3. :, c, ν. 4. Burgers : u t + c u x = ν 2 u x 2, (3), ν. 5. : u t + u u x = ν 2 u x 2, (4), c. 2 u t 2 = c2 2 u x 2, (5) (1) (4), (1 Navier Stokes,.,

Size: px
Start display at page:

Download "3. :, c, ν. 4. Burgers : u t + c u x = ν 2 u x 2, (3), ν. 5. : u t + u u x = ν 2 u x 2, (4), c. 2 u t 2 = c2 2 u x 2, (5) (1) (4), (1 Navier Stokes,.,"

Transcription

1 B:,, , 8, 15, 22 1,.,,,,.,.,,,., 1,. 1. :, ν. 2. : u t = ν 2 u x 2, (1), c. u t + c u x = 0, (2), ( ). 1

2 3. :, c, ν. 4. Burgers : u t + c u x = ν 2 u x 2, (3), ν. 5. : u t + u u x = ν 2 u x 2, (4), c. 2 u t 2 = c2 2 u x 2, (5) (1) (4), (1 Navier Stokes,., ν. u t + u u x = 1 p ρ x + ν 2 u x 2, (6) 2 gnuplot png,,,., gnuplot png( ),.,. 2.1 png gnuplot, gnuplot. gnuplot 2

3 , gnuplot. 1.,, test.plt.,. set xrange[0:2*pi] set yrange[-1:1] set xlabel x set ylabel u(x,t) plot sin(x) title sin(x) set term png set output sincurve.png replot 2. gnuplot,, sin(x), sincurve.png, ( 1 ). gnuplot> cd test.plt gnuplot> load test.plt 2.2 gif 1. test2.plt), gunplot. * 1 set xrange[0:2*pi] set yrange[-1:1] set xlabel x set ylabel u(x,t) set term png set size 1, 1 set output sincurve_000.png *1 eps,, png. 3

4 1 sin(x) 0.5 u(x,t) x 1 sin(x). plot sin(x) title t=0 set output sincurve_001.png plot sin(x+pi/8.) title t=1 set output sincurve_002.png plot sin(x+2.*pi/8.) title t=2... set output sincurve_015.png plot sin(x+15.*pi/8.) title t=15 2. ImageMagic convert, png gif. * 2 > convert sincurve_???.png sincurve.gif *2? 1. 4

5 3. sincurve.gif, gif. 2.3 gif FORTRAN, gnuplot, png., convert, png. 1. FORTRAN (sample.f90). * 3!! sample.f90! ( )! : , , ! 0 \le x \le Lx N! 0 \le t \le t_max dt j_max=t_max/dt! t_out (j_out=t_out/dt )! c :! pi:! u(x,t)=sin((x-x_0)+c(t-t_0))! implicit none integer :: i, j, k, j_max, j_out real(8) :: t_0 real(8) :: dx, x_0 real(8) :: c integer, parameter :: N=256 real(8), parameter ::pi= , Lx=2.D+0*pi *3, 0 x L x N, 0 t t max dt sin((x x 0 ) + c(t t 0 )) t out (fort????.dat). L x = 2π, N = 256, c = 1, t max = 40, dt = 10 2, t out = 0.25, x 0 = 0, t 0 = 0., fort 0000.dat fort 0160.dat

6 real(8), parameter :: t_max=40.0d0, t_out=.25d+0, dt=1.d-2 real(8) :: x(0:n+1), t, u(0:n+1) dx=lx/dble(n) c=1.d+0 x_0=0.d+0 t_0=0.d+0 j_max=int(t_max/dt) j_out=int(t_out/dt)! k=0 j=0 t=t_0 do i=0,n x(i)=dble(i)*dx u(i)=dsin((x(i)-x_0)+c*(t-t_0)) enddo! call save_data(k, x, t, u, n)! do j=1, j_max t=t+dt do i=0, n x(i)=dble(i)*dx u(i)=dsin((x(i)-x_0)+c*(t-t_0)) enddo! if (mod(j, j_out)==0) then 6

7 k=k+1 call save_data(k, x, t, u, n) endif end do stop end program! subroutine counter(i, data_number) integer :: i, o_4, o_3, o_2, o_1 character(len=10) :: i_data= character(4) :: data_number o_4=i/1000 o_3=(i-o_4*1000)/100 o_2=(i-o_4*1000-o_3*100)/10 o_1= i-o_4*1000-o_3*100-o_2*10 data_number=i_data(o_4+1:o_4+1)// & i_data(o_3+1:o_3+1)// & i_data(o_2+1:o_2+1)// & i_data(o_1+1:o_1+1) return end subroutine counter! subroutine save_data(k, x, t, u, n) integer :: k, i, n real(8) :: x(0:n), t, u(0:n) character(4) :: data_number 7

8 call counter(k, data_number) do i=0, n open(50,file= fort_ //data_number//.dat, & status= unknown ) write(50, *) x(i), t, u(i) enddo end subroutine save_data 2. sample.f90, fort 0000.dat fort 0160.dat 161. > gfortran sample.f90 >./a.out 3. gnuplot (sample.plt) *4, fort 0000.dat fort 0160.dat. (mov 0000.png mov 0160.png.) gnuplot> load sample.plt sample.plt. 6, gnuplot FORTRAN DO. set xrange [0:2*pi] set yrange [-1:1] set term png set size square set xlabel x *4,. /home3/iwayama/exp_17/pde/exp1/sample.plt 8

9 set ylabel u(x) do for [i = 0:160] { <--- ii = sprintf("%04d", i) outfile = "mov_". ii. ".png" infile = "fort_". ii. ".dat" set output outfile plot infile u 1:3 w l t "t=".ii } 4. convert, mov 0000.png mov 0160.png move.gif. > convert mov_????.png mov.gif 2.4 sample.f90 diffusion.f90,, 1, { 1 4πν(t + t0 ) exp (x x 0) 2 } 4ν(t + t 0 ) (7). ν x 0, t 0, dt, t out,. sample.plt diffusion.plt, png gif., t 0,. * 5 gif iwayama@kobe-u.ac.jp. *5 t 0 = 0 t = 0 (7).. 9

10 3 1,., ν. u t = ν 2 u x 2, (8) 3.1 : (8), 0 x L x. N., x i, x x i = i x, x = L x N, (9).,, j, t t j = j t, (10). (8), x, t,, (8), i, j : : u(x, t) u(x i, t j ) (11) (8),.. x i 2 u/ x 2 x i 1, x i, x i+1 3 u. x, u(x i±1, t j ) Taylor u(x i±1, t j ) = u(x i, t j ) ± u x x u x 2 ( x)2 + O( x 3 ), (12)., O( x 3 ) ( x) 3., 2 u/ x 2 2 u x 2 = u(x i+1, t j ) + u(x i 1, t j ) 2u(x i, t j ) ( x) 2 + O( x 2 ) (13) 10

11 . *6, ( x) 2. : 2 u x 2 = u(x i+1, t j ) + u(x i 1, t j ) 2u(x i, t j ) ( x) 2 (14), Euler., t 1, u t = u(x i, t j+1 ) u(x i, t j ) t (15). :, (8), 2, 1 u(x i, t j+1 ) u(x i, t j ) t = ν u(x i+1, t j ) + u(x i 1, t j ) 2u(x i, t j ) ( x) 2, (16), u(x i, t j+1 ) = u(x i, t j ) + ν t ( x) 2 {u(x i+1, t j ) + u(x i 1, t j ) 2u(x i, t j )},(17), t j u, t j+1 u. 3.2 (17),.,. 0 x L x.,, u(0, t) = u(l x, t), (18). * 7 *6 O( x), O( x) 2. *7 u(x 0, t j ) = u(x N, t j ). 11

12 Gauss, u(x, 0) = exp [ a ( x L ) ] 2 x 2 (19). ν = , L x = 2π, N = 256, t = , a = 10. (diffusion sample.f90).. gnuplot, diffusion sample.plt. * 8,., diffusion theory.f90. * : diffusion sample.f90!1! Euler! : Takahiro IWAYAMA! ! ! ! ! program diffusion implicit none *8 /home3/iwayama/exp_17/pde/exp2/. *9 theory 0000.dat. gunplot u., fort 0150.dat theory 0150.dat., (19), < x <.,. 12

13 integer :: i, j, k real(8) :: t, dt, t_max, t_out real(8) :: dx real(8) :: pi, Lx, nu integer, parameter :: N=256 real(8), parameter :: c=1.0d-1, a=10.d+0 real(8) :: x(0:n+1)!x real(8) :: u(0:n+1)! real(8) :: v(0:n+1)! real(8) :: d2u(1:n)!u x 2! parameters for output integer :: t_step, j_out! t_max=100.0d0!t_max dt=1.0d-2! t_k=k*dt t_out=1.0d+0!t_out t_step=int(t_max/dt) j_out=int(t_out/dt) nu=2.0d-3! pi=acos(-1.0d+0) Lx=2.0D+0*pi dx=lx/dble(n)!!!! k=0 t=dble(0) do i=1, N x(i)=dble(i)*dx u(i)=dexp(-a*(x(i)-lx/dble(2))**2) enddo 13

14 ! call bound_cond(u,n)! call save_data(k, x, t, u, n)! do j=1, t_step t=t+dt! u 2 call second_deriv(u, d2u, dx, N)! do i=1, N! Euler enddo! call bound_cond(u, N)! if (mod(j, j_out)==0) then k=k+1 call save_data(k, x, t, u, n) endif enddo!<-- stop end program diffusion! subroutine second_deriv(u, d2u, dx, N)! u x 2 integer :: N, i real(8) :: u(0:n+1) 14

15 real(8) :: real(8) :: d2u(1:n) dx do i=1,n d2u(i)=(u(i+1)+u(i-1)-dble(2)*u(i))/dx**2 end do return end subroutine second_deriv! subroutine bound_cond(u,n)! integer :: N real(8) :: u(0:n+1) u(0)=u(n) u(n+1)=u(1) return end subroutine bound_cond! subroutine counter(i, data_number) integer :: i, o_4, o_3, o_2, o_1 character(len=10) :: i_data= character(4) :: data_number o_4=i/1000 o_3=(i-o_4*1000)/100 o_2=(i-o_4*1000-o_3*100)/10 o_1= i-o_4*1000-o_3*100-o_2*10 data_number=i_data(o_4+1:o_4+1)// & i_data(o_3+1:o_3+1)// & i_data(o_2+1:o_2+1)// & 15

16 i_data(o_1+1:o_1+1) return end subroutine counter! subroutine save_data(k, x, t, u, n) integer :: k, i, n real(8) :: x(0:n+1), t, u(0:n+1) character(4) :: data_number call counter(k, data_number) do i=1, n open(50,file= fort_ //data_number//.dat, & status= unknown ) write(50, *) x(i), t, u(i) enddo end subroutine save_data 3.4 ν,.,. gif.,, L x, N, t).. (ν. von Neumann,.) 16

17 3.5 von Neumann t, t,., ν x, t, : t ( x)2 2ν. (20) (20) von Neumann. (20), t, ν x. * 10 *10 u(x i, t j+1 ) = λu(x i, t j )e ikx j x Fourier, λ, Euler λ Euler = ν t (cos(k x) 1) ( x) 2 = 1 4 ν t k x sin2 ( x) 2 2 (21). von Neumann 1 λ 1 (22), (21) 2 ν > 0., ν t ( x) (23)., u(x, t + t) = λu(x, t)e ikx, λ theor = e k2 ν t (24). (21) (24), (21), k x 1, λ Euler = 1 νk 2 t + O((k x) 2 ) (25). (24), k 2 ν t 1, λ theor = 1 νk 2 t + O((k 2 ν t) 2 ) (26).. 17

18 4 *11 1,., c. u t = c u x, (27) 4.1 (27) x ct f(x ct) : u(x, t) = f(x ct). (28) (28) c x c, c x c. 4.2 : (27), 0 x L x. N., x i, x x i = i x, x = L x N, (29).,, j, t t j = j t, (30) *11, /home3/iwayama/exp_16/pde/exp3/. > cp /home3/iwayama/exp_16/pde/exp3/a*.. 18

19 . (27), x, t,, (27), i, j : u(x, t) u(x i, t j ) (31) : (8),.. x i u/ x x i 1, x i, x i+1 3 u. x, u(x i±1, t j ) Taylor u(x i±1, t j ) = u(x i, t j ) ± u x x u x 2 ( x)2 + O( x 3 ), (32)., O( x) 3 ( x) 3., u/ x, 3 : u x = u(x i+1, t j ) u(x i, t j ) + O( x). (33) x u x = u(x i, t j ) u(x i 1, t j ) + O( x). (34) x u x = u(x i+1, t j ) u(x i 1, t j ) + O( x 2 ). (35) 2 x,, 3.,, O( x) ( x 1 ), O( x 2 ) ( x 2 ). :, Euler., t 1,. u t = u(x i, t j+1 ) u(x i, t j ) t 19 (36)

20 :, (27), 1, u(x i, t j+1 ) = u(x i, t j ) c t x {u(x i+1, t j ) u(x i, t j )}. (37) u(x i, t j+1 ) = u(x i, t j ) c t x {u(x i, t j ) u(x i 1, t j )}. (38) 2, 1 3. u(x i, t j+1 ) = u(x i, t j ) c t 2 x {u(x i+1, t j ) u(x i 1, t j )}. (39), t j u, t j+1 u. 4.3 (37) (39),.,.,. * 12. L x /2, 1, u(0, t) = u(l x, t), (40) ( ) 4πx u(x, 0) = sin, (41) c = 0.1, L x = 2π, N = 256, t = L x *12 u(x 0, t j ) = u(x N, t j ). 20

21 (advection.f), (advection sample.f).. gnuplot, advection.plt * 13.,., advection theory.f. gif.,,,, t). :,.. ( CFL, von Neumnann (42).). ( ), u t = c u x + ν 2 u x 2 (42),, ν = c x/2,. (42) 2. Courant-Friedrichs-Lewy(CFL). * 14 *13,,,. *14 CFL,. (, CFL.), von Neumann. u(x l, t j ) = λ j û 0 e ikx l, x l = l x, t j = j t (37), (38), (39). ( ) λ forward = 1 γ e ik x 1 = 1 + γ γe ik x, (43) ( λ backward = 1 γ 1 e ik x) = 1 γ + γe ik x, (44) λ central = 1 iγ sin k x, (45). γ c t/ x Courant. 2 λ forward 2 = 1 + 4γ(1 + γ) sin 2 k x, (46) λ backward 2 = 1 4γ(1 γ) sin 2 k x (47) λ central 2 = 1 + γ 2 sin 2 k x, (48) 21

22 5 *15 1, 2 u t 2., c * 16. = c2 2 u x 2, (50) 5.1 (50) x ct x + ct f(x ct), g(x + ct) : u(x, t) = f(x ct) + g(x + ct). (51) (51) d Alembert, c f(x ct) x c, g(x + ct) x c. f, g,. 5.2 (50) (8), (50) 2, (8) 1., 2 1. (46), (48) γ > 0 λ > 1., (47) 0 < γ 1 (49) von Neumann. (49) CFL.,, γ,. *15, /home3/iwayama/exp_16/pde/exp4/. > cp /home3/iwayama/exp_16/pde/exp3/m*.. *16. 22

23 ., (50) 1,. v(x, t) u t., (50) u t = v, v t = c2 2 u x 2, (52a) (52b),,, Euler. 2, 1, u(x i, t j+1 ) u(x i, t j ) = v(x i, t j ), t (53a) v(x i, t j+1 ) v(x i, t j ) = c 2 u(x i+1, t j ) + u(x i 1, t j ) 2u(x i, t j ) t ( x) 2, (53b) u(x i, t j+1 ) = u(x i, t j ) + v(x i, t j ) t v(x i, t j+1 ) = v(x i, t j ) + c 2 t ( x) 2 {u(x i+1, t j ) + u(x i 1, t j ) 2u(x i, t j )}, (54a) (54b), t j u, v, t j+1 u, v., u, v. * (54),.,. 0 x L x., u(x, t) x = 0, (x = 0, L x ) (55). * 18 *17 2, 2. *18 u(x 0, t j ) = u(x 1, t j ), u(x N+1, t j ) = u(x N, t j ). 23

24 Gauss, u(x, 0) = exp [ a ( x L ) ] 2 x, v(x, 0) = 0, (56) 2. c = , L x = 2π, N = 256, t = , a = 10, 0 t 150. (wave sample.f).... gnuplot, wave.plt. * ,, u(0, t) = 0, u(l x, t) = 0 (57) (50),. 2. Euler,. Adams- Bashforth, ( ). 3. ( )Euler, von Neumann. * ,. *19 /home3/iwayama/exp_16/pde/exp4/. *20 : von Neumann

25 c1 c Euler c : Takahiro IWAYAMA c c c c c program diffusion implicit none integer i, j, k, N real*8 t, dt, t_max, t_out real*8 x, dx real*8 pi, nu, Lx, a! <- nu -> c parameter (nu=2.0d-3, a=10.d+0)! <- c parameter (N=256) real*8 u(0:n+1)!! <- v real*8 d2u(1:n)!u x 2 c parameters for output integer t_step, j_out c t_max=100.0d0!t_max! <- dt=1.0d-2! t_k=k*dt t_out=1.0d+0!t_out t_step=int(t_max/dt) j_out=int(t_out/dt) pi=acos(-1.0d+0)! 25

26 Lx=2.0D+0*pi dx=lx/dble(n)!! c k=0 t=dble(0) do i=1, N x=dble(i)*dx u(i)=dexp(-a*(x-lx/dble(2))**2)! <- v enddo c call bound_cond(u,n) c do i=0, N write(k+100,100) real(i)*dx, t, u(i) enddo c do j=1, t_step t=t+dt c u 2 call second_deriv(u, d2u, dx, N) c do i=1, N c Euler u(i)=u(i)+nu*d2u(i)*dt! <-u, v enddo c call bound_cond(u, N) c if (mod(j, j_out)==0) then k=k+1 do i=0, N 26

27 write(k+100,100) real(i)*dx, t, u(i) enddo close(k+100) endif enddo 100 format (3(1x,e12.5)) stop end c subroutine second_deriv(u,d2u,dx,n) c u x 2 integer N, i real*8 u(0:n+1) real*8 d2u(1:n) real*8 dx do i=1,n d2u(i)=(u(i+1)+u(i-1)-dble(2)*u(i))/dx**2 end do return end c subroutine bound_cond(u,n) c integer N real*8 u(0:n+1) u(0)=u(n) u(n+1)=u(1)! <-! <- 27

28 return end c ,, 211,, 2006.,, 6,,

3. :, c, ν. 4. Burgers : t + c x = ν 2 u x 2, (3), ν. 5. : t + u x = ν 2 u x 2, (4), c. 2 u t 2 = c2 2 u x 2, (5) (1) (4), (1 Navier Stokes,., ν. t +

3. :, c, ν. 4. Burgers : t + c x = ν 2 u x 2, (3), ν. 5. : t + u x = ν 2 u x 2, (4), c. 2 u t 2 = c2 2 u x 2, (5) (1) (4), (1 Navier Stokes,., ν. t + B: 2016 12 2, 9, 16, 2017 1 6 1,.,,,,.,.,,,., 1,. 1. :, ν. 2. : t = ν 2 u x 2, (1), c. t + c x = 0, (2). e-mail: iwayama@kobe-u.ac.jp,. 1 3. :, c, ν. 4. Burgers : t + c x = ν 2 u x 2, (3), ν. 5. : t +

More information

1 u t = au (finite difference) u t = au Von Neumann

1 u t = au (finite difference) u t = au Von Neumann 1 u t = au 3 1.1 (finite difference)............................. 3 1.2 u t = au.................................. 3 1.3 Von Neumann............... 5 1.4 Von Neumann............... 6 1.5............................

More information

05 I I / 56

05 I I / 56 05 I 2015 2015.05.14 I 05 2015.05.14 1 / 56 I 05 2015.05.14 2 / 56 cd mkdir vis01 OK cd vis01 cp /tmp/150514/leibniz.*. I 05 2015.05.14 3 / 56 I 05 2015.05.14 4 / 56 Information visualization Data visualization,

More information

4 2016 3 8 2.,. 2. Arakawa Jacobin., 2 Adams-Bashforth. Re = 80, 90, 100.. h l, h/l, Kármán, h/l 0.28,, h/l.., (2010), 46.2., t = 100 t = 2000 46.2 < Re 46.5. 1 1 4 2 6 2.1............................

More information

2 I I / 61

2 I I / 61 2 I 2017.07.13 I 2 2017.07.13 1 / 61 I 2 2017.07.13 2 / 61 I 2 2017.07.13 3 / 61 7/13 2 7/20 I 7/27 II I 2 2017.07.13 4 / 61 π-computer gnuplot MobaXterm Wiki PC X11 DISPLAY I 2 2017.07.13 5 / 61 Mac 1.

More information

2 A I / 58

2 A I / 58 2 A 2018.07.12 I 2 2018.07.12 1 / 58 I 2 2018.07.12 2 / 58 π-computer gnuplot 5/31 1 π-computer -X ssh π-computer gnuplot I 2 2018.07.12 3 / 58 gnuplot> gnuplot> plot sin(x) I 2 2018.07.12 4 / 58 cp -r

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

数値計算:有限要素法

数値計算:有限要素法 ( ) 1 / 61 1 2 3 4 ( ) 2 / 61 ( ) 3 / 61 P(0) P(x) u(x) P(L) f P(0) P(x) P(L) ( ) 4 / 61 L P(x) E(x) A(x) x P(x) P(x) u(x) P(x) u(x) (0 x L) ( ) 5 / 61 u(x) 0 L x ( ) 6 / 61 P(0) P(L) f d dx ( EA du dx

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

. (.8.). t + t m ü(t + t) + c u(t + t) + k u(t + t) = f(t + t) () m ü f. () c u k u t + t u Taylor t 3 u(t + t) = u(t) + t! u(t) + ( t)! = u(t) + t u(

. (.8.). t + t m ü(t + t) + c u(t + t) + k u(t + t) = f(t + t) () m ü f. () c u k u t + t u Taylor t 3 u(t + t) = u(t) + t! u(t) + ( t)! = u(t) + t u( 3 8. (.8.)............................................................................................3.............................................4 Nermark β..........................................

More information

Microsoft Word - 資料 (テイラー級数と数値積分).docx

Microsoft Word - 資料 (テイラー級数と数値積分).docx δx δx n x=0 sin x = x x3 3 + x5 5 x7 7 +... x ak = (-mod(k,2))**(k/2) / fact_k ( ) = a n δ x n f x 0 + δ x a n = f ( n) ( x 0 ) n f ( x) = sin x n=0 58 I = b a ( ) f x dx ΔS = f ( x)h I = f a h h I = h

More information

情報活用資料

情報活用資料 y = Asin 2πt T t t = t i i 1 n+1 i i+1 Δt t t i = Δt i 1 ( ) y i = Asin 2πt i T 21 (x, y) t ( ) x = Asin 2πmt y = Asin( 2πnt + δ ) m, n δ (x, y) m, n 22 L A x y A L x 23 ls -l gnuplot gnuplot> plot "sine.dat"

More information

Microsoft Word - 03-数値計算の基礎.docx

Microsoft Word - 03-数値計算の基礎.docx δx f x 0 + δ x n=0 a n = f ( n) ( x 0 ) n δx n f x x=0 sin x = x x3 3 + x5 5 x7 7 +... x ( ) = a n δ x n ( ) = sin x ak = (-mod(k,2))**(k/2) / fact_k 10 11 I = f x dx a ΔS = f ( x)h I = f a h I = h b (

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

GNUPLOT 28 3 15 UNIX Microsoft-Windows GNUPLOT 4 GNUPLOT 1 GNUPLOT 2 2 3 2.1 UNIX.......................................... 3 2.2 Windows........................................ 4 2.3..................................

More information

sim98-8.dvi

sim98-8.dvi 8 12 12.1 12.2 @u @t = @2 u (1) @x 2 u(x; 0) = (x) u(0;t)=u(1;t)=0fort 0 1x, 1t N1x =1 x j = j1x, t n = n1t u(x j ;t n ) Uj n U n+1 j 1t 0 U n j =1t=(1x) 2 = U n j+1 0 2U n j + U n j01 (1x) 2 (2) U n+1

More information

I

I I 1 2016.07.21 MPI OpenMP 84 1344 gnuplot Xming Tera term cp -r /tmp/160721 chmod 0 L x L y 0 k T (x, t) k: T t = k 2 T x 2 T t = s s : heat source 1D T (x, t) t = k 2 T (x, t) x 2 + s(x) 2D T (x,

More information

all.dvi

all.dvi fortran 1996 4 18 2007 6 11 2012 11 12 1 3 1.1..................................... 3 1.2.............................. 3 2 fortran I 5 2.1 write................................ 5 2.2.................................

More information

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr This manuscript is modified on March 26, 2012 3 : 53 pm [1] 1 ( ) Figure 1: (longitudinal wave) (transverse wave). P 7km S 4km P S P S x t x u(x, t) t = t 0 = 0 f(x) f(x) = u(x, 0) v +x (Fig.2) ( ) δt

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

GNUPLOT GNUPLOT GNUPLOT 1 ( ) GNUPLO

GNUPLOT GNUPLOT GNUPLOT 1 ( ) GNUPLO GNUPLOT 2004 10 6 UNIX Microsoft-Windows GNUPLOT 3.7 GNUPLOT 1 GNUPLOT 2 2 2 3 4 4 7 5 9 6 10 7 12 8 13 9 14 10 17 1 GNUPLOT............................... 3 2 MS-Windows GNUPLOT.................... 3

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

gnuplot.dvi

gnuplot.dvi gnuplot gnuplot 1 gnuplot exit 2 10 10 2.1 2 plot x plot sin(x) plot [-20:20] sin(x) plot [-20:20][0.5:1] sin(x), x, cos(x) + - * / ** 5 ** plot 2**x y =2 x sin(x) cos(x) exp(x) e x abs(x) log(x) log10(x)

More information

cpall.dvi

cpall.dvi 55 7 gnuplot gnuplot Thomas Williams Colin Kelley Unix Windows MacOS gnuplot ( ) ( ) gnuplot gnuplot 7.1 gnuplot gnuplot () PC(Windows MacOS ) gnuplot http://www.gnuplot.info gnuplot 7.2 7.2.1 gnuplot

More information

gnuplot gnuplot 1 3 y = x 3 + 3x 2 2 y = sin x sin(x) x*x*x+3*x*x

gnuplot gnuplot 1 3 y = x 3 + 3x 2 2 y = sin x sin(x) x*x*x+3*x*x gnuplot gnuplot y = x + x y = sin x.8 sin(x) 8 7 6 x*x*x+*x*x.6.. -. -. -.6 -.8 - - - - - - - -. - -. - -.. gnuplot gnuplot> set xrange[-.:.] gnuplot> plot x**+*x** y = x x gnuolot> reset gnuplot> plot

More information

Evoltion of onentration by Eler method (Dirihlet) Evoltion of onentration by Eler method (Nemann).2 t n =.4n.2 t n =.4n : t n

Evoltion of onentration by Eler method (Dirihlet) Evoltion of onentration by Eler method (Nemann).2 t n =.4n.2 t n =.4n : t n 5 t = = (, y, z) t (, y, z, t) t = κ (68) κ [, ] (, ) = ( ) A ( /2)2 ep, A =., t =.. (69) 4πκt 4κt = /2 (, t) = for ( =, ) (Dirihlet ondition) (7) = for ( =, ) (Nemann ondition) (7) (68) (, t) = ( ) (

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A B f : A B 4 (i) f (ii) f (iii) C 2 g, h: C A f g = f h g = h (iv) C 2 g, h: B C g f = h f g = h 4 (1) (i) (iii) (2) (iii) (i) (3) (ii) (iv) (4)

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

1.3 2 gnuplot> set samples gnuplot> plot sin(x) sin gnuplot> plot [0:6.28] [-1.5:1.5] sin(x) gnuplot> plot [-6.28:6.28] [-1.5:1.5] sin(x),co

1.3 2 gnuplot> set samples gnuplot> plot sin(x) sin gnuplot> plot [0:6.28] [-1.5:1.5] sin(x) gnuplot> plot [-6.28:6.28] [-1.5:1.5] sin(x),co gnuplot 8 gnuplot 1 1.1 gnuplot gnuplot 2D 3D gnuplot ( ) gnuplot UNIX Windows Machintosh Excel gnuplot C 1.2 web gnuplot $ gnuplot gnuplot gnuplot> exit 1 1.3 2 gnuplot> set samples 1024 1024 gnuplot>

More information

演習2

演習2 神戸市立工業高等専門学校電気工学科 / 電子工学科専門科目 数値解析 2017.6.2 演習 2 山浦剛 (tyamaura@riken.jp) 講義資料ページ h t t p://clim ate.aic s. riken. jp/m embers/yamaura/num erical_analysis. html 曲線の推定 N 次多項式ラグランジュ補間 y = p N x = σ N x x

More information

11042 計算機言語7回目 サポートページ:

11042 計算機言語7回目  サポートページ: 11042 7 :https://goo.gl/678wgm November 27, 2017 10/2 1(print, ) 10/16 2(2, ) 10/23 (3 ) 10/31( ),11/6 (4 ) 11/13,, 1 (5 6 ) 11/20,, 2 (5 6 ) 11/27 (7 12/4 (9 ) 12/11 1 (10 ) 12/18 2 (10 ) 12/25 3 (11

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2 212 1 6 1. (212.8.14) 1 1.1............................................. 1 1.2 Newmark β....................... 1 1.3.................................... 2 1.4 (212.8.19)..................................

More information

x1 GNUPLOT 2 x4 12 x1 Gnuplot Gnuplot,,. gnuplot, PS (Post Script), PS ghostview.,.,,,.,., gnuplot,,, (x2). x1.1 Gnuplot (gnuplot, quit) gnuplot,. % g

x1 GNUPLOT 2 x4 12 x1 Gnuplot Gnuplot,,. gnuplot, PS (Post Script), PS ghostview.,.,,,.,., gnuplot,,, (x2). x1.1 Gnuplot (gnuplot, quit) gnuplot,. % g Gnuplot Shigetoshi Yazaki gnuplot(ver. 3.0).,.,. ( ), (, ) 3. x1 Gnuplot 2 x1.1 Gnuplot (gnuplot, quit) : : : : : : : : : : : : : 2 x1.2 (plot) : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

programmingII2019-v01

programmingII2019-v01 II 2019 2Q A 6/11 6/18 6/25 7/2 7/9 7/16 7/23 B 6/12 6/19 6/24 7/3 7/10 7/17 7/24 x = 0 dv(t) dt = g Z t2 t 1 dv(t) dt dt = Z t2 t 1 gdt g v(t 2 ) = v(t 1 ) + g(t 2 t 1 ) v v(t) x g(t 2 t 1 ) t 1 t 2

More information

(Basic Theory of Information Processing) Fortran Fortan Fortan Fortan 1

(Basic Theory of Information Processing) Fortran Fortan Fortan Fortan 1 (Basic Theory of Information Processing) Fortran Fortan Fortan Fortan 1 17 Fortran Formular Tranlator Lapack Fortran FORTRAN, FORTRAN66, FORTRAN77, FORTRAN90, FORTRAN95 17.1 A Z ( ) 0 9, _, =, +, -, *,

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

num3.dvi

num3.dvi kanenko@mbk.nifty.com http://kanenko.a.la9.jp/ ,, ( ) Taylor. ( 1) i )x 2i+1 sinx = (2i+1)! i=0 S=0.0D0 T=X; /* */ DO 100 I=1,N S=S+T /* */ T=-T*X*X/(I+I+2)/(I+I+3) /* */ 100 CONTINUE. S=S+(-1)**I*X**(2*i+1)/KAIJO(2*I+1).

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

Bessel ( 06/11/21) Bessel 1 ( ) 1.1 0, 1,..., n n J 0 (x), J 1 (x),..., J n (x) I 0 (x), I 1 (x),..., I n (x) Miller (Miller algorithm) Bess

Bessel ( 06/11/21) Bessel 1 ( ) 1.1 0, 1,..., n n J 0 (x), J 1 (x),..., J n (x) I 0 (x), I 1 (x),..., I n (x) Miller (Miller algorithm) Bess Bessel 5 3 11 ( 6/11/1) Bessel 1 ( ) 1.1, 1,..., n n J (x), J 1 (x),..., J n (x) I (x), I 1 (x),..., I n (x) Miller (Miller algorithm) Bessel (6 ) ( ) [1] n n d j J n (x), d j I n (x) Deuflhard j= j=.1

More information

1 1 Gnuplot gnuplot Windows gnuplot gp443win32.zip gnuplot binary, contrib, demo, docs, license 5 BUGS, Chang

1 1 Gnuplot gnuplot   Windows gnuplot gp443win32.zip gnuplot binary, contrib, demo, docs, license 5 BUGS, Chang Gnuplot で微分積分 2011 年度前期 数学解析 I 講義資料 (2011.6.24) 矢崎成俊 ( 宮崎大学 ) 1 1 Gnuplot gnuplot http://www.gnuplot.info/ Windows gnuplot 2011 6 22 4.4.3 gp443win32.zip gnuplot binary, contrib, demo, docs, license 5

More information

格子QCD実践入門

格子QCD実践入門 -- nakamura at riise.hiroshima-u.ac.jp or nakamura at an-pan.org 2013.6.26-27 1. vs. 2. (1) 3. QCD QCD QCD 4. (2) 5. QCD 2 QCD 1981 QCD Parisi, Stamatescu, Hasenfratz, etc 2 3 (Cut-Off) = +Cut-Off a p

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx 1 1 1 1 1. U(x, t) U(x, t) + c t x c, κ. (1). κ U(x, t) x. (1) 1, f(x).. U(x, t) U(x, t) + c κ U(x, t), t x x : U(, t) U(1, t) ( x 1), () : U(x, ) f(x). (3) U(x, t). [ U(x, t) Re u k (t) exp(πkx). (4)

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

numb.dvi

numb.dvi 11 Poisson kanenko@mbkniftycom alexeikanenko@docomonejp http://wwwkanenkocom/ , u = f, ( u = u+f u t, u = f t ) 1 D R 2 L 2 (D) := {f(x,y) f(x,y) 2 dxdy < )} D D f,g L 2 (D) (f,g) := f(x,y)g(x,y)dxdy (L

More information

演習1

演習1 神戸市立工業高等専門学校電気工学科 / 電子工学科専門科目 数値解析 2019.5.10 演習 1 山浦剛 (tyamaura@riken.jp) 講義資料ページ http://r-ccs-climate.riken.jp/members/yamaura/numerical_analysis.html Fortran とは? Fortran(= FORmula TRANslation ) は 1950

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

Microsoft Word - gnuplot

Microsoft Word - gnuplot GNUPLOT の使い方 I. 初期設定 GNUPLOT を最初に起動させたときの Window の文字は小さいので使い難い そこで 文字フォントのサイズを設定します 1.GNUPLOT を起動させます ( 右のような Window が起動します ) 2. 白い領域のどこでも構わないので ポインタを移動して マウスの右ボタンをクリックします ( 右のようにメニューが起動します ) 3. Choose

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

I I / 68

I I / 68 2013.07.04 I 2013 3 I 2013.07.04 1 / 68 I 2013.07.04 2 / 68 I 2013.07.04 3 / 68 heat1.f90 heat2.f90 /tmp/130704/heat2.f90 I 2013.07.04 4 / 68 diff heat1.f90 heat2.f90!! heat2. f 9 0! c m > NGRID! c nmax

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

プラズマ核融合学会誌5月号【81-5】/内外情報_ソフト【注:欧フォント特殊!】

プラズマ核融合学会誌5月号【81-5】/内外情報_ソフト【注:欧フォント特殊!】 PROGRAM PLOTDATA USE NUM_KINDS, ONLY : wp=>dp, i4b USE MYLIB, ONLY : GET_SIZE, GET_DATA INTEGER(i4b) :: ntime, nx REAL(wp), ALLOCATABLE :: time(:), x(:), Temp(:,:) Fortran Temp, temp, TEMP temporal REAL(wp)

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

Microsoft Word - 資料 docx

Microsoft Word - 資料 docx y = Asin 2πt T t t = t i i 1 n+1 i i+1 Δt t t i = Δt i 1 ( ) y i = Asin 2πt i T 29 (x, y) t ( ) x = Asin 2πmt y = Asin( 2πnt + δ ) m, n δ (x, y) m, n 30 L A x y A L x 31 plot sine curve program sine implicit

More information

OpenMP¤òÍѤ¤¤¿ÊÂÎó·×»»¡Ê£²¡Ë

OpenMP¤òÍѤ¤¤¿ÊÂÎó·×»»¡Ê£²¡Ë 2013 5 30 (schedule) (omp sections) (omp single, omp master) (barrier, critical, atomic) program pi i m p l i c i t none integer, parameter : : SP = kind ( 1. 0 ) integer, parameter : : DP = selected real

More information

QMI13a.dvi

QMI13a.dvi I (2013 (MAEDA, Atsutaka) 25 10 15 [ I I [] ( ) 0. (a) (b) Plank Compton de Broglie Bohr 1. (a) Einstein- de Broglie (b) (c) 1 (d) 2. Schrödinger (a) Schrödinger (b) Schrödinger (c) (d) 3. (a) (b) (c)

More information

1 28 6 12 7 1 7.1...................................... 2 7.1.1............................... 2 7.1.2........................... 2 7.2...................................... 3 7.3...................................

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

C 2 / 21 1 y = x 1.1 lagrange.c 1 / Laglange / 2 #include <stdio.h> 3 #include <math.h> 4 int main() 5 { 6 float x[10], y[10]; 7 float xx, pn, p; 8 in

C 2 / 21 1 y = x 1.1 lagrange.c 1 / Laglange / 2 #include <stdio.h> 3 #include <math.h> 4 int main() 5 { 6 float x[10], y[10]; 7 float xx, pn, p; 8 in C 1 / 21 C 2005 A * 1 2 1.1......................................... 2 1.2 *.......................................... 3 2 4 2.1.............................................. 4 2.2..............................................

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

2 4 BASIC (4) WWW BASIC 1 2 ( ) ( ) 1.2 3B 5 14 ( ) ( ) 3 1 1

2 4 BASIC (4) WWW   BASIC 1 2 ( ) ( ) 1.2 3B 5 14 ( ) ( ) 3 1 1 2 4 BASIC (4 2007 5 8 WWW http://www.math.meiji.ac.jp/~mk/syori2-2007/ BASIC 2 (. (5 5 3.2 3B 5 4 ( 5 5 5 2 ( 3 ( PAINT PAINT ( MAT PLOT AREA.3 : MAT PLOT AREA PAINT ( BASIC (.3. MAT PLOT AREA REM testmatplotarea.bas

More information

資料

資料 PC PC C VMwareをインストールする Tips: VmwareFusion *.vmx vhv.enable = TRUE Tips: Windows Hyper-V -rwxr-xr-x 1 masakazu staff 8552 7 29 13:18 a.out* -rw------- 1 masakazu staff 8552 7 29

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) 2001 1 e-mail:s00x0427@ip.media.kyoto-u.ac.jp 1 1 Van der Pol 1 1 2 2 Bergers 2 KdV 2 1 5 1.1........................................

More information

( ) 1 Windows HTML ( ) ( ) ( ) WWW 10 ( )

( ) 1 Windows HTML ( ) ( ) ( ) WWW 10 ( ) ( ) 1 Windows HTML ( ) ( ) ( ) 1. 2. 3. 4. WWW 10 ( ) 2 1. 2. 1 3. ( ) 4. 5. 3 Windows 2 7 8 MS Word MS Excel 1. MS Word 600 2. MS Excel 1 34 2 83 3 23 4 70 5 100 6 45 7 58 8 29 9 68 10 72 11 37 12 12

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4 Simpson H4 BioS. Simpson 3 3 0 x. β α (β α)3 (x α)(x β)dx = () * * x * * ɛ δ y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f()

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

2

2 16 1050026 1050042 1 2 1 1.1 3 1.2 3 1.3 3 2 2.1 4 2.2 4 2.2.1 5 2.2.2 5 2.3 7 2.3.1 1Basic 7 2.3.2 2 8 2.3.3 3 9 2.3.4 4window size 10 2.3.5 5 11 3 3.1 12 3.2 CCF 1 13 3.3 14 3.4 2 15 3.5 3 17 20 20 20

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

t, x (4) 3 u(t, x) + 6u(t, x) u(t, x) + u(t, x) = 0 t x x3 ( u x = u x (4) u t + 6uu x + u xxx = 0 ) ( ): ( ) (2) Riccati ( ) ( ) ( ) 2 (1) : f

t, x (4) 3 u(t, x) + 6u(t, x) u(t, x) + u(t, x) = 0 t x x3 ( u x = u x (4) u t + 6uu x + u xxx = 0 ) ( ): ( ) (2) Riccati ( ) ( ) ( ) 2 (1) : f : ( ) 2008 5 31 1 f(t) t (1) d 2 f(t) + f(t) = 0 dt2 f(t) = sin t f(t) = cos t (1) 1 (2) d dt f(t) + f(t)2 = 0 (1) (2) t (c ) (3) 2 2 u(t, x) c2 u(t, x) = 0 t2 x2 1 (1) (1) 1 t, x (4) 3 u(t, x) + 6u(t,

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

OpenMP¤òÍѤ¤¤¿ÊÂÎó·×»»¡Ê£±¡Ë

OpenMP¤òÍѤ¤¤¿ÊÂÎó·×»»¡Ê£±¡Ë 2011 5 26 scalar Open MP Hello World Do (omp do) (omp workshare) (shared, private) π (reduction) scalar magny-cours, 48 scalar scalar 1 % scp. ssh / authorized keys 133. 30. 112. 246 2 48 % ssh 133.30.112.246

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Abstract :

Abstract : 17 18 3 : 3604U079- Abstract : 1 3 1.1....................................... 4 1................................... 4 1.3.................................. 4 5.1..................................... 6.................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information