角度統計配布_final.pptx

Similar documents
x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

2000年度『数学展望 I』講義録

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

29

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

液晶の物理1:連続体理論(弾性,粘性)

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

TOP URL 1

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

Gmech08.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

DVIOUT

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

陦ィ邏・2

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

Gmech08.dvi

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

高等学校学習指導要領解説 数学編

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

all.dvi

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

量子力学 問題

i 18 2H 2 + O 2 2H 2 + ( ) 3K

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b


II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

数学の基礎訓練I

0406_total.pdf

c 2009 i

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

v er.1/ c /(21)

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

untitled

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

II 2 II

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

i


Gmech08.dvi

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

Untitled

all.dvi

Transcription:

01/1/7 1, 1 JST GFP {x 1,x,,,x n } Credit: Elowitz lab {θ 1, θ, θ 3,,, θ n } (+) EB3-GFP π π π θ+π = θ movie Shindo et al., PLoS one, 008

(+) beating Shindo et al., PLoS one, 008 Guirao et al., NCB, 010 Landsberg et al., Current Biol, 009 6 = J. D. Levine et al. Science (00) 1 0h isolated in group ( () ) 18 position Romano et al. Chaos 010,, etc..

: / () () von Mises {θ 1, θ, θ 3,,, θ n } 11 1

(circular/directional statistics) : N N : 3: θ = θ+180 () 4: (T i, θ i )θ-t / von Mises {θ 1, θ, θ 3,,, θ n } 11 1

: {80, 170,175, 00,65, 345 } {1, 359 } 180?? 0 =360 0 (80 +170 +175 +00 +65 +345 )/6=06? ( RcosΘ, RsinΘ) = 1 N cosθ, sinθ ( 1/N) R : =191 x 1 N x R ( ) ( R cosθ, RsinΘ) = 1 cosθ, sinθ N = cosθ, sinθ x y x y Im e iθ = cosθ + isinθ xy Re Re iθ = 1 N e iθ = e iθ

Im Re R Re iθ = 1 N e iθ = e iθ R circular variance) (standard deviauon) V 1 R (0 V 1) S log(r) R R : θ θ+180 : { 170,175, 160,65, 35 } 0 θ < 180 0 =180 {1, 179 } 90?? 0 Re iθ = e iθ Re iθ = e iθ { 170,175, 160,65, 35 } : = 6.5 { 340,350, 30,130, 70 } : = 1.9

1.1.1 ここまでのまとめ Im ( R cosθ, Rsin Θ ) = Re ReiΘ = 1 cosθ, sin θ N 1 iθ iθ e = e N 複素平面における表記 標準偏差 分散 平均 Θ V 1 R 角度Θ 長さRのベクトル S log(r) (0 V 1) 小 R 大 大 分散 小 ここまでのまとめ Im ( R cosθ, Rsin Θ ) = Re ReiΘ = Guirao et al., NCB, 010 1 eiθ = eiθ N V 1 R 小 R 大 分散 角度Θ 長さRのベクトル 複素平面における表記 標準偏差 分散 平均 Θ 1 cosθ, sin θ N (0 V 1) S log(r) たくさんの繊毛/1細胞 各繊毛のBasal bodyの角度を測定 細胞ごとに角度Θ 長さRのベクトルを表示 P4 生まれて4日後 とP0で比較 Rのベ 大 小 RP4 < RP0 VP4 > VP0 7

von Mises {θ 1, θ, θ 3,,, θ n } 11 1 (µ,κ) R = I 1 (κ)/i 0 (κ) κ 0 κ µ I p (κ)p von Mises ( ( )) exp κ cos θ µ P(θ) = πi 0 κ ( ) exp( κ cos( θ µ )) 0.0 0. 0.4 0.6 0.8 1.0 - π - π/ 0 κ = 5.0.0 0.5 π/ π

von Mises {θ 1, θ, θ 3,,, θ n } 11 1 : : : N A, E A, V A N B, E B, V B p (p<0.01)

1.1.1 角度データの代表的な検定 Rayleigh test 角度データには偏りがあるか ある角度に偏っているのか Kuiper test 角度データはvon Mises分布に従っているのか Mardia-Watoson-Wheeler test 2群のデータは同じ分布に従っているのか Rayleigh test: 角度データの異方性 A. 角度データに偏り(異方性)があるといえるか iθ ① Rを計算 Re = e iθ 角度Θ 長さRのベクトル ② Rが大きければ一様分布から外れていると言える 一様分布(帰無仮説)のもとでは サンプル数nの時に Z = nr が出る確率は Z Z 4Z 13Z + 76Z 3 9Z 4 Z P = e Z 1 + e 4n 88n (p値) なので Zが大きければ 異方性がある と主張できる (帰無仮説を棄却できる) たくさんの繊毛/1細胞 B. ある角度θ0に偏っているといえるか (角度θ 各繊毛のBasal bodyの角度を測定 0を指定 V- test) 細胞ごとに角度Θ 長さRのベクトルを表示 P4 生まれて4日後 とP0で比較 Rのベ ② R0 が大きければ角度θ0に偏っている度合いが大きいといえる ① R0 =R cos(θ-θ0) を計算 RP4 一様分布(帰無仮説)のもとでのZ = (n)1/ Rが出る確率 (p値) をもとに 帰無仮説を棄却できるか否かを判定する Guirao et al., NCB, 010 < RP0 P 0.05 P<0.05 10

Rayleigh test: A. () R Re iθ = e iθ R R ()nz = nr P = e Z 1+ Z Z 4n 4Z 13Z + 76Z 3 9Z 4 88n e Z (p) Z () B. θ 0 (θ 0 V- test) R 0 =R cos(θ-θ 0 ) R 0 θ 0 ()Z = (n) 1/ R (p) Kuiper test: von Mises Kolmogorov- Smirnov (KS) () KS {x 1,x,x 3,,,x n } ()? x sample F n (x) F(x) D = max F n (x) - F(x) Kuiper {θ 1, θ, θ 3,,, θ n } () von Mises? sample F n (x) F(x) θ V = max (F n (x) - F(x))+max(F (x) - F n (x)) V (p)

Mardia-Watson-Wheeler test: U () {x 1,x,x 3,,,x n } {y 1,y,y 3,,,y m } n+m n < m A n = 6 B m = 8 1 3 6 7 4 5 8 9 10 11 1 13 14 R = 4 (A) U = 7 {x},{y}(p) p () U = nm+n(m+1)/-r(rx) Mardia-Watson-Wheeler test Mann-WhitenyU Mardia-Watson-Wheeler test: MWW {θ 1, θ, θ 3,,, θ n } {ψ 1, ψ, ψ 3,,, ψ m } () n < m n+m0-π πθ 1 n + m, πθ n + m,,, πθ n πψ 1 n + m n + m, πψ n + m,,, πψ m n + m Θ, Ψ 0 n+m-1 A (n=6) B (m=8) R R AR! R

von Mises {θ 1, θ, θ 3,,, θ n } 11 1 Circular- circular correlauon : Linear- circular correlauon : ()

L ll (a,b), L cl (a,b,c)(a,b,c). - (x,y ) - (S,θ ) y = a + bx S = a + b'cos(θ µ) = a + b cosθ + csinθ L ll (a,b) = y a bx L cl a,b,c ( ) = S a bcosθ c sinθ bx b 5 10 15-1.0-0.5 0.0 0.5 1.0 y y y -3 - -1 0 1 3 x 0 1 3 4 5 x L ll (a,b), L cl (a,b,c)(a,b,c). - (x,y ) - (S,θ ) y = a + bx S = a + b'cos(θ µ) = a + b cosθ + csinθ L ll (a,b) = y a bx L cl a,b,c ( ) = S a bcosθ c sinθ bx b 5 10 15 0 1 3 4 5 Landsberg et al., Current Biol, 009 x

- (x,y )Pearson r xy = Δx Δy Δx Δy - (θ,s )1fidng S = a + b'cos(θ µ) = a + bcosθ + csinθ ()(cosθ,sinθ)fidng () r cs : cosθ-s Pearson ρ θ,s = r cs + r ss r cs r ss r cs 1 r cs r ss : r cs : sinθ -S Pearson cosθ -sinθ Pearson ρ θ,s Bootstrap() (web page) Fisher Sta%s%cal Analysis of Circular Data Mardia & Jupp Direc%onal sta%s%cs Batschelet Circular sta%s%cs in biology 3 100( )

MATLAB circular stausucs toolbox by Philippe Berens R circular stausucs package 180 90 70 R 0 von Mises 0.0 0. 0.4 0.6 0.8 1.0 {θ 1, θ, θ 3,,, θ n } ρ θ,s = r cs + r ss r cs r ss r cs 1 r cs 11 1 R R