Foundation (FSF) GNU 1 gnuplot ( ) gnuplot UNIX Windows Machintosh Excel Excel gnuplot C web

Similar documents
1.3 2 gnuplot> set samples gnuplot> plot sin(x) sin gnuplot> plot [0:6.28] [-1.5:1.5] sin(x) gnuplot> plot [-6.28:6.28] [-1.5:1.5] sin(x),co

gnuplot gnuplot 1 3 y = x 3 + 3x 2 2 y = sin x sin(x) x*x*x+3*x*x

gnuplot.dvi

1 1 Gnuplot gnuplot Windows gnuplot gp443win32.zip gnuplot binary, contrib, demo, docs, license 5 BUGS, Chang

2 I I / 61

Debian での数学ことはじめ。 - gnuplot, Octave, R 入門

Microsoft Word - gnuplot

きれいなグラフを作ろう!gnuplot 入門 1. 基本 1.1. プロット :test.plt plot x, sin(x) 1.2. データファイルのプロット 1:data.plt plot "data.dat" 1.3. データファイルのプロット 2:data2.plt plot "data2

資料


programmingII2019-v01

グラフ描画ソフトGnuplotを使う

3. :, c, ν. 4. Burgers : t + c x = ν 2 u x 2, (3), ν. 5. : t + u x = ν 2 u x 2, (4), c. 2 u t 2 = c2 2 u x 2, (5) (1) (4), (1 Navier Stokes,., ν. t +

3. :, c, ν. 4. Burgers : u t + c u x = ν 2 u x 2, (3), ν. 5. : u t + u u x = ν 2 u x 2, (4), c. 2 u t 2 = c2 2 u x 2, (5) (1) (4), (1 Navier Stokes,.,

情報活用資料

理工学図書館後期 LS 講習会 きれいなグラフを作ろう! gnuplot 入門

sin x

LeapMotion JINS MEME 2019

Unix * 3 PC 2 Linux, Mac *4 Windows Cygwin Cygwin gnuplot Cygwin unix emulator online gnuplot *5 matplotlib *6 SuperMongo *7 gnuplot gnuplot OS *8 Uni

2.2 Sage I 11 factor Sage Sage exit quit 1 sage : exit 2 Exiting Sage ( CPU time 0m0.06s, Wall time 2m8.71 s). 2.2 Sage Python Sage 1. Sage.sage 2. sa

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

gnuplot documentation

gnuplot documentation

13 Student Software TI-Nspire CX CAS TI Web TI-Nspire CX CAS Student Software ( ) 1 Student Software 37 Student Software Nspire Nspire Nspir

2 Windows 10 *1 3 Linux 3.1 Windows Bash on Ubuntu on Windows cygwin MacOS Linux OS Ubuntu OS Linux OS 1 GUI Windows Explorer Mac Finder 1 GUI

gnuplot の使い方 gnuplot は汎用的で しかも手軽に使えるプロッティング プログラムです 計算結果をグラフにするとき に非常に便利なので ぜひ覚えてください 1 gnuplot の始め方 終わり方 gnuplot の始め方は ターミナル上のプロンプトの後ろで gnuplot と打つだけ

コンピュータ概論

2 1 Octave Octave Window M m.m Octave Window 1.2 octave:1> a = 1 a = 1 octave:2> b = 1.23 b = octave:3> c = 3; ; % octave:4> x = pi x =

i

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó

6 6.1 sound_wav_files flu00.wav.wav 44.1 khz 1/44100 spwave Text with Time spwave t T = N t N 44.1 khz t = 1 sec j t f j {f 0, f 1, f 2,, f N 1

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

USB ID TA DUET 24:00 DUET XXX -YY.c ( ) XXX -YY.txt() XXX ID 3 YY ID 5 () #define StudentID 231


C 2 / 21 1 y = x 1.1 lagrange.c 1 / Laglange / 2 #include <stdio.h> 3 #include <math.h> 4 int main() 5 { 6 float x[10], y[10]; 7 float xx, pn, p; 8 in

p = 1, 2, cos 2n + p)πj = cos 2nπj 2n + p)πj, sin = sin 2nπj 7.1) f j = a ) 0 + a p + a n+p cos 2nπj p=1 p=0 1 + ) b n+p p=0 sin 2nπj 1 2 a 0 +

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

( ) kadai4, kadai4.zip.,. 3 cos x [ π, π] Python. ( 100 ), x cos x ( ). (, ). def print cos(): print cos()

( ) a, b c a 2 + b 2 = c : 2 2 = p q, p, q 2q 2 = p 2. p 2 p q 2 p, q (QED)

Bessel ( 06/11/21) Bessel 1 ( ) 1.1 0, 1,..., n n J 0 (x), J 1 (x),..., J n (x) I 0 (x), I 1 (x),..., I n (x) Miller (Miller algorithm) Bess

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29

J1-a.dvi

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Ver ceil floor FunctionGenerator (PTZCameraSony)

橡実験IIINMR.PDF

GraphicsWithPlotFull.nb Plot[{( 1), ( ),...}, {( ), ( ), ( )}] Plot Plot Cos x Sin x, x, 5 Π, 5 Π, AxesLabel x, y x 1 Plot AxesLabel

C

2017 p vs. TDGL 4 Metropolis Monte Carlo equation of continuity s( r, t) t + J( r, t) = 0 (79) J s flux (67) J (79) J( r, t) = k δf δs s( r,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =

Windows (L): D:\jyugyou\ D:\jyugyou\ D:\jyugyou\ (N): en2 OK 2

[ 1] 1 Hello World!! 1 #include <s t d i o. h> 2 3 int main ( ) { 4 5 p r i n t f ( H e l l o World!! \ n ) ; 6 7 return 0 ; 8 } 1:

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

sarupaw.dvi

29

数学論文の書き方 - 第1回:入門編

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

6 Tgif William Chia-Wei Chang tgif 3.0 pixmap URL Tgif 6.1: Tgif

Fortran90/95 [9]! (1 ) " " 5 "Hello!"! 3. (line) Fortran Fortran 1 2 * (1 ) 132 ( ) * 2 ( Fortran ) Fortran ,6 (continuation line) 1

1 matplotlib matplotlib Python matplotlib numpy matplotlib Installing A 2 pyplot matplotlib 1 matplotlib.pyplot matplotlib.pyplot plt import import nu

PowerPoint プレゼンテーション

untitled

Microsoft Word - C.....u.K...doc

Transcription:

gnuplot 2007 7 11 gnuplot C 1 gnuplot gnuplot C gnuplot PGPLOT ROOT 2 2.1 gnuplot gnuplot 2D 3D gnu Free Software 1

Foundation (FSF) GNU 1 gnuplot ( ) gnuplot UNIX Windows Machintosh Excel Excel gnuplot C web http://t16web.lanl.gov/kawano/gnuplot/ http://lagendra.s.kanazawa-u.ac.jp/ogurisu/manuals/gnuplot-intro/ 2.2 web gnuplot $ gnuplot gnuplot gnuplot> exit 2.3 2 gnuplot> set samples 1024 1024 gnuplot> plot sin(x) sin gnuplot> plot [0:6.28] [-1.5:1.5] sin(x) gnuplot> plot [-6.28:6.28] [-1.5:1.5] sin(x),cos(x),tan(x) 1 Unix 2

gnuplot> plot x**3+x+1 x 3 + x + 1 gnuplot> plot x**0.5 x 0.5 gnuplot> plot log(x) log e (x) gnuplot> plot log10(x) log 10 (x) gnuplot> plot real(exp({0,1}*x)) R(e ix ) gnuplot> plot sqrt(x) x gnuplot> f(x)=sin(x) gnuplot> g(x)=cos(x) gnuplot> plot f(x)+g(x), f(x)*g(x) [ 1] sin(x) cos(x) sin 2 (x) sin(x) + cos(x) xe x x x3 6 + x5 120 x7 5040 cos(x), sin(x) gnuplot 2 gnuplot> {1,0} 1 gnuplot> {0,1} i gnuplot> {5.3,6.8} 5.3 + 6.8i 2.4 3 3 3 gnuplot> splot x**2+y**2 x 2 + y 2 gnuplot> splot x*sin(x+y) x sin(x + y) 3 set hidden3d set isosample x y 40 gnuplot> set hidden3d gnuplot> set isosample 40,40 gnuplot> splot 1/(x*x+y*y+5)*cos(0.1*(x*x+y*y)) 3

2.5 gnuplot> set parametric gnuplot> plot sin(5*t), cos(2*t+pi/2) gnuplot> set noeparametric 2.6 2 θ sin θ cos θ tan θ plot using x y gnuplot> plot "trifunc.txt" using 1:2 gnuplot> plot "trifunc.txt" using 1:2 with line gnuplot> plot "trifunc.txt" using 1:2 with line, "trifunc.txt" using 1:3 with line, "trifunc.txt" using 1:4 with line (Enter ) tan(x) set xrange[ymin:ymax] replot gnuplot> set yrange[-1.5:1.5] gnuplot> replot 2.7 2.7.1 gnuplot 1 2 http://www.akita-nct.jp/ yamamoto/lecture/2006/5e/gnuplot/trifunc.txt 4

gnuplot> set terminal emf gnuplot> set output "hogehoge.emf" emf hogehoge.emf 1: set terminal x11 windows emf postscript gif png epslatex UNIX Windows Windows UNIX web web L A TEX 2.7.2 MS word gnuplot MS Word Windows emf emf gnuplot> set terminal emf gnuplot> set output "hoge.emf" gnuplot> plot sin(x) emf hoge.emf emf hoge.emf MS Word Word emf 2.7.3 Starsuite Linux office Sun microsystems Starsuite Starsuite MS Word 5

2.7.4 L A TEX L A TEX L A TEX gnuplot> set terminal epslatex gnuplot> set output "hoge.eps" gnuplot> plot sin(x) hoge.eps hoge.tex L A TEX \documentclass[10pt,a4paper]{jarticle} \usepackage{graphicx} \begin{document} \begin{figure}[hbtp] \input{hoge} \caption{} \end{figure} \end{document} 3 gnuplot 3.1 gnuplot gnuplot> help gnuplot> help plot help web 3.2 gnuplot 3 6

3.3 gnuplot> pwd pwd cd gnuplot> cd "/home/yamamoto/hoge" gnuplot> cd ".." ( ) ( ) gnuplot> gnuplot>!ls! 4 C gnuplot 4.1 gnuplot C C gnuplot C gnuplot UNIX UNIX ( ) ( ) ls -l ls -l sort -n -k +5 ls -l sort -n -k +5 3 2 UNIX 3 man lsman sort f: b: q: 7

4.2 gnuplot C gnuplot C gnuplot (1) (2) (3) FILE *hoge; gnuplot hoge = popen("gnuplot -persist","w"); popen() gnuplot persist gnuplot gnuplot popen() gnuplot fprintf() fprintf(hoge, "plot sin(x)\n"); fprintf gnuplot C gnuplot Character-based User Interface(CUI) pclose(hoge); 4.3 4.3.1 C gnuplot 1 fprintf() gnuplot 1 #include <s t d i o. h> 2 3 int main ( void ){ 4 FILE gp ; 5 1: C gnuplot 8

6 gp = popen ( gnuplot p e r s i s t, w ) ; 7 f p r i n t f ( gp, p l o t s i n ( x )\ n ) ; 8 9 p c l o s e ( gp ) ; 10 11 return 0 ; 12 } 4.3.2 gnuplot 1. 21 plot - [ ] 2. 24 fprintf(, ) 3. e 27 fprintf(,"e\n") 2: 1 #include <s t d i o. h> 2 #include <math. h> 3 #define NX 720 4 5 int main ( void ){ 6 FILE gp ; 7 int i ; 8 double dx, x [NX+1], y [NX+1]; 9 10 / / 11 dx=4 M PI/NX; 12 for ( i =0; i<=nx; i ++){ 13 x [ i ]= 2 M PI+i dx ; 14 y [ i ]= s i n ( x [ i ] ) ; 15 } 16 17 / / 18 gp = popen ( gnuplot p e r s i s t, w ) ; 19 f p r i n t f ( gp, s e t xrange [ 6. 5 : 6. 5 ] \ n ) ; 20 f p r i n t f ( gp, s e t yrange [ 1. 5 : 1. 5 ] \ n ) ; 21 f p r i n t f ( gp, p l o t with l i n e s l i n e t y p e 1 t i t l e \ s i n \ \n ) ; 9

22 23 for ( i =0; i<=nx; i ++){ 24 f p r i n t f ( gp, %f \ t%f \n, x [ i ], y [ i ] ) ; // 25 26 } 27 f p r i n t f ( gp, e \n ) ; 28 29 p c l o s e ( gp ) ; 30 31 return 0 ; 32 } 4.3.3 3 27 plot " " [ ] 3: 1 #include <s t d i o. h> 2 #include <math. h> 3 #define NX 720 4 5 int main ( void ){ 6 FILE data, gp ; 7 char d a t a f i l e ; 8 int i ; 9 double dx, x, y ; 10 11 / / 12 d a t a f i l e= out. dat ; 13 data = fopen ( d a t a f i l e, w ) ; 14 15 dx=4 M PI/NX; 16 for ( i =0; i<=nx; i ++){ 17 x= 2 M PI+i dx ; 18 y=s i n ( x ) ; 19 f p r i n t f ( data, %f \ t%f \n, x, y ) ; 20 } 21 f c l o s e ( data ) ; 22 23 / / 24 gp = popen ( gnuplot p e r s i s t, w ) ; 25 f p r i n t f ( gp, s e t xrange [ 6. 5 : 6. 5 ] \ n ) ; 26 f p r i n t f ( gp, s e t yrange [ 1. 5 : 1. 5 ] \ n ) ; 27 f p r i n t f ( gp, p l o t \ %s \ with l i n e s l i n e t y p e 1 t i t l e \ s i n \ \n, d a t a f i l e ) ; 28 p c l o s e ( gp ) ; 29 30 return 0 ; 31 } 10

5 set 4 4: gnuplot 1 #include <s t d i o. h> 2 #include <math. h> 3 void m k t r i a n g l e d a t a ( char a, double x1, double x2, int n ) ; 4 void mk graph ( char f, char xlb, double x1, double x2, 5 char ylb, double y1, double y2 ) ; 6 7 / ========================================================== / 8 / main f u n c t i o n / 9 / ========================================================== / 10 int main ( void ){ 11 12 double p i = 4 atan ( 1 ) ; 13 14 m k t r i a n g l e d a t a ( out. t x t, 2 pi, 2 pi, 1 0 0 0 ) ; 15 mk graph ( out. t x t, x, 2 pi, 2 pi, y, 3, 3 ) ; 16 17 return 0 ; 18 } 19 20 / ========================================================== / 21 / make a data f i l e / 22 / ========================================================== / 23 void m k t r i a n g l e d a t a ( char a, double x1, double x2, int n ){ 24 double x, dx ; 25 double y1, y2, y3 ; 26 int i ; 27 FILE out ; 28 29 dx = ( x2 x1 )/ n ; 30 31 out = fopen ( a, w ) ; 32 33 for ( i =0; i<=n ; i ++){ 34 x = x1+dx i ; 35 y1 = s i n ( x ) ; 36 y2 = cos ( x ) ; 37 y3 = tan ( x ) ; 38 39 f p r i n t f ( out, %e \ t%e \ t%e \ t%e \n, x, y1, y2, y3 ) ; 40 } 41 42 f c l o s e ( out ) ; 43 } 44 45 / ========================================================== / 46 / make a graph / 47 / ========================================================== / 48 void mk graph ( char f, char xlb, double x1, double x2, 49 char ylb, double y1, double y2 ) 50 { 51 52 FILE gp ; 53 54 gp = popen ( gnuplot p e r s i s t, w ) ; 11

55 56 f p r i n t f ( gp, r e s e t \n ) ; 57 58 / s e t x g r i d / 59 60 f p r i n t f ( gp, s e t g r i d \n ) ; 61 62 / s e t x a x i s / 63 64 f p r i n t f ( gp, s e t x t i c s 1\n ) ; 65 f p r i n t f ( gp, s e t mxtics 10\n ) ; 66 f p r i n t f ( gp, s e t x l a b e l \ %s \ \n, xlb ) ; 67 f p r i n t f ( gp, s e t n o l o g s c a l e x\n ) ; 68 f p r i n t f ( gp, s e t xrange [%e:%e ] \ n, x1, x2 ) ; 69 70 / s e t y a x i s / 71 72 f p r i n t f ( gp, s e t y t i c s 1\n ) ; 73 f p r i n t f ( gp, s e t mytics 10\n ) ; 74 f p r i n t f ( gp, s e t y l a b e l \ %s \ \n, ylb ) ; 75 f p r i n t f ( gp, s e t n o l o g s c a l e y\n ) ; 76 f p r i n t f ( gp, s e t yrange [%e:%e ] \ n, y1, y2 ) ; 77 78 / p l a t graphs / 79 80 f p r i n t f ( gp, s e t t e r m i n a l x11 \n ) ; 81 82 f p r i n t f ( gp, p l o t \ %s \ u s i n g 1 : 2 with l i n e, \ 83 \ %s \ u s i n g 1 : 3 with l i n e, \ 84 \ %s \ u s i n g 1 : 4 with l i n e \n, f, f, f ) ; 85 86 f p r i n t f ( gp, s e t t e r m i n a l emf\n ) ; 87 f p r i n t f ( gp, s e t output \ t r i. emf\ \n ) ; 88 89 f p r i n t f ( gp, r e p l o t \n ) ; 90 91 p c l o s e ( gp ) ; 92 } 12

A A.1 gnuplot 2 2: gnuplot x z rz [1] abs(z) z ibeta(p,q,rz) acos(z) arccos(z) igamma(a,rz) acosh(z) arccosh(z) imag(z) z I(z) asin(z) arcsin(z) int(rz) rz asinh(z) arcshinh(z) inverf(rz) erf(rz) atan(z) arctan(z) invnorm(rz) norm(rz) atan2(z1,z2) ( π π) lgamma(rz) atanh(z) arctanh(z) log(z) log e (z) besj0(x) 0 J 0 (x) log10(z) log 10 (z) besj1(x) 1 J 1 (x) norm(rz) besy0(x) 0 Y 0 (x) rand(rz) eesy1(x) 1 Y 1 (x) real(z) z R(z) ceil(rz) z sgn(rz) R(z) cos(z) cos(z) sin(z) sin(z) cosh(z) cosh(z) sinh(z) sinh(z) erf(rz) ( ) erf(z) sqrt(z) z erfc(rz) 1 erf(z) tan(z) tan(z) exp(z) e z tanh(z) tanh(z) floor(rz) z gamma(rz) Γ(z r ) 13

A.2 gnuplot gnuplot 3 load "" 3: gnuplot [1] cd call clear exit fit help if load pause plot print pwd quit replot reread reset save set show shell splot test update ($n) GNUPLOT GNUPLOT GNUPLOT plot load set 3 fit 14

A.3 gnuplot (set) set show all rest 4 help web 4: gnuplot [2] angles missing x2label arrow mouse x2mtics autoscale scale multiplot x2range / bars mx2tics x2tics bmargin mxtics x2zeroaxis / border ( ) my2tics xdata boxwidth mytics xdtics cbdata mztics xlabel cbdtics offsets xmtics cblabel origin xrange / cbmtics output / xtics cbrange palette xzeroaxis / cbtics parametric y2data clabel pm3d 3 y2dtics clip pointsize y2label cntrparam polar y2mtics colorbox print y2range / contour rmargin y2tics datafile rrange / y2zeroaxis / date specifiers samples ydata decimalsign size ydtics dgrid3d 3 style ylabel dummy surface 3 ymtics encoding term yrange / fit terminal ytics fontpath tics yzeroaxis / format ticscale zdata grid ticslevel splot zdtics hidden3d time zero historysize time specifiers zeroaxis / isosamples 3 timefmt zlabel key timestamp zmtics label title zrange / lmargin tmargin ztics loadpath trange / locale urange / log log view 3 logscale vrange / mapping 3 x2data margin x2dtics 15

B gnuplot e ( 4 ) 5: 1 #include <s t d i o. h> 2 #include <math. h> 3 #define NX 720 4 5 int main ( void ){ 6 FILE gp ; 7 int i ; 8 double dx, x [NX+1], y1 [NX+1], y2 [NX+1], y3 [NX+1]; 9 10 / / 11 dx=4 M PI/NX; 12 for ( i =0; i<=nx; i ++){ 13 x [ i ]= 2 M PI+i dx ; 14 y1 [ i ]= s i n ( x [ i ] ) ; 15 y2 [ i ]= cos ( x [ i ] ) ; 16 y3 [ i ]= tan ( x [ i ] ) ; 17 } 18 19 / / 20 gp = popen ( gnuplot p e r s i s t, w ) ; 21 f p r i n t f ( gp, s e t xrange [ 6. 5 : 6. 5 ] \ n ) ; 22 f p r i n t f ( gp, s e t yrange [ 1. 5 : 1. 5 ] \ n ) ; 23 f p r i n t f ( gp, p l o t with l i n e s l i n e t y p e 1 t i t l e \ s i n \,\ 24 with l i n e s l i n e t y p e 2 t i t l e \ cos \,\ 25 with l i n e s l i n e t y p e 3 t i t l e \ tan \ \n ) ; 26 27 / ( s i n ) / 28 for ( i =0; i<=nx; i ++){ 29 f p r i n t f ( gp, %f \ t%f \n, x [ i ], y1 [ i ] ) ; 30 } 31 f p r i n t f ( gp, e \n ) ; 32 33 / 2 ( cos ) / 34 for ( i =0; i<=nx; i ++){ 35 f p r i n t f ( gp, %f \ t%f \n, x [ i ], y2 [ i ] ) ; 36 } 37 f p r i n t f ( gp, e \n ) ; 38 39 / 3 ( tan ) / 40 for ( i =0; i<=nx; i ++){ 41 f p r i n t f ( gp, %f \ t%f \n, x [ i ], y3 [ i ] ) ; 42 } 43 f p r i n t f ( gp, e \n ) ; 44 45 p c l o s e ( gp ) ; 46 47 return 0 ; 48 } 16

C C.1 Windows Windouws gnuplot wgnuplot wgnuplot UNIX C.2 Windous UNIX 5 Windows C gnuplot 5: gnuplot UNIX Windous UNIX Windos popen popen pcluse pclose gnuplot pgnuplot.exe -persist pause -1 [1] Gnuplot reference. http://plum.nak.nw.kanagawa-it.ac.jp/docs/latex/gnuplot-reference/. [2] http://t16web.lanl.gov/kawano/gnuplot/set.html. 17