Microsoft PowerPoint - PF研究会-KEK (提出) [互換モード]

Similar documents
日立金属技報 Vol.34

研究成果報告書

H22低炭素助成報告書-関先生-最終_p45

Microsoft PowerPoint - PF研究会 改(柳原).pptx

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

èCò_ï\éÜ.pdf

weak ferromagnetism observed on Shimotokuyama and Ayumikotan natural crystals behaves as pre dicted by Dzyaloshinsky and Moriya, while Wagasennin and

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

プラズマ核融合学会誌11月【81‐11】/小特集5

SPring-8_seminar_


42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

1

PowerPoint Presentation

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

4/15 No.

chap1_MDpotentials.ppt


untitled

September 9, 2002 ( ) [1] K. Hukushima and Y. Iba, cond-mat/ [2] H. Takayama and K. Hukushima, cond-mat/020

C-2 NiS A, NSRRC B, SL C, D, E, F A, B, Yen-Fa Liao B, Ku-Ding Tsuei B, C, C, D, D, E, F, A NiS 260 K V 2 O 3 MIT [1] MIT MIT NiS MIT NiS Ni 3 S 2 Ni

Microsoft Excelを用いた分子軌道の描画の実習

02-量子力学の復習

研究成果報告書(基金分)

XFEL/SPring-8

untitled

研究成果報告書

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

Table 1. Chemical composition of Fe203 and SrCO3 used for experiment. Fig. 1. Process of preparion of the specimen.

X線分析の進歩36 別刷

Present Situation and Problems on Aseismic Design of Pile Foundation By H. Hokugo, F. Ohsugi, A. Omika, S. Nomura, Y. Fukuda Concrete Journal, Vol. 29

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

T05_Nd-Fe-B磁石.indd

PDF

報告されている (8) (11). このことは,L1 0 FePt のサイズを制御することにより,H c を決定している磁化過程を制御できることを意味している. しかしながら, 薄膜成長形態を利用したこれまでの研究では微粒子の形状やサイズの制御が困難であった. 本研究では, 微細加工法を用いることで

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

untitled

NotePC 8 10cd=m 2 965cd=m Note-PC Weber L,M,S { i {

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B


SPA H&M ZARA ZARA ZARA DHL Door-to-door 2

yasi10.dvi

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

untitled

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤®

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

** Department of Materials Science and Engineering, University of California, Los Angeles, CA 90025, USA) Preparation of Magnetopulmbite Type Ferrite

年次大会原稿最終.PDF

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

untitled

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

スライド 1

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

研究成果報告書

i

原子・分子架橋系の量子輸送の理論 現状と展望

COE

C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1) 0.3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P = ) S.Mizutani, S.Ishid

Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a

スライド 1

原稿.indd


untitled

The Plasma Boundary of Magnetic Fusion Devices

untitled

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

SiC SiC QMAS(Quantum MAterials Simulator) VASP(Vienna Ab-initio Simulation Package) SiC 3C, 4H, 6H-SiC EV VASP VASP 3C, 4H, 6H-SiC (0001) (11 20) (1 1

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum


Microsoft PowerPoint - TMTinst_ _summerschool_akiyama

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

68 JAXA-RR r v m Ó e ε 0 E = - Ó/ r f f 0 f 1 f = f 0 + f 1 x k f 1 = f k e ikx Ó = Ó k e ikx Ó k 3

E-2 A, B, C A, A, B, A, C m-cresol (NEAT) Rh S m-cresol m-cresol m-cresol x x x ,Rh N N N N H H n Polyaniline emeraldine base E-3 II

èCémò_ï (1Å`4èÕ).pdf

SPring-8ワークショップ_リガク伊藤

01-C08244-食品の物性 indd

C 3 C-1 Cu 2 (OH) 3 Cl A, B A, A, A, B, B Cu 2 (OH) 3 Cl clinoatacamite S=1/2 Heisenberg Cu 2+ T N 1 =18K T N 2 =6.5K SR T N 2 T N 1 T N 1 0T 1T 2T 3T

untitled

第5部門_05_垣本 徹.indd

Sport and the Media: The Close Relationship between Sport and Broadcasting SUDO, Haruo1) Abstract This report tries to demonstrate the relationship be

研究成果報告書

Fig. 1 Experimental apparatus.

JFE.dvi

Mott散乱によるParity対称性の破れを検証

Frontier Simulation Software for Industrial Science

vdw-df vdw-df vdw-df 2

応力とひずみ.ppt

Transcription:

ナノ構造の磁気異方性と電界効果 Magnetic anisotropy and its electric field effects in nano structures 小田竜樹 Tatsuki Oda Institute of Science and Engineering, Kanazawa University, Kanazawa, 90 119, Japan PF 研究会 磁性薄膜 多層膜を究める : キャラクタリゼーションから新奇材料の創製へ October 14 15th 011, Tsukuba, Japan KEK 研究本館小林ホール KEK Tsukuba October 15th 011 (11:40 1:00) 1:00)

Contents of the talk 1. Introduction. Magnetic anisotropy and Electric field effect 1. Linear chains:rashba effect. Films : dielectric/metal 3. Summary

Microscopic origin of magnetic anisotropy Magnetostatic contribution E d-d 1 c i j R, R i j m( R i ) m( R 3 R ij j ) 3 m( R ) ( R R ) m ( R ) ( R R ) This depends on the arrangement of magnetic atoms, not so depend on electric field. Electronic structure contribution perturbation of spin-orbit interaction, MA appears from an anisotropy of orbitals d 3z r zx i d yz i j R 5 ij j d xy i H j SOI in plane contribution D square lattice σ d x y d It is important to see the behavior of each angular orbitals. Anisotropic occupation of electrons leads to MA.

H SOI V ( r ) H ( SOI Spin orbit interaction grad V ( r ) 4m c Ze r 4mm r ) c σ Pauli s matrix σ r grad V ( r ) dv dr r r p ( x x y y z z dv dr connects orbital and spin spaces ) Biot-Savart law in the classical electromagnetics spin-orbit interaction

Origin of MAE in electronic structure spin-orbit coupling contribution from band electrons (A) nd perturbative contributions MAE E x E band unoccupied band 1 occupied band 1 occupied k z ( ) o u o z o, u u o 0 0 F Low dimentional system (B) Existence of partly- occupied degenerate levels k Couplings 3z r m cos x u out of plane contribution xz matrix element in plane contribution xy yz x y D. S. Wang, R. Wu, and A. J. Freeman, Phys. Rev. B 47,1493 (1993).

Nano magnetic structures on surface The magnetism of the low-dimensional system with a supported material (magnetism in nano-scaled systems) has been studied extensively. FePt alloys are a promising magnetic material for ultra high density recording media due to their large perpendicular magnetic anisotropy energy (MAE). nano-scale structure v.s. magnetic anisotropy 43 19.A Cheng et al., 005 Co nano wire on Pt(997) surface. P. Gambardella et.al, Nature 416 (00) 301. almost in plane STM Fe 0.15ML on Pt(997)

Fe atomic layer on Au(788) surface single Fe chain Shiraki et al., PRB 78, 11548 (008) Fe(0.08ML)/Au(788) 08ML)/A (788) The magnetic easy axis has a perpendicular component. Fujisawa et al., PRB 75, 4543 (007)

Toward electric field assisted magnetization reversal, there are some pioneering works on magnetic state control by electric field Ohno et. al., Nature 408, 948 (000). Chiba et. al., Science 301, 943 (003). Chiba et. al., Nature. 455, 515 (008). (In, Mn)As magnetic semico. metallic layer with dielectric mat. (Ga, Mn)As FePt, FePd room temp. MgO/Fe/Au( 001) Weisheit et al., Science 315, 349 (007) Maruyama et. al., Nature Nanotech. 4, 158 (009)

Recent works on the electric field effect of magnetic anisotropy energy ZrO 3 MgO 10 MgO Seki et al., APL 98, 1505 (011) Electic Field (in MgO) E G E perp 33μJ/m V d ZrO MgO ZrO ZrO d G M S AHE AHE H drhall R Hall,max in 1V/nm MgO Anomalous Hall Resistance E>0 MgO - --- - Co 40 Fe 40 B 0 18.6fJ/Vm in MAE MgO/(Fe/Pd) n (001) n=3 4 60fJ/Vm M. Endo et. al., APL 96, 1503 (010) Bonell et al., APL 98, 3510 (011)

Electric field effect of magnetic anisotropy energy M. Weisheit, S. Fähler, A. Marty, Y. Souche, C. Poinsignon, and D. Givord, Science 315, 349 (007) FePd Kerr rotation FePd of surface magnetism FePt FePt For nm thick system of inward electric field Coercivity decreases by the inward electric field FePt FePt, 4.5% change of coercivity in the difference of 600mV.

chains Fe chain/pt(111) and Fe chain/pt(664) Rashba effect

MAE of Fe chain/pt(664) surface 3.3 33meV/Fe parallel to.5mev/fe 119meV/Fe 1.19 the chain bare Fe-chain Fe chain/pt(111) Fe chain/pt(664) perpendicular to the chain hbidi hybridization i of 3d orbitals between Fe and Pt atoms before relaxation 51 Φ yz orbital 85 atomic relaxation exp. 80 (Repetto et al., 006)

磁気異方性エネルギーの電界効果

Electric field effects on MAE MAE Ex. MgO/X/M(001) dielectric constant 0 r MgO(001) Electrode metal (electric field ) 界面の磁気異方性とその電界効果 物質依存性 界面依存性 Fe, Co, Ni, FC FeCo, Pt, Pd, Au Insulating layer Magnetic layer Substrate metal

Inverse of EF effects: Pd/Fe/Pd(001), comparison with Pt/Fe/Pt(001) Pd/Fe/Pd(001) MgO/(Fe/Pd) n (001) n=3 4 exp Pd Pd/Fe/Pd(001) 1 fj/vm Pt/Fe/Pt(001) +78 fj/vm (GGA) Pd 1 Pt/Fe/Pt(001) 0. 7 78 MgO 60 fj/vm 1 r fj/vm Minus slope : qualitative agreement with the experiment of Weisheit et al. 1:4 Pt Experiment Pd Pt FePd FePt S. Haraguchi, M. Tsujikawa, J. Gotou, and TO, exp.) Bonell et al., APL. Electric field J. Phys. D: Appl. Phys., 44 (011) 064005. 8, 3510 (011) Weisheit et. al., Science 315, 349 (007)

Magnetic moments (in μ B ) Pd/Fe/Pd(001) Pt/Fe/Pt(001) / M(c) Fe M(1) M() S. Haraguchi, et al., JPDAP, 44 (011) 064005.

まとめ 密度汎関数法に基づいた第一原理計算による 磁性薄膜の電子状態と磁気異方性エネルギーの計の計算結果を紹介した SOI から寄与する MAE は フェルミ準位付近の電子構造に敏感である 面内磁化の場合 フェルミ準位付近には 磁性層のラシュバ効果による分散の非対称性が現れた MAE 電界効果の大きい薄膜の探索 :FePt 不純物元素や不規則構造 ( 膜厚方向および膜内方向 ) の効果の解析も必要となる