Introduction MPPC is new semiconductor photon sensor Technology is very similar to SiPM. Under development by Hamamatsu Photonics (HPK) MPPC have not

Similar documents
untitled

OPA134/2134/4134('98.03)

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

JPS2016_Aut_Takahashi_ver4

Triple 2:1 High-Speed Video Multiplexer (Rev. C

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Mott散乱によるParity対称性の破れを検証

XFEL/SPring-8

LMC6022 Low Power CMOS Dual Operational Amplifier (jp)

LMV851/LMV852/LMV854 8 MHz Low Power CMOS, EMI Hardened Operational Amplifi(jp)

OPA277/2277/4277 (2000.1)

浜松医科大学紀要

news

0810_UIT250_soto

ATLAS 2011/3/25-26

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp)

untitled

2

2

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

LMC6082 Precision CMOS Dual Operational Amplifier (jp)

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

WE WESB WENB WESNB 428

LM837 Low Noise Quad Operational Amplifier (jp)

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

2

untitled

PET PET

Drift Chamber


LM358

2

nenmatsu5c19_web.key


Z7000操作編_本文.indb

Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad

GPGPU

藤村氏(論文1).indd

Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test conditions except for t

#表紙ドキュメントPDF書き出し用.indd

Plastic Package (Note 12) Note 1: ( ) Top View Order Number T or TF See NS Package Number TA11B for Staggered Lead Non-Isolated Package or TF11B for S

202

Ws shojia 2016x mini

AD8212: 高電圧の電流シャント・モニタ

H8000操作編

COE

スライド 1


dr-timing-furukawa4.pptx[読み取り専用]

untitled

Nano Range Specification Stable & Stable Telescopic Resonators Model Nano S Nano S Nano S Nano S Nano L Nano L Nano L Nano L Nano L Nano L Nano L 130-

19_22_26R9000操作編ブック.indb

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index


Unidirectional Measurement Current-Shunt Monitor with Dual Comparators (Rev. B



KIT-2010-EA1Bgm-L14.key

Microsoft Word - mitomi_v06.doc

LM150/LM350A/LM350 3A 可変型レギュレータ

NotePC 8 10cd=m 2 965cd=m Note-PC Weber L,M,S { i {


塗装深み感の要因解析


EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

AUTOMATIC MEASUREMENTS OF STREAM FLOW USING FLUVIAL ACOUSTIC TOMOGRAPHY SYSTEM Kiyosi KAWANISI, Arata, KANEKO Noriaki GOHDA and Shinya


LM35 高精度・摂氏直読温度センサIC

MEG μ + e + γ ( ) ( MEGA) = (BSM) MEG μ + e + γ ( : a few ) 180 γ μ + e +

udc-2.dvi


Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

橡

1..FEM FEM 3. 4.



LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

あらゆる情報検出から赤外線データ通信まで 幅広い用途に使える 超小型 & 高感度 光センサー Ultra-compact, high-sensitivity optical sensors for various app ranging from information detection to i

_念3)医療2009_夏.indd

[ ] [ ] [ ] [ ] [ ] [ ] ADC

untitled

Microsoft Word - triplexxx.doc

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

™…

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete

ñ{ï 01-65

Introduction ur company has just started service to cut out sugar chains from protein and supply them to users by utilizing the handling technology of

no15

MLA8取扱説明書

Transcription:

Multi Pixel Photon Counter T. Nakadaira KEK

Introduction MPPC is new semiconductor photon sensor Technology is very similar to SiPM. Under development by Hamamatsu Photonics (HPK) MPPC have not been listed in their products yet. HPK delivered many kinds of test samples to T2K and ILC-CAL. R&D groups in JP-HEP. ILC Calorimeter (Kobe U, Niigata U, Sinsyu U, Tsukuba U) T2K Near detector (Kyoto U) KEK Detector Technology Development group 1mm

Principal of MPPC Micro APD pixel array # of pixels 100, 400, 1600 Each pixel is operated in Geiger-mode. Bias voltage = 40 ~ 70V Only one operation parameter Outputs from all pixels are directory connected ( Wired-OR ) # of read out = 1 channel / device Pulse height of output signal # of hit pixels # of hit pixels # of photons Gain = ~10 6 No amplifier is needed Compact size Suitable for optical fiber readout. Works in the Magnetic field. High QE is expected. Expected cost is ~ $10 / device. 1p.e 2p.e 3p.e Raw signal HPK 100pixel MPPC 1mV/div 100ns/div

R&D Items Measurement of basic performance w/ LED Gain, Noise rate, Cross talk, Photon Detection Efficiency (PDE), linearity These parameters strongly depends on the bias voltage. Pixel by Pixel uniformity Inject photon to pixel by pixel using well focused laser beam 532nm Laser system @ Niigata University 825nm Laser system @ KEK Beam test @ KEK 12GeV PS test beam line Detect the particle using Plastic-scintillator + WLS optical fiber + MPPC Beam data is taken in Nov, 2005 Analysis is in progress.

Photon counting by MPPC Charge distribution # event 500 000 LED light (HPK 100 pixel) We can distinguish up to 45 p.e. peak. Variation of Intervals between peaks is in 2%. Gains for each pixels are uniform. 2p.e 3p.e 1p.e 500 # event 400 500 000 0p.e 300 Increasing LED light 200 30p.e 500 100 0 80 100 120 140 160 180 200 220 240 0 250 300 350 400 450 500 550 600

MPPC Gain Gain = 8 10 5 ~ 2 10 7 Gain x 10 4 2000 10 7 1900 1800 1700 1600 1500 5 10 7 1400 HPK 100 pixel Gain x 10 3 6400 6200 6 10 6 6000 5800 5600 5400 5200 5 10 5000 6 4800 HPK 400 Pixel 1300 4600 46.8 47.2 47.4 47.6 47.8 48 48.2 47 48.4 47.75 48 48.25 48.5 48.75 49 49.25 49.5 Bias Voltage (V) 47.5 Bias voltage (V) 49.

Noise Rate Measure the signal rate w/o LED light. Charge distribution for Noise 400 pixel # event 10 3 0p.e 1p.e w/o LED w/o LED 10 2 2p.e 0.5p.e 10 1p.e. pulse noise 1 0 100 200 300 400 500 600 700 80 Charge

Noise Rate v.s. Bias voltage (20 C) noise rate (Hz) 10 6 10 5 10 4 10 3 10 2 100 pixel 400 pixel 0.5p.e threshold 1.5p.e threshold 47 47.5 48 48.5 49 49.5 Bias voltage (V) 1MHz Noise > 1p.e. is less than 10 %

Cross talk among the pixels Cross talk is measures in 2 methods. Noise rate (Noise > 1.5 p.e ) / (Noise > 0.5 p.e) Discrepancy of charge distribution from Poisson distribution. HPK14 10 4 10 3 10 10 10 2 10 10 4 h1 10 Entries 50000 Mean 198.3 RMS 4.671 ratio 0.35 0.3 0.25 0.2 0.15 HPK 400pixel V=48.6 Poisson dist. Data 1 0.1 160 180 200 220 240 260 280 300 adc count 0.05 0.5p.e 1.5p.e 0 0 1 2 3 4 5 6 7

X-talk v.s. bias V ( ) X- talk Rate 0.35 0.3 0.25 by poisson law by noise rate 0.2 0.15 HPK100a 0.1 0.05 HPK400b 0 47 47.5 48 48.5 49 49.5 bias voltage (V)

Linearity measurement If the light intensity became large, several photons injected in a pixel. Counted as single photon because of the Geigermode operation. Linearity measurement is important to determine the number of pixels. Linearity is also affected by cross talk. Linearity is measured by changing the bias voltage to check the x-talk effect. We use the PMT as a reference of light intensity. PMT MPPC Blue LED

MPPC ADC HPK14 linearity count ADC(MPPC) ADC(MPPC) 300 250 200 150 100 50 it with line HPK14 linearity 700 600 500 400 300 200 100 Linearity (HPK 100 pixel) 0 0 5 10 15 20 25 30 35 ADC(PMT) PMT ADC count X-talk rate =0.03 X-talk rate =0.2 Discrepancy(%) HPK14 linearity ratio ratio 1.05 1 0.95 0.9 0.85 0.8 0.75 0.7 HPK14 linearity 1 0.95 0.9 0.85 0.8 0.75 0.7 10% 20% 20% 10 20 30 40 50 60 70 injected photo electron number 10% 20% M.Taguchi (Kyoto U) 50 0% 0% 20%@50p.e # of photon 20%@40p.e 0 0 10 20 30 40 50 ADC(PMT) 0.65 10 20 30 40 50 60 70 80 injeceted photo electron number # of photon

PDE (photon detection efficiency) # of photo electron in signal/ # of injected photon Geometrical Eff. (30~50%) Depends on MPPC type PDE=ε pixel Q.E. ε Geiger Quantum Eff. (60~80%) Depends on wave length DE relative to PMT is measured. PMT(13mmφ) PMT LED / LED Probability for p.e. to invoke Geiger discharge (60~80%) Depends on bias voltage Dispersion is not taken into account in calc. Blue LED 1mmφslit MPPC(1mm 2 ) 1mmφ WLS fiber

Measured PDE MPPC(p.e)/PMT(p.e) PDE(MPPC)/PDE(PMT) HPK14 Blue/ PDEgreen 1 0.9 PDE(%) PDE(MPPC) Red assuming PDE(PMT=2%) 12 Max: 12% 11 (PMT Q.E ~ 2%) 0.8 0.7 green 10 9 0.6 0.5 0.4 blue 350 450 550 650 300 400 500 600 700 noise rate(khz) noise rate (khz) 8 7 6 5 300 400 500 600 700 800 noise rate(khz)

Performance test w/ Laser Test MPPC pixel by pixel (HPK 100 pixel) Check the uniformity of efficiency in single pixel Pixel by Pixel deviation of gain and efficiency 825nm 50ps Laser Light source MPPC Micro Scope 100 m Spot size ~ 10µm XY moving stage (1µm pitch control)

Flat area: 60x60 µm 2 Efficiency Uniformity: Single pixel HPK 100pixel 100µm Sensitive region 70x70 m 10µm pitch Laser spot 700 600 1p.e. Charge dist. in a point y x 500 400 300 200 0p.e. Efficiency= signal>0.5 p.e / Total event 100 m 100 m 100 0 80 100 120 140 160 180

Uniformity: Pixel by Pixel Set laser spot @ center of each pixel Very good uniformity elative Gain r.m.s./mean = 3.6% HPK 100 pixel Relative Efficiency r.m.s./mean = 2.5% y 1.06 1.04 1.02 1 0.98 0.96 0.94 0.92 1mm 10 9 8 7 6 5 4 3 2 0 1 2 3 4 1 0 5 6 7 8 9 1mm 10 x 1.04 1.02 1 0.98 0.96 y 10 9 8 7 6 5 4 3 2 0 1 2 3 4 1 0 1mm 5 6 7 8 9 1mm 10 x

Summary& Prospect MPPC is promising device for photon counting. Gain ~ 10 6-10 7 Noise rate: O(1MHz) for >0.5 p.e., O(10~100kHz) for >1.5 p.e. X-talk rate: < ~0.2 Photon Detection Efficiency: comparable to PMT linearity: Discrepancy within 20% up to 40% of # of pixels Efficiency in single pixel is uniform Pixel by Pixel deviation of gain and efficiency is very small HPK delivered new samples to T2K and ILC-CAL group. Sample test in progress.

T2K MPPC T2K p MIP 5p.e. 0.5 1.4GeV/c proton & pion 100 event/spill beam size 1x1cm 2 4ch MPPC MPPC (HPK or Russia) 4 layers setup 64ch MAPMT (as reference) 1mm 1.3x2.5x50 cm 3 (K2K Scibar

HPK MPPC alignment HPK MPPC Y 0.8mm Z : 0.8mm Z X,Y : X X Y (1mm ) MPPC MPPC X,Y 20%,Z 60 40

MIP (p.e.) #event Photon Detection Efficiency (PDE =MPPC (1mm 2 ) PMT PDE HPK 70%, 100% MIP 160 140 120 100 80 60 40 HPK 13.3p.e. #event 180 160 140 120 100 p.e. 80 60 40 17.1p.e. MPPC 20 0 0 5 10 15 20 25 30 35 40 45 50 20 0 0 10 20 30 40 50 60 70

MIP (p.e.) 39 7.2 #17 73 13.3 #16 56 10.2 #14 54 9.9 #13 PMT (%) (p.e.) Serial# HPK PDE PMT 70% (p.e.) PDE PMT 100% (p.e 94 17.1 #14 126 22.9 #13 PMT (%) (p.e.) Serial# PDE Z MIP MAPMT 18.2p.e. PDE HPK X,Y MPPC T2K

p/ Separation Mean MIP Mean,r.m.s. MPPC 13.3p.e. MAPMT 18.0p.e. r.m.s. 6.2p.e. 6.6p.e 1.2GeV 1.0GeV 0.9GeV p 0.8GeV 0.7GeV 0.6GeV 1.2GeV 1.0GeV 0.9GeV p 0.8GeV 0.7GeV 0.6Ge 0.5GeV MPPC (PDE70%) 0.5GeV MAPMT (PDE100%)