p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

Similar documents
Gmech08.dvi

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

QMI_09.dvi

QMI_10.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

Gmech08.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

Xray.dvi

高知工科大学電子 光システム工学科

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

A

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

meiji_resume_1.PDF

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

A 99% MS-Free Presentation


phs.dvi

30

QMII_10.dvi

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

08-Note2-web

IA

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

pdf

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =


Untitled

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

B ver B

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

Korteweg-de Vries

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

振動と波動

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a


II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

29

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt


x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)


m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

TOP URL 1

Note.tex 2008/09/19( )


gr09.dvi

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

Chap11.dvi

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy


応力とひずみ.ppt

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

TOP URL 1

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

sec13.dvi

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

DVIOUT-fujin

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

Gmech08.dvi

Transcription:

II

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

Ψ Ψ 2

0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π x = -ω 2 cos(ωt + φ) = -ω 2 x x - ω T = [rd/s] φ P(x,y) x = cos(ωt + φ) y = sin(ωt + φ) d2 x dt 2 2π = 2π ω = m k x m k t or d 2 x = ω 2 x dt 2 x = cos(ωt + φ) T = ω 2π = ν 1 v = ω k force constnt (1) = cos( t + φ) m k [s]

d 2 x dt 2 = ω 2 x (1) d(e x ) dx = e x e x = exp x d 2 f(x) = 2 f(x) dx 2 (1) e x = 1 + x + x 2 /2! + + x n /n! + = Σ xn (e = 2.71828183 ) n=0 n! log e e x = ln e x = x x = e y y = ln x y = cos x y = sin x dx dx = de y dy dy d(ln x) 1 sin x cos x = = dy dx dx dx x dy dx = d 2 y dx 2 = dy dx = d 2 y cos x = y dx 2 = sin x = y y = A cos x + B sin x y = C e ix + D e -ix y = e ix y = e -ix dy dx = ieix d 2 y dx 2 = e ix = y (i 2 = 1) dy dx = ie-ix d 2 y dx 2 = e-ix = y

Euler's Formulus e ix = cos x + i sin x e ix = cos x i sin x cos x = sin x = e ix + e -ix 2 e ix e -ix 2i y y z r = z 0 θ x r = (x 2 + y 2 ) 1/2 = z x = r cos θ = z cos θ y = r sin θ = z sin θ z z = x + iy 1 = x 1 + iy 1 = z 1 e iθ 1 z 2 = x 2 + iy 2 = z 2 e iθ 2 = z (cos θ + i sin θ) = z e iθ z 1 z 2 = z 1 z 2 e i(θ 1+θ 2) x z = x + iy = z e iθ z* = x iy = z e iθ z z* = z 2

y λ u t = 0 y = cos 2π x λ - y ut x(0) x t = t y = cos 2π λ (x ut) x(t) y = cos ( 2π λ x 2πνt) y = cos (kx ωt) u = λ ν ν = u λ T = 1 = ν λ = ω 2π 2π ω [s] [Hz] ω = 2π ν k = 2π λ ω = ku ψ(x,t) = cos (kx ωt) ψ(x,t) = ei(kx ωt) ψ(x,t) = cos ω( x u t) ψ(x,t) = cos 2π( x λ t T ) ψ(x,t) = sin ω(t x u ) ψ(x,t) = sin 2π( t T x λ )

ψ(x,t) 2 ψ(x,t) t 2 = u 2 2 ψ(x,t) x 2 ψ(x,t) = cos (kx ωt) ψ(x,t) t = ω sin (kx ωt) 2 ψ(x,t) t 2 = ω 2 cos (kx ωt) u u = λ ν λ ν ω = 2π ν k = 2π λ ω = ku ψ(x,t) x = k sin (kx ωt) 2 ψ(x,t) = k 2 cos (kx ωt) x 2 2 ψ(x,t) t 2 = ω 2 k 2 2 ψ(x,t) x 2 2 ψ(x,t) t 2 = u 2 2 ψ(x,t) x 2

ψ(x,y,z,t) = ψ(r,t) 2 ψ(r,t) t 2 2 ψ(r,t) t 2 Nbl: Lplcin: = u 2 2 ψ(r,t) 2 ψ(r,t) 2 ψ(r,t) ( + + ) x 2 y 2 z 2 = u 2 ( 2 2 x 2 + 2 y 2 + z 2 ) ψ(r,t) = u 2 ψ(r,t) = 2 ψ(r,t) t 2 x + + y z = 2 2 2 2 = x 2 + y 2 + z 2 = u 2 ψ(r,t) u 2 ψ(x,t) ω t 2 = 2 k 2 ψ(r,t) = cos (kr ωt) = cos (k x x + k y y + k z z ωt) 2 ψ(r,t) r 2 = 2 ψ(r,t) x 2 2 ψ(r,t) = k 2 x 2 x ψ(r,t) 2 ψ(r,t) = k 2 y 2 y ψ(r,t) 2 ψ(r,t) = k 2 z 2 z ψ(r,t) 2 ψ(r,t) + + y 2 2 ψ(r,t) z 2 = (k x 2 +k y 2 +k z 2 )ψ(r,t) = k 2 ψ(r,t) 2 ψ(r,t) t 2 = ω 2 ψ(r,t) 2 ψ(r,t) 2 ψ(r,t) 2 ψ(r,t) ( x 2 + + y 2 z 2 )

y u u y 1 = sin 2π λ (x ut) λ ψ(x,t) = 2 sin kx cos ωt = φ(x) cos ωt 2 ψ(x,t) x 2 2 ψ(x,t) t 2 = k 2 2 sin kx cos ωt = cos ωt φ(x) = 2 sin kx d 2 φ(x) dx 2 = ω 2 2 sin kx cos ωt = ω 2 cos ωt φ(x) x 2 ψ(x,t) t 2 y 2 = sin 2π λ y = y 1 + y 2 = 2 sin 2πx λ (x + ut) cos ωt = u 2 2 ψ(x,t) x 2 ω 2 cos ωt φ(x) = u 2 cos ωt ω 2 φ(x) = ω 2 k 2 d 2 φ(x) dx 2 d 2 φ(x) dx 2 (ω = ku) d 2 φ(x) dx 2 + k 2 φ(x) = 0 (k = 2π ) λ

y n = 4 ψ(x,t) = 2 sin 2πx cos ωt λ φ(x) = 2 sin 2πx λ L = n λ 2 L n = 3 n = 2 n = 1 x φ(x) = A sin n πx L ψ(r,t) = φ(r) e i ωt φ(r) + k 2 φ(r) = 0

Erwin Schrödinger

d 2 ψ(x) dx 2 + k 2 ψ(x) = 0 (k = 2π ) λ ψ(x) λ = h p E = p 2 + U(x) d 2 ψ(x) dx 2 + p x 2 ψ(x) = 0 p x 2 ψ(x) = d 2 ψ(x) dx 2 d 2 p 2 x h ψ(x) = 2 dx 2 ψ(x) p 2 d 2 x dx 2 p x i h d dx [ d 2 ψ(x) dx 2 + [E U(x)]ψ(x) = 0 d 2 ψ(x) dx 2 + U(x)ψ(x) = Eψ(x) d 2 dx 2 d 2 dx 2 + U(x)]ψ(x) = E ψ(x) + U(x) = H

p 2 x d 2 ψ(x) + U(x) = E dx 2 + U(x)ψ(x) = Eψ(x) p 2 (r) + U(r) = E h d 2 2 ψ(r) + U(r)ψ(r) = Eψ(r) dr 2 1 (px 2 + p 2 + U(x,y,z) = E y + p x 2 ) r = (x,y,z) ψ(r) = ψ(x,y,z) 2 [ 2 2 x 2 + ]ψ(r) y 2 + z 2 H ψ(r) = Eψ(r) + U(x,y,z)ψ(r) = Eψ(r) h 2 ψ(r) + U(x,y,z)ψ(r) = Eψ(r) E h [ 2 i + U(x,y,z)]ψ(r) = Eψ(r) ψ(r) i E i ψ(r) i H

Hψ(r) = Eψ(r) E i ψ(r) i ψ(r) = ψ(x,y,z) H = + U(x,y,z) 2 [ 2 = 2 x 2 + ] + U(x,y,z) y 2 + z 2 E i ψ(r) i ( p ) = 2 + U(x,y,z) = i h = i h [ + + x y 2 = ] z

ψ(r,t) = ψ(x,y,z,t) = e i(kr-ωt) = e i(k x x + k y y + k z z ωt) 2 ψ(r,t) = u 2 ψ(r,t) t 2 λ = h/p E = hν k = 2π/λ = p h ω = 2πν = E h ψ(r,t) = 2 ψ(r,t) r 2 p 2 = = k 2 ψ(r,t) = 2 ψ(r,t) = ω 2 ψ(r,t) = E2 t 2 E 2 = 2 t 2 ψ(r,t) p 2 ψ(r,t) p = i h E = i h t ψ(r,t) = e i(pr Et)/h ψ(x,t) = e i(px Et)/h

p 2 H = (r) + U(r) = E p 2 = E 2 = 2 t 2 p = i h E = i h t ψ(r,t) = e i(pr Et)/h ψ(x,t) = e i(px Et)/h h 2 ψ(r,t) + U(r)ψ(r,t) = i h ψ(r,t) t 2 { [ 2 2 x 2 + ] + U(x,y,z)}ψ(r,t) = y 2 + z 2 i h ψ(r,t) t H ψ(r,t) = E ψ(r,t) ψ(r,t) = e i(pr)/h e iet/h =ψ(r)e iet/h H ψ(r) = E ψ(r)

ψ(r) cψ(r) ψ(r)ψ(r)e iθ ψ(r) Hψ(r) = Eψ(r) ψ(r) ψ(r) Ψ(r,t) = ψ(r)e i t ψ(r) ψ(r) ψ(r) 2 = ψ(r)ψ (r) ψ(r) ψ(r) 2 dv =ψ(r) * ψ(r)dv = 1 ψ(r) ψ i (r) * ψ j (r)dv = 0 δ ij

Hψ(r) = Eψ(r) E H ψ(r)ψ(r) * = Eψ(r)ψ(r) * ψ(r) * H ψ(r) = ψ(r) * Eψ(r) ψ(r) * H ψ(r) = ψ(r) H ψ(r) * ψ(r) * H ψ(r)dv =ψ(r) * Eψ(r)dv = Eψ(r) * ψ(r)dv = E = <E> E H 1 ψ 1 (r) = E 1 ψ 1 (r) H 2 ψ 2 (r) = E 2 ψ 2 (r) <E> = ψ(r) * H ψ(r)dv H 1 + H 2 E 1 + E 2 ψ 1 (r)ψ 2 (r)

U(x) U = m U = 0 U = 0 x ψ(x)= B sin Hψ = Eψ d 2 ψ(x) dx 2 = Eψ(x) d 2 ψ(x) E dx 2 = ψ(x) ψ(0) = ψ() = 0 ψ(x) = A cos kx + B sin kx ψ(x)= (2/) 1/2 sin E nx = E k = [ ] 1/2 A = 0 k = n x π B = (2/) 1/2 8m 2 n x 2 n x πx n x πx

E nx = 8m 2 n x 2 ψ(x)= (2/) 1/2 sin n x πx E 4 = 16h2 8m 2 + + n =4 n 1 E 3 = 9h2 8m 2 + + n = 3 E 2 = 4h2 8m 2 E 1 = 8m 2 + + n = 2 n = 1 node ψ 2 (x) = 0 0 ψ(x) 0 ψ 2 (x)

Hψ = Eψ H = H x + H y E = E x + E y ψ = ψ(x)ψ(y) 10E 0 8E 0 (n x, n y ) (3,1) (1,3) (2,2) ψ(x)= (2/) 1/2 sin ψ(y)= (2/) 1/2 sin E nx,ny = n x πx n y πy 8m 2 (n x 2 + n y 2 ) 5E 0 2E 0 (2,1) (1,2) E 0 = (1,1) 8m 2 y 0 x

Hψ = Eψ H = H x + H y + H z degenerted E 3 = 9E 0 E = E x + E y + E z ψ = ψ(x)ψ(y)ψ(z) (1,2,2) (2,1,2) (2,2,1) ψ(x)= (2/) 1/2 sin ψ(y)= (2/) 1/2 sin ψ(z)= (2/) 1/2 sin E nx,ny,nz = n x πx n y πy n z πz h2 8m 2 (n x 2 + n y 2 + n z 2 ) (1,1,2) (1,2,1) (2,1,1) projection z y y 0 x 0 x (1,1,1) degenerted E 2 = 6E 0 E 1 = 3E 0

z x