lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

Similar documents
高等学校学習指導要領

高等学校学習指導要領

< C93878CBB926E8C9F93A289EF8E9197BF2E786264>


知能科学:ニューラルネットワーク


( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

応力とひずみ.ppt

Gmech08.dvi

プログラム


Program


Œ{ٶ/1ŒÊ −ªfiª„¾ [ 1…y†[…W ]

日本内科学会雑誌第96巻第11号

平成20年5月 協会創立50年の歩み 海の安全と環境保全を目指して 友國八郎 海上保安庁 長官 岩崎貞二 日本船主協会 会長 前川弘幸 JF全国漁業協同組合連合会 代表理事会長 服部郁弘 日本船長協会 会長 森本靖之 日本船舶機関士協会 会長 大内博文 航海訓練所 練習船船長 竹本孝弘 第二管区海上保安本部長 梅田宜弘

aphp37-11_プロ1/ky869543540410005590

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Gmech08.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

85 4

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

29

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

Gmech08.dvi

A

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d


高等学校学習指導要領解説 数学編

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

DVIOUT

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h


= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

function2.pdf

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

重力方向に基づくコントローラの向き決定方法

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

KENZOU

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp


( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

Chap9.dvi


1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

But nothing s unconditional, The Bravery R R >0 = (0, ) ( ) R >0 = (0, ) f, g R >0 f (0, R), R >

Transcription:

lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5-

0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5-

5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3 lim 3 3 3 3 3 lim lim 3 3 3 d 0 0 0 3 0 3 d d d d n n n d 3 n 0,,, n 0 5-3

d 5.3 5 0 3 3 4 5 3 4 9 5 0 3 3 4 4 3 3/ 5 3 3 0 lo nturl ln lo 5.4 d lo 5.4b d 5-4

sin cos d 5.4c cos sin d 5.4d tn d cos 5.4 sin n n n α 0 α n α n / n n / 0 α 0 lim 5.5 0 lim lim d 0 0 B 5.5 A 0 5-5 5-4

5-4 A B / 0 A 0 sin 4 cos θ cos θ sin θ sin θ / cos sin / θ cos sin / sin / sin / lim lim lim 0 0 0 0 / lim sin 0 sin sin sin sin cos cos sin sin lim lim d 0 0 sin cos cos sin cos sin lim lim sin cos 0 0 cos cos cos sin cos cos cos cos sin sin cos lim lim d 0 0 cos cos sin sin cos sin lim lim cos sin 0 0 sin 5-6

lim lim d 0 0 d 3 3 6 d 5sin 5cos d 3 3 5 sin 5cos { } { } lim d 0 { } { } lim 0 ' d 5-7

3 3 d cos sin d 3 3 cos sin 5.6 d 5.6b d b 0 d 3 4 3 d 3 3 d sin 3cos cos 3sin d d 5-8

3 4 5 3 4 3 3 4 5 4 5 6 lo 7 tn /3 3 n 8 i 0 3 4 4 0 4 6 3 3 5 4 3 5 3 6 / 7 /3 i 8 i i cos n i 0 i n i i lim d 0 lim 0 { } { } lim 0 5.7 d 5-9

[ ] [ ] d 3 3 sin 3 sin cos d lo lo d 3 sin 3 cos lo 4 4 3 3 4 lo 5 sin 6 tn 4 3 5 8 3 3 4 4 3 3 3 4 lo lo 5 sin cos sin cos 6 tn cos 5-0

5- cos cos sin cos sin 0 0 0 0 lim lim lim lim d d 5.8 cos sin cos cos sin sin cos cos n 0 n n n n n n

sin cos sin cos tn cos tn n n sin 3 4 sin cos cos sin 5 sin cos cos sin sin 3 sin cos sin cos cos cos sin sin cos sin 4 cos cos sin cos 5 sin sin cos sin cos sin 5 sin 5-

z z z 5 5 5 z z z z d z lim d 0 lim 0 z, z 0 0 z z lim, 0 dz d dz z z dz 5.9 d d dz 5-3

5 4 5 d d z 5 z dz 4 4 5z 5 d d dz z dz z z dz z d d dz lo d d d d d d d d d d lo lo d d lo lo d d d 5-4

d d lo d lo lo lo lo lo lo d lo lo lo lo lo lo lo lo lo d lo 5 3 sin cos 3 sin 4 5 sin 3 4 6 tn sin 7 lo 8 lo 4 4 5 0 cos sin 3sin cos 3cos sin sin cos 3 sin 4 cos 5 3 cos3 4 6 7 8 cos cos sin 5-5

. n n n. 3. lo 4. sin cos 5. cos sin 6. tn cos 7. 8. 9. 0. dz d z. z d dz 4 5 3 4 4 4 4 8 5-6 3 3 3 4 5 3 5 3 4 5 3 4 8 3 4 5 3 4 4 4 3 5 4 4

sin sin sin cos sin cos sin cos sin sin z sin z dz d cosz cos dz dz cos d dz cos 3 3 sin 4 5 7 sin3 6 / 8 lo 4 3 3 3 3 3 3 sin cos [ ] 3 sin cos 4 5-7

5-8 5 sin3 3cos3 6 3 4 4 lo 3 4 7 / 8