46.67 0.33 3.56 123.15 13 2.81 78.07 0.54 44 0.11 4.01 51.9 9.74 0 36.23 0.53 52 0.5 4.45 204.12 11.51 1.46 112.15 0.5 46.67 0.02 4.90 101.36 17.48 9.5 64.66 0.58 42.67 0.13 A.2 Y.F. IRFs 4 0 84

T.T. (cpd) a 0 a 1 a 2 a 3 0 (ms) 0.43 256.57 12.61 1.46 53.87 1.75 42.67 0.33 0.89 251.88 11.46 0.1 94.37 0.81 44 0.07 1.34 637.23 17.89 0 184.88 0.92 28 0.03 1.78 102.89 22.92 7.71 43.73 0.76 26.67 0.87 2.23 77.48 24.58 9.48 43.44 0.56 25.33 0.89 2.67 106.84 38.83 24.48 37.21 0.69 21.33 0.78 3.12 142.74 33.1 17.58 56.22 0.81 22.67 0.65 3.56 105.61 16.34 5.17 47.7 0.8 37.33 0.48 4.01 195.89 19.13 3.49 103.91 0.66 29.33 0.16 4.45 103.28 15.58 1.46 65.1 0.58 33.33 0.36 4.90 211.3 20.43 5.18 94.15 0.81 0.28 0.21 A.3 T.T. IRFs 4 0 85

A IRFs T.S. (cpd) a 0 a 1 a 2 a 3 0 (ms) 0.43 243.93 11.16 1.19 42.85 2.09 48 0.41 0.89 163.02 10.56 0 39.63 1.51 48 0.49 1.34 164.4 11.71 0 44.93 1.34 42.67 0.47 2.23 176.79 37.12 23.24 40.14 1.14 22.670 0.71 3.12 209 17.81 0 68.45 1.12 28 0.47 4.01 186.65 20.76 8.64 65.42 1.04 32 0.33 4.90 127.88 10.89 0 44.57 1.06 45.33 0.42 A.4 T.S. IRFs 4 0 86