Size: px
Start display at page:

Download ""

Transcription

1 2 2 MATHEMATICS.PDF (p n ), ( ) GL 2 (Z) SL 2 (Z) SL 2 (Z)

2

3 , a 0 + a + a b b 2 b 3 () + b n a n + b n a n., () b 2 b n a 0 + b. (2) a + a a n. a 0, a,..., a n, b, b 2,..., b n 0, (). n.,. a 0 + b a = a 0a + b a n = k, ()., b 2 b k a k + b k a k = a kb k a k a k + b k b k 2 b k b k a k a 0 + b a + a a k 2 + a k + = a 0 + b b 2 b k 2 a k b k. a + a a k 2 + a k a k + b k, n = k () n = k. n = k ()., n, (). 3

4 , a 0 + a + a a n + a n (3)., a 0 + a + a [a 0, a, a 2,..., a n ] a n ). a 0, a, a 2,..., a n (3)., [a 0, a, a 2,..., a n ] = [a 0, [a, a 2,..., a n ]] = [a 0, a, [a 2,..., a n ]] = = [a 0, a, a 2,..., a n 2, [a n, a n ]]. [a 0, a, a 2,..., a n ], 0., [a, a 2,..., a n ] 0, [a 2,..., a n ] 0,..., [a n, a n ] 0, a n 0 (4).,, [a 0, a, a 2,..., a n ]., a, a 2,..., a n, (4), [a 0, a, a 2,..., a n ]. a 0, a, a 2,..., a n, [a 0, a, a 2,..., a n ]. ) [] 2 [k 0, k,..., k n ], [a 0, a,..., a n ],. 4

5 a, a 2,..., a n 0,. n = 3, a = 0, a 0 + = a 0 + = a 0 + a 2 + a 3 a + a 2 + a 3 a 2 + a 3..2 [, 2, 3] = = = = [ 4, 3, 2] = = = = n 0. a 0, a, a 2,..., a n., [a 0, a, a 2,..., a n ], n = 0 n =, a =. n 2., s = a + a a n [a 0, a,..., a n ] = a 0 + s (5)., n 2, s >, (5).., n., n 0, n =, [a 0, a ] = a 0 + a. a >,.., n 0, n = a =..5 a, b, α, β, 0 < α <, 0 < β <., a + α = b + β, a = b α = β. 5

6 0 < α <, 0 < β <, < β < β α < α <. a + α = b + β, a b = β α, < a b <. a b, a b = 0., β α = 0..6 m, n, n m. a 0, b 0, a, a 2,..., a n, b, b 2,..., b m., [a 0, a,..., a n ] = [b 0, b,..., b m ],. (i) m = n, a 0 = b 0, a = b,..., a n = b n (ii) m = n +, a 0 = b 0, a = b,..., a n = b n +, b n+ = 0 i n i, s i = a i+ + a i t i = b i+ + a i i n 2, s i >, t i >,.5 a n b m.,.,. a i + s i = b i + t i = a i = b i a 0 = b 0, a = b, a 2 = b 2,..., a n 2 = b n 2 a n + a n = b n + t n (6) a n >, (6), t n >..5 a n = b n, a n = t n. a n,.4, m = n, a n = b n m = n +, a n = b n +, b n+ =. a n =, (6), t n =. m n + t n >, m = n, b n =. 6

7 .7 m, n, n m. a 0, b 0, a, a 2,..., a n, b, b 2,..., b m., s, t., [a 0, a,..., a n, s] = [b 0, b,..., b m, t], a 0 = b 0, a = b,..., a n = b n s = [b n+, b n+2,..., b m, t]., m = n s = t. 0 i n i,, s i >, t i >,.5 s i = a i+ + a i a n + s t i = b i+ + a i b m + t.,., a i + s i = b i + t i = a i = b i, s i = t i a 0 = b 0, a = b, a 2 = b 2,..., a n = b n a n + s = b n + b n+ + + b m + t. s >, t >,.5, a n = b n., m = n s = t. s = b n+ + b n b m + t 2 (p n ), ( ) (a n ), (p n ), ( ), p n = a n p n + p n 2, p =, p 2 = 0, = a n + 2, q = 0, q 2 = (7). n. a, a 2,..., a n, p, p 2,..., p n q, q 2,...,, p n,. 7

8 2. n a n., n (i) n (ii) < +. (i) n., q 2 =, q = 0, q 0 = a 0 q + q 2 =. a, a 2, q = a q 0 + q = a, q 2 = a 2 q + q 0 = a a n 3, k < n k k q k, a n = a n (n ) + (n 2) = 2n 3 n. (8), n n. (ii), q = a q 0 + q = a, q 2 = a 2 q + q 0 = a a 2 +. a, a 2, q < q 2. n 3, a n, (i) n 2 2, = a n (n 2) >. 2.2 = q 0 q, n 0 +., n 4 (8) 2n 3 > n, n 4 n <. 2.3 a 0, n a n., n 0 8

9 (i) n < p n (ii) p n < p n+. (i) n., p 2 = 0, p =, p 0 = a 0 p + p 2 = a 0. a, a 2, p = a p 0 + p = a a n 2, k < n k k < p k, a n p n = a n p n + p n 2 p n + p n 2 > (n ) + (n 2) = 2n 3 n., n 0 n < p n. (ii), p 0 = a 0, p = a a 0 +, a, p 0 < p. n 2, a n, (ii) n 2 < p n 2, p n = a n p n + p n 2 > p n + (n 2) > p n. 2.4 n a n., a 0, lim =. n lim p n =. n 2., n n. n. a 0, 2.3, n p n n. n p n. 2.5 n 2, (i) p n + p n+ = ( ) n 9

10 (ii) p n, gcd(p n, ) =. (i) n., p q 2 p 2 q =, n = 2 (i). n = k (i), p k+ q k p k q k+ = (a k+ p k + p k )q k p k (a k+ q k + q k ) = (p k q k p k q k ) = ( ) k = ( ) k. n = k (i)., n (i). (ii) g = gcd(p n, ) >, (i) g, g., g,. g =. 2.6 n a n > 0., p 0 q 0 < p 2 q 2 < < p 2k q 2k < p 2k+2 q 2k+2 < < p 2k+3 q 2k+3 < p 2k+ q 2k+ < < p 3 q 3 < p q., k. 2.5 p n+2 +2 p n = p n+2 p n p n+ p n + = ( ) n (9), p n+2 p n +2 = (a n+2 p n+ + p n ) p n (a n ) = (p n+ p n + )a n+2 = ( ) n a n+2. p n+2 +2 p n = ( )n a n

11 > 0, +2 > 0, a n+2 > 0, n = p n+2 +2 p n > 0 = p n+2 +2 > p n, (0) n = p n+2 +2 p n < 0 = p n+2 +2 < p n ()., n p n /, n p n /., (9) > 0, + > 0, p n+ p n = p n+ p n + = ( )n n = p n+ + p n > 0 = p n+ + > p n, (2) n = p n+ + p n < 0 = p n+ + < p n (3)., u 0 v, u < v, u < v +, (0) (3) p u q u < p v+ q v+ < p v q v, v < u, v < u +, () (2) p u q u < p u+ q u+ < p v q v.,,.. 3 (a n ), (p n ), ( ) (a n ) 2 (7). 3. n 0, 0 t, [a 0, a,..., a n, t] = tp n + p n 2 t + 2 (4)., n 2, a, a 2,..., a n. n. p =, p 2 = 0, q = 0, q 2 =, [t] = tp + p 2 tq + q 2.

12 , p 0 = a 0 p + p 2 = a 0, q 0 = a 0 q + q 2 =, [a 0, t] = a 0 + t = ta 0 + t, n = 0, (4). = tp 0 + p tq 0 + q. n 2, n (4), 3., [ [a 0, a,..., a n 2, a n, t] = a 0, a,..., a n 2, a n + ] t,, n (4). = (a n + /t)p n 2 + p n 3 (a n + /t) (a n + /t)p n 2 + p n 3 (a n + /t) = (ta n + )p n 2 + tp n 3 (ta n + ) 2 + t 3 = t(a n p n 2 + p n 3 ) + p n 2 t(a n ) + 2 = tp n + p n 2 t + 2., t a, a 2,..., a n, 0., n 0 (4). 3.2 n 0, 0 s, t, [a 0, a,..., a n, s] [a 0, a,..., a n, t] = ( ) n (s t) (s + 2 )(t + 2 )., n 2, a, a 2,..., a n. 2.5, p n 2 p n 2 = ( ) n 2 = ( ) n. 2

13 , 3., [a 0, a,..., a n, s] [a 0, a,..., a n, t] = sp n + p n 2 s + 2 tp n + p n 2 t + 2 = (sp n + p n 2 )(t + 2 ) (s + 2 )(tp n + p n 2 ) (s + 2 )(t + 2 ) = stp n + sp n 2 + tp n 2 + p n 2 2 (stp n + tp n 2 + sp n 2 + p n 2 2 ) (s + 2 )(t + 2 ) = (s t)(p n 2 p n 2 ) (s + 2 )(t + 2 ) ( ) n (s t) = (s + 2 )(t + 2 ). 3.3 n 0. n 2, a, a 2,..., a n., s, t. (a) [a 0, a,..., a n, s] = [a 0, a,..., a n, t] s = t. (b) n, [a 0, a,..., a n, s] < [a 0, a,..., a n, t] s < t. (c) n, [a 0, a,..., a n, s] < [a 0, a,..., a n, t] s > t n 0., n, a, a 2,..., a n.,. [a 0, a,..., a n ] = p n n, 3., t = a n, [a 0, a,..., a n ] = a np n + p n 2 a n + 2 = p n 3

14 ., p =, p 2 = 0, q = 0, q 2 =, p 0 = a 0 p + p 2 = a 0, q 0 = a 0 q + q 2 =,. n = 0. p 0 q 0 = a 0 = [a 0 ] 0 n m, ω = [a 0, a, a 2,..., a m ], [a 0, a, a 2,..., a n ] = p n ω n. gcd(p n, ) = > 0, p n /. 3.5 n a n. c n = [a 0, a, a 2,..., a n ], n = 0,, 2,... (c n ), ω. lim c n = ω n 3.4, n 0. c n = [a 0, a, a 2,..., a n ] = p n m, n, n m. 2.6, p m p n q m p n+ p n +., 2.5, 2., n, + n +, p n+ p n = p n+ p n + = ( )n p m p n q m ( )n. + ( ) n + n(n + ) n 2. 4

15 , p m p n q m n 2. ε > 0. δ = / ε, n > δ n. n 2 < δ 2 = ε m n > δ = p m p n q m < ε. (c n )., ω, lim n c n = ω. 3.6 f(x) [a, ), lim x f(x) = l. (i) f(a) < l, c f(a) < c < l, f(ξ) = c ξ > a ξ. (ii) l < f(a), c l < c < f(a), f(ξ) = c ξ > a ξ. (i) b a < b l f(b), [a, b], ξ f(ξ) = c a < ξ < b. x > a x f(x) < l, lim x f(x) = l, ε > 0, δ, x ε = (l c)/2, x > δ = f(x) l < ε. x > δ = l f(x) < l c 2 = f(x) > l + c 2 t = max{δ, a}, f(a) < c < f(t). [a, t], ξ f(ξ) = c a < ξ < t. (ii) (i). > c. 3.7 n 0. n, a, a 2,..., a n., ω. (i) [a 0, a,..., a n, a n+ ] < ω < [a 0, a,..., a n ], s, s > a n+. ω = [a 0, a,..., a n, s] 5

16 (ii) [a 0, a,..., a n ] < ω < [a 0, a,..., a n, a n+ ], s, s > a n+ ω = [a 0, a,..., a n, s]. f(x) = [a 0, a,..., a n, x]. f(x) a j + x (j = 0,,..., n) /x, (0, )., f(a n+ ) = [a 0, a,..., a n, a n+ ]., f(x) = [a 0, a,..., a n, a n + /x], lim f(x) = [a 0, a,..., a n ]. x, s s > a n+ ω = [a 0, a,..., a n, s], (i), (ii), 3.6 (i), (ii). 4 ω. ω, ω a 0, ω = a 0 + ω (5) ω. ω. ω = ω a 0 >, ω, ω a, ω = a + ω 2 (6) ω 2. ω 2. (6) (5), ω 2 = ω a > ω = a 0 + = [a 0, a, ω 2 ] a + ω 2 6

17 ., a, a 2,..., a n, ω n >, ω = a 0 + = [a 0, a, a 2,..., a n, ω n ] (7) a + a a n + ω n. n 0 (7), ω., ω n (7) n. ω, a 0 = q, q = a 0 = [a 0 ].. ω, m, n, ω = m/n, n > 0. ω,, m = a 0 n + r, 0 < r < n, n = a r + r 2, 0 < r 2 < r, r = a 2 r 2 + r 3, 0 < r 3 < r 2,, r n = a n r n + r n+, 0 < r n+ < r n, r n = a n+ r n+ a 0, a,..., a n, a n+, r, r 2,..., r n, r n+., n, r, r 2,..., r n, a, a 2,..., a n., m n = a 0 + r n = a 0 + n/r, n r = a + r 2 r = a + r /r 2, r r 2 = a 2 + r 3 r 2 = a 2 + r 2 /r 3,, r n = a n + r n+ = a n +, r n r n r n /r n+ r n = a n+ r n+.,, ω = m n = a 0 + = [a 0, a,..., a n+ ] a + a a n+.,. 7

18 4. q, a 0 a, a 2,..., a n, a n+ q = [a 0, a,..., a n, a n+ ]., ω = n/r, ω 2 = r /r 2, ω 3 = r 2 /r 3,..., ω n = r n /r n, ω n+ = r n /r n+., ω, = = = = [, 2, 3] = = + 7 = 4 + = [ 4, 3, 2] = = = = 3 + = [3, 7, 7] ω, n ω n+, ω = a 0 + a + a a n + ω n+,.., n ω n., ω, ω = + ( 2 ) = = + = 2 + ( 2 ) =

19 = + ( 3 ) = = + = + = = ( 3 ) = ω. (a n ), n a n, (c n ) c n = [a 0, a, a 2,..., a n ] (n = 0,, 2,...),., ω. lim c n = ω n ω, 4., b 0 b, b 2,..., b m ω = [b 0, b,..., b m ]. lim n c n = ω, (c 2k ) (c 2k+ ) (c n ), ω. 2.6, k 0 c 2k < ω < c 2k+. s > a n+ 3.7, n > m n, s, [b 0, b,..., b m ] = [a 0, a,..., a n, s]..7 b m = [a m, a m+,..., a n, s]., b m [a m, a m+,..., a n, s].. ω. 9

20 5, ω, ω = [a 0, a,..., a n, ω n ] (n = 0,, 2,...) ω. ω (a n )., n a n, ω n >. (a n ), (p n ), ( ),. 3.4, p n = a n p n + p n 2, p =, p 2 = 0, = a n + 2, q = 0, q 2 = [a 0, a,..., a n ] = p n. p n / ω n. 5. n 0 ω p n ( ) n = ( ω n+ + ) (8). 3.,. [a 0, a,..., a n, ω n+ ] = ω n+p n + p n ω n+ +, 2.5, ω p n = [a 0, a,..., a n, ω n+ ] p n = ω n+p n + p n ω n+ + p n = (ω n+ p n + p n ) p n (ω n+ + ). (ω n+ + ) (ω n+ p n + p n ) p n (ω n+ + ) = (p n p n ) = ( ) n = ( ) n. (8). 5.2 p 0 q 0 < p 2 q 2 < < p 2k q 2k < p 2k+2 q 2k+2 < < ω < < p 2k+3 q 2k+3 < p 2k+ q 2k+ < < p 3 q 3 < p q. 20

21 n 0. 5., > 0, > 0, ω n+ >, ω p n ( ) n = ( ω n+ + ). n = ω p n > 0 = ω > p n, n = ω p n < 0 = ω < p n., n p n / ω, n p n / ω. 2.6,. 5.3 n ω p n < ω p n (9). 3., ω n+ +, ω = ω n+p n + p n ω n+ +. (ω n+ + )ω = ω n+ p n + p n., ( ω n+ (ω p n ) = (ω p n ) = ω p ) n. ω n+,, ω p n = ω n+ ω p n. 0 < < < ω n+ (9). 0 < ω n+ <. 5.4 n 0 ω p n > (20)

22 5.3,, 2.5,, (20). ω p n+ < ω p n + p n+ p n + ω p n+ + ω p n < 2 ω p n. + p n+ p n = ( ) n p n+ p n + = p n+ p n = n 0 ω p n < +. q 2 n > 0, + > 0, ω n+ > a n+, ω n+ + > a n+ + = +., 5., ω p n = ( ) n ( ω n+ + ) = ( ω n+ + ) <. +, 2. ( 2.2), n 0 +,. 5.6 n 0, δ n,. p n = ω + δ n, δ n < δ n = (p n ω). ω., 5.5, ω p n <. q 2 n 22

23 ,,,, ω p n <. < p n ω <. < (p n ω) <., < δ n <.,. 5.7 p n lim = ω. n 5.5, n 0 ω p n <., 2.4 (n ), /qn 2 (n )., ω p n / 0 (n ). q 2 n 5.8 ω, p n / (n 0) ω. p, q, q > 0., qω p < ω p n = + q.. qω p < ω p n q < +., p n x + p n+ y = p, x + + y = q (2)., 2 p n,, 2.5 p n+ p n + = ( ) n, (p n+ p n + )y = p qp n. y = ( ) n (p qp n )., +, 2 p n+,, (p n+ p n + )x = qp n+ p+. 23

24 , x = ( ) n (qp n+ p+ ).., (2) (x, y)., x 0, y 0. x = 0, qp n+ = p gcd(p n, ) =, q k+ q. q +., x 0., x, x ω p n ω p n. y = 0, p n x = p, x = q, qω p = x( ω p n )., qω p = x ω p n ω p n.. y 0. x y., y < 0 = x = q + y > 0 = x > 0, y > 0 = + y + > q = x = q + y < 0 = x < 0. ω, 5.2 p n / < ω < p n+ /+ p n+ /+ < ω < p n /., ω p n + ω p n. x, y (2), qω p = ( x + + y)ω (p n x + p n+ y) = x( ω p n ) + y(+ ω p n+ )., x( ω p n ) y(+ ω p n ). x, qω p = x ω p n + y + ω p n+ x ω p n ω p n..,. 24

25 5.9 ω, p n / (n ) ω., p/q., p, q Z, q > 0, gcd(p, q) =., ω p q < ω p n = < q.. n, ω p/q < ω p n / q, qω p = q ω p q < ω p n = ω p n., 5.8, + q., +. n, ω, p/q., p, q Z, q > 0, gcd(p, q) =., ω p q < 2q 2, p/q ω.. ω p/q < /2q 2 p/q ω, n 0, p/q p n / qp n p, qp n p = qp n p q q q = p n p q ( ) ( = pn ω + ω p ) q ω p n + ω p q < ω p n + 2q 2. q 0 =, 2. ( ) n, k 0, q k q < q k+., 5.8, ω p k = q kω p k, qq k < q k q k qω p q k <. 2qq k = q q k ω p q ω p k + 2q 2 < + 2qq k 2q 2., q < q k, q k q. q k 25

26 5. ω. ω 2 p n /, p n+ /+, ω p n < ω p n+ < (22). 2q 2 n + 2q 2 n+ n , p n / < ω < p n+ /+ p n+ /+ < ω < p n /., p n+ p ( ) ( n pn+ = ω + ω p ) n + +, p n+ + p n > 0, p n+ + ω > 0, ω p n > 0 p n+ p n + = ω p n+ + ω p n.,., 2.5 p n+ p n + = ( ) n, p n+ p n + = p n+ p n + =. + +,, (22), + ω p n+ + ω p n = q 2 n+ + 2qn q 2 nq 2 n+, ( + ) 2 0., = +. n, 2. < +,., n = 0,, q = q 0 =., q = a q 0 + q = a a =. 5.2, p 2 q 2 < ω < p q p = a 0 + = a 0 +, q a p 2 = a 0 + q 2 a + = a 0 + a 2 + a 2 = a 0 + a 2 a 2 +, 0 < p q ω < p q p 2 q 2 = a 2 a , (22),. 26

27 5.2 ω > 0, x/y, x/y ω, y/x /ω., ω >, ω ω = a 0 + a + a a n +, /ω ω = 0 + a 0 + a + a a n +., ω > a 0. x/y ω n, x y = a 0 + a + a , y/x y x = 0 + a 0 + a + a 2 + +, /ω n +. 0 < ω <, ω > /ω., /ω ω = a 0 + a + a a n +, /(/ω) = ω ω = 0 + a 0 + a + a a n +. x/y ω n, y/x /ω n. a n a n 6 GL 2 (Z) SL 2 (Z) 2 ± GL 2 (Z) : GL 2 (Z) = P = p q p, q, r, s Z, det P = ps qr = ± r s. 6. GL 2 (Z). 2 P, Q GL 2 (Z), det P Q = det P det Q = ±, P Q GL 2 (Z). 27

28 GL 2 (Z) E = 0. 0 P = p q GL 2 (Z), P = r s det P P. s r q GL2 (Z) p 2 SL 2 (Z) : SL 2 (Z) = P = p q p, q, r, s Z, det P = ps qr = r s = {P GL 2 (Z) det P = }. 6.2 SL 2 (Z) GL 2 (Z) 2. P, Q GL 2 (Z) det P Q = det P det Q, GL 2 (Z) {±}, P det P. SL 2 (Z).,, GL 2 (Z)/SL 2 (Z) = {±}., [GL 2 (Z) : SL 2 (Z)] = SL 2 (Z), S =, T = det S = det T =, S, T SL 2 (Z). S, T SL 2 (Z) Γ. SL 2 (Z) Γ. p q SL 2 (Z), ps q 0 = p = s = ±., 0 s q = S q, q = S q T

29 , p q Γ., 0 s r 0 = min r p q SL 2 (Z) \ Γ r s, r 0. SL 2 (Z) \ Γ (2, )- r 0, P 0 = p 0 q 0 r 0 s 0., n, n Z, s 0 = r 0 n + n, 0 n < r 0.,, r 0, 0 s 0 r 0 n < r 0. P 0 S T = q 0 p 0 n p 0 Γ. s 0 r 0 n r 0, S T Γ, P 0 Γ.., SL 2 (Z) = Γ. 7 GL 2 (Z) C { }, P = p r, px + q rx + s, x, x s/r P x = p r, x =, x = s/r q GL 2 (Z), x C { }, r 0 s r = 0, px + q, x P x = s, x =. 7. ±q x = x ± q., ±. 0 29

30 P GL 2 (Z) P GL 2 (Z).,, x C { } P x = ( P ) x x = 0 x = /x GL 2 (Z) C { }. x C { }. E x = x. P = p q, Q = p q GL 2 (Z). r s r s x, r x + s 0, (rp + sr )x + (rq + ss ) 0, P Q x = pp + qr pq + qs x rp + sr rq + ss x =, = (pp + qr )x + (pq + qs ) (rp + sr )x + (rq + ss ), P (Q x) = P p x + q p p x + q r r x + s = x + s + q r p x + q r x + s + s = p(p x + q ) + q(r x + s ) r(p x + q ) + s(r x + s ) = (pp + qr )x + (pq + qs ) (rp + sr )x + (rq + ss ). pp + qr rp + sr, r 0 P Q = p r, r = 0 r 0, r = r = 0,,, p Q = r, r 0, r = 0 p P = r, r 0, r = 0 P p r = pp + qr rp + sr 30

31 . r x + s = 0, r = 0, s = 0, p s q r = det Q 0., x = s /r., P (Q x) = P = p/r., P Q x = p/r. (rp + sr )x + (rq + ss ) = 0, rp + sr = 0, rq + ss = 0, (pp + qr )(rq + ss ) (pq + qs )(rp + sr ) = det P Q 0., x = (rq + ss )/(rp + sr )., P Q x =., Q x = s/r, P (Q x) =., P Q x = P (Q x)., P x GL 2 (Z) C { }. x, y C { }, x y, P GL 2 (Z) x = P y. x, y C, x y, p, q, r, s. x = py + q, ps qr = ± ry + s, det P =, det P =. z, w C { }, P SL 2 (Z) w = P z , , 2 + = , 0 = 2 + = 2, 0 =. 7.5 C { }. 3

32 x, y, z C { }. ( ) x = E x, x x. ( ) x y, P GL 2 (Z), x = P y., y = E y = (P P ) y = P (P y) = P x., y x. ( ) x y y z, P, Q GL 2 (Z), x = P y y = Q z., x = P (Q z) = P Q z, x z.,. GL 2 (Z) SL 2 (Z), C { }. 7.6 (i). (ii). (iii)., P GL 2 (Z), x Q { }, P x Q { }.,.,. x, y C, P GL 2 (Z) x = P y. x, y,, x., x, y, y = P x. 7.7 Q { } 2., p/r, gcd(p, r) =, ps qr = q, s Z., P SL 2 (Z), P = p r,. q s p r = P., p /r, p/r, Q SL 2 (Z) p r = Q. 32

33 , p r = P Q p r, P Q SL 2 (Z)., p/r p /r., x 2 + bx + c = 0 2 θ = b + b 2 4c, θ = b b 2 4c 2 2., P = b, det P = θ = P θ x C { }, GL 2 (Z) x = {P GL 2 (Z) x = P x}, SL 2 (Z) x = {P SL 2 (Z) x = P x}., (i) GL 2 (Z) x GL 2 (Z). (ii) SL 2 (Z) x SL 2 (Z). (i) E, E GL 2 (Z) x., GL 2 (Z) x. P, Q GL 2 (Z) x, P Q x = P (Q x) = P x = x, P x = P (P x) = (P P ) x = E x = x., P Q, P GL 2 (Z) x. (ii) (i). 7.0 S =, T = 0., E., 0 0 (i) GL 2 (Z) S, T, E GL 2 (Z). (ii) SL 2 (Z) S, E SL 2 (Z). (i), P = S, T, E, P GL 2 (Z), P =. 33

34 P = p r, q GL 2 (Z), P =., r = 0. s ps = ps qr = det P = ±, p = ±, d = ± ( )., P = ± q 0 ± ( )., q = S q, q = T S q, 0 0 q = S q, q = T S q. 0 0, P S, T, E. (ii) det P = ± det P = (i), P SL 2 (Z) P = SL 2 (Z) S, E. 7. x C, x 2., P GL 2 (Z), x = P x P = ±E., GL 2 (Z) x = SL 2 (Z) x = {±E}., E. P = p r q GL 2 (Z), s., x = P x = px + q rx + s rx 2 + (s p)x q = 0. 34

35 x 2, r = s p = q = 0. ps qr = det P = ±, p = s = ±., P = ±E.,.,, GL 2 (Z) x, SL 2 (Z) x {±E}.,. 8 SL 2 (Z) z,, Re z, Im z : z = Re z + Im z. 8. z C, P = p q GL 2 (Z), r s. Im (P z) = det P Im z rz + s 2, z z. w = P z = pz + q rz + s.,, w = pz + q rz + s. w w = pz + q rz + s pz + q rz + s (pz + q)(rz + s) (pz + q)(rz + s) = (rz + s)(rz + s) (psz + qrz) (psz + qrz) = (rz + s)(rz + s) (ps qr)(z z) = rz + s 2. det P = ps qr, z z = 2 Im z, w w = 2 Im w, Im w = det P Im z rz + s 2. 35

36 8.2 z., S Z Z, (0, 0). R { rz + s (r, s) S \ {(0, 0)} } (23)., rz + s = 0 rz + s = 0 r = s = 0 (r, s) = (0, 0), 0 (23)., (23). x = Re z, y = Im z, rz + s = (s + rx) + ry, rz + s 2 = (s + rx) 2 + r 2 y 2. S \ {(0, 0)} =, S (r 0, s 0 ) (0, 0). R = r 0 z + s 0. R (23), (23) R., rz + s < R (r, s). rz + s < R, z, y 0., (24) 2,, (24), s + rx < R, ry < R. (24) r < R y. (25) s rx < s + rx < R., (25) ( s < R + rx < R + x ). (26) y (25), (26), rz + s < R (r, s). 8.3 z, rz + s., 8.2 (23). 36

37 , : z n, rz s < n, 0 < r n r, s Z., Dirichlet. C H = {z C Im z > 0}., C F = {z C z > /2 Re z < /2} {z C z = /2 Re z 0} SL 2 (Z). z F Im z > 0, F H. 8.4 =, Re = 0, F. ρ = ( + 3)/2 3., ρ =, Re z = /2, ρ F., ρ + = ( + 3)/2 6, ρ + =, Re z = /2, ρ + F. 8.5 z H, w F, z w. P = p r q SL 2 (Z), 8. z H, s Im (P z) = Im z rz + s 2 > 0. S = {(r, s) P SL 2 (Z)} 8.2, rz + s P. P, w 0 = P z., w 0 z H. a, w 0 + a = a w 0, w 0 + a w 0., /2 Re w 0 + a < /2 a, w = w 0 + a., Re (w 0 + a) = Re w 0 + a, Im w = Im w 0., w = w = 0 w 0 37

38 , w w. 8., Im w = Im w w 2 = Im w 0 w 2., w 2 z., Im w 0, Im w Im w 0., w 2 = Im w 0 Im w., w >, w F. w =, w ( = w =, Re ) = Re w w, w w F. 8.6 z, w F, P SL 2 (Z), w = P z., z = w., ±E, z, ρ P = ±E, ±T, z = ±E, ±T S, ±(T S) 2 z = ρ., S =, T = T S = 0, (T S) 2 = 0., ρ = ( + 3)/2 3. Im w < Im z P P, Im z Im w. P = p q, r s det P =, 8., w = P z = pz + q rz + s. (27) Im w = Im z rz + s 2. Im z Im w, rz + s = Im z. (28) Im w 38

39 Im (rz + s) = r Im z, r Im z = Im (rz + s) rz + s. F ρ, 3 = Im ρ Im z. 2, 3 r. 2, r Z, r = 0 ±. r 2 3. r = 0, ps qr =, p = s = ±. (27) z, w F, q = 0., z = w. w = z ± q. r =, P P r =., r =. r =, (28) z + s. (29) z F s Z, z > z + s > (29)., z =., s 0, (29) z = ρ s =., z =, s = 0 z = ρ, s =. z =, s = 0, ps qr =, r = q =. (27) w = p z. z =, z ( = z =, Re ) = Re z. z z, w F, p = 0, /z = p =, /z = ρ +., z = w =,, ρ + = ρ 2 = /ρ, z = w = ρ. z = ρ, s =, ps qr =, r = p q =. p = q +. (27) w =, (q + )ρ + q ρ + = q + ρ = q + (ρ + ). ρ + ρ ρ + = ρ ρ 2 = ρ = ρ2 = ρ +. w F, q =., p = 0, z = w = ρ. 39

40 8.7 z, w H., z w, z w z 0 F. ( ) 8.5, z 0 F z z 0., w 0 F w w 0. z w, z 0 w , z 0 = w 0. ( ) z z 0, z 0 w, z w. 9 2 θ 2, 2 ax 2 + bx + c = 0, gcd(a, b, c) =, a > 0 (30), θ Q., θ. 2 2, θ (30) 2 2, ax 2 + bx + c = 0, gcd(a, b, c) =, a > 0, a x 2 + b x + c = 0, gcd(a, b, c ) =, a > 0. a = au (u Q), 0 = a θ 2 + b θ + c u(aθ 2 + bθ + c) = (b bu)θ + (c cu). θ Q, b bu = c cu = 0., b = bu, c = cu. u, u = m/n, gcd(m, n) =, n > 0, a n = am, b n = bm, c n = cm., n a, b, c. gcd(a, b, c) =, n =., u., m a, b, c. gcd(a, b, c ) =, m = ±., u = ±., a > 0, a > 0 u =., a = a, b = b, c = c, θ (30) 2. 2 θ (30) 2 D θ., θ D 2. 40

41 (30), b + D, 2a b D 2a 2. 2., 2 θ, 2 θ, θ. θ 2, θ 2 (30), 0. D = b 2 4ac 2 2, 2 2., θ 2, θ., θ θ, θ θ., θ, 3 : (i) θ 2. (ii) θ 2 ax 2 + bx + c = 0, a 0, D = b 2 4ac 0. (iii) θ 2 x 2 + b x + c = 0, D = b 2 4c 0., 2 θ, θ, 3 : (i) θ, θ 2. (ii) θ, θ 2 ax 2 + bx + c = 0, a 0, D = b 2 4ac 0. (iii) θ, θ 2 x 2 + b x + c = 0, D = b 2 4c 0. (3),. (i) (ii). (ii) (iii) ax 2 + bx + c = 0 θ, aθ 2 + bθ + c = 0. a, θ 2 + b θ + c = 0, b, c Q., b = b/a, c = c/a., D = b 4a c = b2 4ac a 2 = D a 2 4

42 , D 0, D 0. (iii) (i) x 2 + b x + c = 0 θ, θ 2 + b θ + c = 0. b = b /b 2, c = c /c 2 (b, b 2, c, c 2 Z, b 2 > 0, c 2 > 0), b 2 c 2, 2 aθ 2 + bθ + c = 0, a = b 2 c 2 > 0, b = b c 2, c = b 2 c. g = gcd(a, b, c), g >, aθ 2 + bθ + c = 0 g., b 2 4ac g 2 = b2 c 2 2 4b 2 2c c 2 g ( 2 b 2 = b2 2c 2 2 g 2 b 2 2 = b2 2c 2 2 g 2 D ) 4 c c 2, D 0, (b 2 4ac)/g 2 0., (iii) (i),, θ, θ (30) 2 ( ) D 2 θ, D 0, D 0 (mod 4). D 2 θ, a, b, c, aθ 2 + bθ + c = 0, gcd(a, b, c) =, a > 0, θ = b ± D, D = b 2 4ac. 2a θ 2, D 0., 0 (mod 4), b D b 2 (mod 4), b., D 0 (mod 4), b, D b 2 4. a =, c = b2 D, θ = b + D

43 , b 2 4ac = D, aθ 2 + bθ + c = 0, gcd(a, b, c) =, a > 0. D 0, θ., θ D 2. D (mod 4), b. (30) 2 θ, θ ax 2 bx + c = 0., /θ cx 2 + bx + a = 0., θ /θ 2.,. 9.3 θ 2, P GL 2 (Z) ω = P θ., ω 2, ω = P θ. P = p q pθ + q, ω = P θ = r s rθ + s, ω = P θ = pθ + q rθ + s, ω.. θ ω + ω = pθ + q rθ + s + pθ + q rθ + s (pθ + q)(rθ + s) + (pθ + q)(rθ + s) = (rθ + s)(rθ + s) = 2prθθ + qr(θ + θ) + 2qs r 2 θθ + rs(θ + θ) + s 2., ωω (pθ + q)(pθ + q) = (rθ + s)(rθ + s) = p2 θθ + pq(θ + θ) + q 2 r 2 θθ + rs(θ + θ) + s 2. θ + θ, θθ Q, ω + ω, ωω Q., ω, ω 2 x 2 + bx + c = 0, b = (ω + ω ), c = ωω. ω, 2 0., 9., ω, ω 2. ω = ω, θ = P ω = P ω = θ., θ 2, θ θ., ω ω., ω, ω. 43

44 9.4 θ, θ 2, θ + θ θθ, 2., + 2, 3 x 2 2x = 0, x 2 3 = 0, D 0, D 0 (mod 4). θ, D 2 ax 2 + bx + c = 0, D = b 2 4ac, θ = b + e D, e = ± 2a., ω θ, P = p r θ = P ω = pω + q rω + s q GL 2 (Z) s (32)., a = ap 2 + bpr + cr 2, b = 2apq + b(ps + qr) + 2crs, (33) c = aq 2 + bqs + cs 2, ω D 2 a x 2 + b x + c = 0, D = b 2 4a c, ω = b + e D 2a, e = e det P., gcd(a, b, c) = gcd(a, b, c ) =. D, D ( 9.2). A = a b/2, b/2 c [ ] θ A θ = aθ 2 + bθ + c = 0., (32), P ω = pω + q = (rω + s) θ. rω + s 44

45 , A = a b /2, (33), b /2 c t P AP = A. (34), [ ] a ω 2 + b ω + c = ω A ω [ = t ω ] P AP ω = t P ω A P ω [ ] = (rω + s) 2 θ A θ = 0., ω 2 a x 2 + b x + c = 0.. 2, b 2 4a c = 4 det A = 4 det t P AP = 4(det P ) 2 det A = 4 det A = b 2 4ac P = s det P r q = ± s p r = D. q (32), p ω = P θ = sθ q rθ + p. θ, ω θ, ω 2, 9.3, ω ω = sθ q rθ + p sθ q rθ + p (ps qr)(θ θ) = (p rθ)(p rθ) = det P a(θ θ) a. 45

46 , (p rθ)(p rθ) = p 2 pr(θ + θ) + r 2 θθ ( = p 2 pr b ) + r 2 c a a = ap2 + bpr + cr 2 a = a a., e = e det P, a (ω ω) = det P a(θ θ) = e D.,, (34), ω = b + e D 2a, ω = b e D 2a. A = t (P )A P, P = s det P r q. p, a = a s 2 b rs + c r 2, b = 2a qs + b (ps + qr) 2c pr, c = a q 2 b pq + c p 2. g = gcd(a, b, c ), g a, b, c., g > gcd(a, b, c) >.,, gcd(a, b, c) = g = , 2 2, 2 2., θ 2, θ θ, < θ < 0, < θ. 46

47 0. D, D 0 (mod 4). (i) D 0 (mod 4), r D/4, θ = r + D/4 D 2. (ii) D (mod 4), r D/4, θ = (r + D)/2 D 2. (i) θ 2 x 2 2rx + r 2 D/4 = 0, ( 2r) 2 4(r 2 D/4) = D. 2 θ = r D/4, r < θ < 0 < θ. (ii) θ 2 x 2 rx + (r 2 D)/4 = 0, ( r) 2 4(r 2 D)/4 = D. 2 θ = (r D)/2, r ω θ > 0., 0 < D r < 2, < θ < m. m 2 x 2 m = 0, 4m. m, m m 2., m + m 2 (x m ) 2 m = 0, 4m. m m, 2 2. m m + m 2., m + m < m m < 0, < m + m, D > 0, 2 ax 2 + bx + c = 0, D = b 2 4ac (35) 2. θ 2, 2 (35). a < 0, θ, ( b) 2 4( a)( c) = b 2 4ac = D., a > 0. θ θ 2, < θ < 0, < θ. (36) 47

48 , a > 0, ( b D)/2a < ( b + D)/2a., (37), θ = b + D 2a b a = θ + θ > 0,, θ = b D. (37) 2a c = θθ < 0. a a > 0, b < 0, c < 0., c = c, D = b 2 + 4a c > b 2., b < D. (38), b = b, (37), θ = b + D 2a, θ = b D. 2a, (36),, a > 0,, (38), θ < < θ aθ < a < aθ. D b D + b < a < < a < D. (39) D, (38), (39) b a., θ = ( b + D)/2a.. A = a c b GL 2 (Z), 0 < d < c., a/c d a c = [a 0, a,..., a n ], n det A = ad bc = ( ) n 48

49 ., a/c p k /q k (0 k n).,. A = p n p n,, n., a n =, [a 0, a,..., a n, a n ] = [a 0, a,..., a n + ], a n 2,., [a 0, a,..., a n ] = [a 0, a,..., a n, ] ad bc = ( ) n n. p n /, > 0., ad bc = ± gcd(a, c) =, c > 0, a = p n, c =., p n d b = ad bc = ( ) n = p n p n., p n (d ) = (b p n ). (40) gcd(p n, ) =, (d )., d d = 0., 0 < d < c, > 0, d < d < c =., d = 0., d =., > 0, (40) b = p n..2 θ >, a, b, c, d, 0 < d < c, ad bc = ± ω = aθ + b cθ + d., θ ω. 49

50 . 3., ω = a c b θ = p n d p n θ = p nθ + p n θ + = [a 0, a,..., a n, θ]. θ >, θ ω..3 2 θ, ω, θ ω,,, ζ > n 0, m 0. θ = [a 0, a,..., a n, ζ], ω = [b 0, b,..., b m, ζ] (4) ( ) θ (4). p n / θ n, θ = [a 0, a,..., a n, ζ] = p nζ + p n ζ + p n p n = ±, θ ζ., ω ζ., θ ω. ( ) θ ω, a, b, c, d, ω = aθ + b, ad bc = ±. (42) cθ + d a, b, c, d, cθ + d > 0. θ, θ = [a 0, a,..., a n, θ n ] = p n ζ + p n 2 ζ + 2., θ n >, p n / θ n. (42),, ω = a θ n + b c θ n + d. a = ap n + b, b = ap n 2 + b 2, c = cp n + d, d = cp n 2 + d 2. 50

51 a, b, c, d, a d b c = (ad bc)(p n 2 p n 2 ) = ±. 5.6, δ, δ,, p n = θ + δ, δ <, p n 2 = 2 θ + δ 2, δ <. c = (cθ + d) + d = (cθ + d) 2 + cδ, cδ 2. cθ + d > 0 0 < 2 <, n 0 < c < d. n ζ = θ n, ζ, θ,.2 ω. 2 2.,.,.. ω ω = [a 0, a, a 2,..., a n, ω n ] (n = 0,, 2,...) (43), n 0 m, ω n0 = ω n0 +m = = ω n0 +jm = (j = 0,, 2,...) (44), ω., ω. (44) m ω., n 0 = 0, ω., ω. 5

52 ω (43), (44) ( m ), ω n0., ω = [a 0, a, a 2,..., a n0, ω n0 ] = [a 0, a, a 2,..., a n0, a n0,..., a n0 +m, ω n0 ] = [a 0, a, a 2,..., a n0, a n0,..., a n0 +m, a n0,..., a n0 +m, ω n0 ] =, a n0,..., a n0 +m.., ω, ω = [a 0, a,..., a n0, ȧ n0,..., ȧ n0 +m ] ω = [ȧ 0,..., ȧ m ] = = [2,,,, 4] = [2,,,, 4,,, ]. 7, = = [ 4,,, ] ω, ω = [ȧ 0, a,..., ȧ n ], n. a 0, a 0., ω >., ω = [a 0, a,..., a n, ω] = p n ω + p n 2 ω

53 , ω 2 + ( 2 p n )ω p n 2 = 0., ω 2., f(x) = x 2 + ( 2 p n )x p n 2, n >, 2., < p n 2 < p n, 0 < 2, n =, p =, p 0 = a 0, q = 0, q 0 =, f(0) = p n 2 < 0, f( ) = 2 + p n p n 2 > 0., f(x) = 0 < x < 0., f(x) = 0 ω ω 2. ω >, < ω < 0., ω ω, ω = [a 0, a,..., a n, ȧ n, a n+,..., ȧ n+k ]. ω, 4.7 ω., ω = [ȧ n, a n+,..., ȧ n+k ], ω, , 3. ω = [a 0, a,..., a n, ω ] = p n ω + p n 2 ω + 2., ω ω., 9.6, ω 2. ω ω = [a 0, a, a 2,..., a n, ω n ] (n = 0,, 2,...), n, n 2 ω n = ω n2, n < n 2 53

54 , ω., ω n = [a n, a n+, a n+2,..., a n2, ω n2 ] = [a n, a n+, a n+2,..., a n2, ω n ] = [ȧ n, a n+, a n+2,..., ȧ n2 ], ω = [a 0, a, a 2,..., a n, ω n ] = [a 0, a, a 2,..., a n, ȧ n, a n +, a n +2,..., ȧ n2 ] θ 2, 2 ax 2 + bx + c = 0, gcd(a, b, c) =, D = b 2 4ac > 0., θ θ = [a 0, a, a 2,..., a n, θ n ] (n = 0,, 2,...), p n / θ, 9.5, θ = p n θ n + p n 2 θ n + 2. A n = ap 2 n + bp n + cqn, 2 B n = 2ap n p n 2 + b(p n 2 + p n 2 ) + 2c 2, C n = ap 2 n 2 + bp n cqn 2 2, θ n 2 A n x 2 + B n x + C n = 0, B 2 n 4A n C n = D. n, 5.6, δ n,, p n = θ + δ n, δ n <. ( A n = a θ + δ ) 2 ( n + b θ + δ ) n + cqn 2 = (aθ 2 + bθ + c)qn 2 + 2aθδ n + a δ2 n qn 2 + bδ n = 2aθδ n + a δ2 n qn 2 + bδ n. 54

55 ,, C n = A n, A n < 2 aθ + a + b. C n < 2 aθ + a + b., B 2 n 4A n C n = D > 0, B 2 n 4 A n C n + D < 4(2 aθ + a + b ) 2 + D., B n < 4(2 aθ + a + b ) 2 + D. A n, B n, C n n, (A n, B n, C n )., n, n 2, n 3, n < n 2 < n 3 (A n, B n, C n ) = (A n2, B n2, C n2 ) = (A n3, B n3, C n3 ). (A, B, C)., θ n, θ n2, θ n3 2 Ax 2 + Bx + C = 0, 2., θ. 2.5 θ 2, θ = [a 0, a, a 2,..., a n, θ n ] (n = 0,, 2,...), θ n 2. θ 2 f(x) = ax 2 + bx + c = 0, θ. θ 2, < θ < 0, < θ. (f n (x)) ( f 0 (x) = f(x), f n (x) = x 2 f n a n + ) x (n =, 2,...), n 0, f n (x) 2, f n (θ n ) = 0 55

56 ., (θ n ) θ 0 = θ, θ n =, n 0. θ n a n (n =, 2,...) f n (θ n ) = 0, n. n 0, θ n > θ n, < θ n < 0. n = 0 θ 0 = θ. θ n, < θ n < 0. a n, θ n a n <.,, < θ n a n < 0. < θ n < 0., θ n 2., n θ 2, θ = [a 0, a, a 2,..., a n, θ n ] (n = 0,, 2,...). 2.4, 2, n, m θ n = θ m, n < m. n, θ n = a n + θ n = a n θ n + θ n, θ m = a m + θ m = a m θ m + θ m. θ n θ n 2,, 9.3 θ n = a n + θ n, θ m = a m + θ m. 56

57 θ n = θ m θ n = θ m, θ n θ m = a n a m. 2.5, θ n, θ m 2, θ n, θ m 0., < θ n < θ n θ m < θ m <., < a n a m <. a n a m, 0., a n = a m., θ n = θ m.,., θ. θ 0 = θ m n 2.7 2, 2. θ 2, θ = [a 0, a, a 2,..., a n, θ n ] (n = 0,, 2,...). 2.4, 2, n, m θ n = θ m, n < m., θ = [a 0, a, a 2,..., a n, θ n ] = [a 0, a, a 2,..., a n, a n,..., a m, θ m ] = [a 0, a, a 2,..., a n, a n,..., a m, θ n ],.7, θ n = [a n,..., a m, θ n ]., θ n. 2.2, θ n 2. n, 3., θ = p n θ n + p n 2 θ n

58 , 2.5, p n 2 p n 2 = ( ) n 2 =., θ θ n. n, 2.5, 2.2, θ n+ 2., θ n+ n, θ θ n a, b, c, x, y f(x, y) = ax 2 + bxy + cy 2 (45) 2 2.,, 2. gcd(a, b, c) =, f(x, y). 2,, 2. (45), f(x, y) = x (ax + b2 ) y = = [ x [ x ( b + y ] ax + b y 2 y b 2 x + cy ) 2 x + cy ] y a b/2 x b/2 c y, 2 a b/2 (46) b/2 c 2 f. D = b 2 4ac 2 f. f (46) A, D = (4ac b 2 2a b ) = = 4 det A (47) b 2c. 3. f(x, y) = ax 2 + bxy + cy 2 2, D., 4af(x, y) = (2ax + by) 2 Dy 2. 58

59 D = b 2 4ac, 4af(x, y) = 4a 2 x 2 + 4abxy + 4acy 2 = (4a 2 x 2 + 4abxy + b 2 y 2 ) (b 2 y 2 4acy 2 ) = (2ax + by 2 ) 2 (b 2 4ac)y 2 = (2ax + by) 2 Dy 2. 2 f(x, y), (i) f f(x, y). (ii) f x, y Z f(x, y) 0. (iii) f x, y Z f(x, y) 0. (iv) f f., x, y Z, f(x, y) = 0 x = y = 0. (v) f f., x, y Z, f(x, y) = 0 x = y = 0.., f,. 3.2 f(x, y) = ax 2 + bxy + cy 2 2, D = b 2 4ac f. a 0, (i) D > 0 f. (ii) D = 0 a > 0 f. (iii) D = 0 a < 0 f. (iv) D < 0 a > 0 f. (v) D < 0 a < 0 f. a = 0, (i) D > 0 f. (ii) D = 0 c > 0 f, 0. (iii) D = 0 c < 0 f, 0. (iv) D = 0 c = 0 f 0. a 0 : (i) ( ) 3., f(x, y). (ii) ( ) a > 0, D = 0 3., 4af(x, y) = (2ax + by) 2. a > 0, f(x, y)., 2ax + by = 0 f(x, y) = 0, f. 59

60 (iii) ( ) (iv) ( ), (ii). 3., D < 0 a > 0, f(x, y)., x, y Z f(x, y) = 0 = 2ax + by = y = 0 = x = y = 0., f. (v) ( ) (iv). (i) (v),, ( ). a = 0 : (i) ( ) D = b 2, b 0., f(x, y) = bxy + cy 2. (ii) ( ) D = b 2, b = 0., f(x, y) = cy 2., y = 0 x f(x, y) = 0, f., y 0 f(x, y) 0, f 0. (iii) ( ) (ii). (iv) ( ) D = b 2, b = 0., a = b = c = 0., f 0. (i) (iv)., a = 0 D = b 2 0.,., ( ). 3.3 f(x, y) = ax 2 + bxy + cy 2 2, D = b 2 4ac f.,. (i) f D > 0. (ii) f, 0 D = 0 a > 0 c > 0. (iii) f, 0 D = 0 a < 0 c < 0. (iv) f 0 D = 0 a = c = 0. (v) f D < 0 a > 0. (vi) f D < 0 a < 0. (ii) ( ), D = 0 c > 0, 2 f(x, y) x, y, D = 0 a > 0. (iii) ( )., f(x, y) = ax 2 + bxy + cy 2, y =, x 2 g(x) = f(x, ) = ax 2 + bx + c (48) 60

61 ., g(x) = ax 2 + bx + c, ( ) x f(x, y) = y 2 g = ax 2 + bxy + cy 2 y., g(x) f(x, y) 2, f(x, y) g(x) 2., f(x, y) g(x) [ ] f(x, y) = ax 2 + bxy + cy 2 = x y A x, A = a b/2 y b/2 c, P = p q GL 2 (Z) r s x = P y x y, (49),, f(x, y) = x = px + qy, y = rx + sy [ x y ] t P AP x y = a x 2 + b x y + c y 2., a = ap 2 + bpr + cr 2 (= f(p, r)), b = 2apq + b(ps + qr) + 2crs, c = aq 2 + bqs + cs 2 (= f(q, s)). (50), a, b, c., (49), a x 2 + b x y + cy 2, f(x, y) P [ ] f(x, y) = ax 2 + bxy + cy 2 = x y A x, A = a b/2, (5) y b/2 c ] f(x, y ) = a x 2 + b x y + c y 2 = [x y A x, A = a b /2 (52) b /2 c y 6

62 f = f, f = f a = a, b = b, c = c., f = f A = A., f f, P GL 2 (Z) A = t P AP (53)., t P P. f(x, y) f (x, y ) f f., (49) f(x, y) f (x, y ). P = p q, 2 (53) (50) r s., det P =, det P = f(x, y) = ax 2 + bxy + cy 2, f (x, y ) = a x 2 + b x y + c y 2, f = f, n, n 2 Z f(n, n 2 ) = f (n, n 2 ). ( ) f = f, a = a, b = b, c = c, n, n 2 Z f(n, n 2 ) = an 2 + bn n 2 + cn 2 2 = a n 2 + b n n 2 + c n 2 2 = f (n, n 2 ). ( ), a = f(, 0) = f (, 0) = a, c = f(0, ) = f (0, ) = c., a + b + c = f(, ) = f (, ) = a + b + c., b = b. 4.2 f, f 2. f f f, f. 62

63 f, f A, A (5), (52), f f, P = p q GL 2 (Z), (50). r s g = gcd(a, b, c). (50) g a, b, c. g >, f., g = f, f 2, D, D f, f., A, A f, f. f f, P GL 2 (Z) A = t P AP., (47), D = 4 det A = 4 det t P AP = 4 det t P det A det P = 4(det P ) 2 det A = 4 det A = D f(x, y), f (x, y ), f (x, y ) 2, A, A, A. ( ) E = 0, A = t EAE. 0 ( ) f f, P GL 2 (Z), A = t P AP., A = t P A P, f f. ( ) f f f f., P GL 2 (Z), A = t P AP.,, P GL 2 (Z), A = t P A P., A = t (P P )A(P P ), f f. D 0, D 0 (mod 4). D 2 ax 2 + bx + c, D = b 2 4ac, 2 ax 2 + bx + c = 0 b + D, 2a b D 2a,, 2. 9., 2. 63

64 4.5 f(x, y) = ax 2 + bxy + cy 2, f (x, y ) = a x 2 + b x y + c y 2 D 2., θ f 2 ax 2 + bx + c, θ f 2 a x 2 + b x + c. (i) f f θ = θ. (ii) f f θ θ. (iii) f f θ θ., θ = ( b + D)/2a, θ = ( b + D)/2a. (i) ( ) f f, 2, θ = θ. ( ) θ = θ,, a, b, a, b Z D Q, b + D 2a = b + D 2a. (a b ab ) + (a a ) D = 0. a b a b = a a = 0., a = a, b = b., f f, b 2 4ac = b 2 4a c., c = c., f = f. (ii) A, A f, f, A = a b/2, A = a b /2. b/2 c b /2 c ( ) f f., P = p q SL 2 (Z), r s A = t P AP. (33). ω = P θ, 9.5 ω = θ., θ = P θ. ( ) θ θ., P = p r, a = ap 2 + bpr + cr 2,, 9.5, θ = ( b + D)/2a., b + D 2a = b + D 2a. q SL 2 (Z), θ = P θ. s b = 2apq + b(ps + qr) + 2crs, (54) c = aq 2 + bqs + cs 2 64

65 , (a b a b ) + (a a ) D = 0. a, b, a, b Z D Q, a b a b = a a = 0., a = a, b = b., (54) A = t P AP., f f. (iii) (ii) , f ( ), a > 0 ( a < 0)., 2., 2 2, ( ) ( )., 4 (50), P GL 2 (Z), ( ) 2 P 2 ( )., f(x, y) 2, f(x, y) 2. f(x, y) P f (x, y ), P f(x, y) f (x, y )., f, f A, A, A = t P AP A = t P ( A)P., 2. 2 f(x, y) = ax 2 + bxy + cy 2, a > 0, c 0 b 2 4ac 0, c > 0. 2 f(x, y) = ax 2 + bxy + cy 2 2, a < b a < c 0 b a = c (55) f(x, y) 2 g(x) θ., f 2, θ >, 2 Re θ < 2 θ =, 2 Re θ 0., F SL 2 (Z),. f 2 θ F 65

66 θ θ, g(x) 2., 2 Re θ = θ + θ = b a, θ = θθ = c a. (56) f, (55) 0 b a = c a < b a < c a. (57), (56) θ F., θ F, (56) (57)., (55), f. 5.2 D < 0 2. f(x, y) = ax 2 + bxy + cy 2 D 2, (55) b a c., D = 4ac b 2 4b 2 b 2 = 3b 2., b D 3.., b., b, 4ac = b 2 D (a, c)., a, c., D, D f, f 2. f(x, y) = ax 2 + bxy + cy 2., D = b 2 4ac f, g(x) = ax 2 + bx + c f 2, θ = ( b + D)/2a g(x). D < 0 a > 0, θ H. F SL 2 (Z), θ θ 0 F ( 8.5). 9.5, θ 0 2 g 0 (x ). g 0 (x ) 2 f 0 (x, y ), 5., f 0., θ θ 0, 4.5, f f ,. 66

67 f(x, y) = ax 2 + bxy + cy 2 f (x, y ) = a x 2 + b x y + c y 2 2., g(x), g (x ) f, f 2, θ g(x), θ g (x ). f f, 4.5, θ θ., F SL 2 (Z), 5., θ, θ F., 8.6, θ = θ., 4.5, f = f. 5.5 f, f 2., f f, f f 2 f 0. ( ) 5.3, 2 f 0 f f 0., 2 f 0 f f , f 0 = f 0. ( ) f f 0, f 0 f, f f. 6 2 D, 0. D 2 f(x, y) = ax 2 + bxy + cy 2 2, f a > 0, a b + c > 0, a + b + c < 0, c < 0 (58). f(x, y) 2 g(x) = ax 2 + bx + c, g(0) = c, g() = a + b + c, g( ) = a b + c, (58) a > 0, g( ) > 0, g(0) < 0, g() < 0 (59)., 2b = g() g( ), f b < 0. f, 0, g. 6. f(x, y) 2, g(x) f 2, θ g(x)., f(x, y) 2, θ 2,, < θ < 0, < θ (60)., θ θ, g(x) 2. 67

68 f(x, y) = ax 2 +bxy+cy 2, D = b 2 4ac, g(x) = ax 2 +bx+c, θ = ( b+ D)/2a, θ = ( b D)/2a., g(x), g(x) = a(x θ)(x θ). (6) f, (59). θ < θ a > 0, (6), x, < 0, θ < x < θ, g(x) = = 0, x = θ x = θ, > 0, x < θ θ < x. g( ) > 0, g(0) < 0, g() < 0, < θ < 0 < θ., (60)., (60), D a = θ θ > 0 a > 0., (6), g( ) > 0, g(0) < 0, g() < 0., (59). 6.2 D 0., D 2. f D 2, f(x, y) = ax 2 + bxy + cy 2, 6. 0 < b + D 2a < < b + D 2a,, 0 < b + D < 2a < b + D. b < D., b., b, 4ac = b 2 D (a, c)., a, c., D, D D > 0 2 f, f 2. 68

69 f(x, y) = ax 2 + bxy + cy 2., D = b 2 4ac f, g(x) = ax 2 + bx + c f 2, θ = ( b + D)/2a g(x). D 0, θ , θ 2 θ , θ 0 2 g 0 (x ). g 0 (x ) 2 f 0 (x, y ), 6., f 0., θ θ 0, 4.5, f f n, f(x, y) = ax 2 + bxy + cy 2 2. x, y ax 2 + bxy + cy 2 = n (62) (x, y), n 2 f., gcd(x, y) =,, n f. (62) g = gcd(x, y) > (x, y), g 2 n, (62) g 2, a ( ) 2 x + b x g g y ( ) 2 y g + c = n g g 2, n/g 2 f(x, y). P = p q GL 2 (Z), r s x = P y, (50) f(x, y) = ax 2 + bxy + cy x y f (x, y ) = a x 2 + b x y + c y 2., x = P x, P = s y y det P r q, det P = ± p, f(x, y) = n (x, y) f (x, y ) = n (x, y )., n 2 f, n f P 2 f., n, f(x, y), f (x, y ) 2, n f, f. 69

70 7. n D 2, z z 2 D (mod 4n) (63). (x 0, y 0 ) (62). gcd(x 0, y 0 ) =, z 0, w 0 Z x 0 z 0 + y 0 w 0 =., x = P y x y, P = x 0 w 0 y 0 z 0, P GL 2 (Z), 4 (50) f(x, y) = ax 2 + bxy + cy f (x, y ) = nx 2 + b x y + c y 2. f f, 4.3 f, f., b 2 4nc = D., z = b (63)., (63) z = b, c Z b 2 4nc = D., f(x, y) = nx 2 + bxy + cy 2, f D, (62) (x, y) = (, 0). 70

71 [] : 2,, 97. [2] :,, 972. [3] :,, 98. [4] :,, 992. [5], : UBASIC,, 994. [6] G. M., E. M. : I,,

72 , , , , ,

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

3 m = [n, n1, n 2,..., n r, 2n] p q = [n, n 1, n 2,..., n r ] p 2 mq 2 = ±1 1 1 6 1.1................................. 6 1.2......................... 8 1.3......................... 13 2 15 2.1.............................

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information

iii 1 1 1 1................................ 1 2.......................... 3 3.............................. 5 4................................ 7 5................................ 9 6............................

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A 91 7,.,, ( ).,,.,.,. 7.1 A B, A B, A = B. 1), 1,.,. 7.1 A, B, 3. (i) A B. (ii) f : A B. (iii) A B. (i) (ii)., 6.9, (ii) (iii).,,,. 1), Ā = B.. A, Ā, Ā,. 92 7 7.2 A, B, C. (1) A = A. (2) A = B B = A. (3)

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

0   (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4 0 http://homepage3.nifty.com/yakuikei (18) 1 99 3 2014/12/13 (19) 1 100 3 n Z (n Z ) 5 30 (5 30 ) 37 22 (mod 5) (20) 201 300 3 (37 22 5 ) (12, 8) = 4 (21) 16! 2 (12 8 4) (22) (3 n )! 3 (23) 100! 0 1 (1)

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C( 3 3.1 3.1.1 1 1 A P a 1 a P a P P(a) a P(a) a P(a) a a 0 a = a a < 0 a = a a < b a > b A a b a B b B b a b A a 3.1 A() B(5) AB = 5 = 3 A(3) B(1) AB = 3 1 = A(a) B(b) AB AB = b a 3.1 (1) A(6) B(1) () A(

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 : 9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log

More information

.1 1,... ( )

.1 1,... ( ) 1 δ( ε )δ 2 f(b) f(a) slope f (c) = f(b) f(a) b a a c b 1 213 3 21. 2 [e-mail] nobuo@math.kyoto-u.ac.jp, [URL] http://www.math.kyoto-u.ac.jp/ nobuo 1 .1 1,... ( ) 2.1....................................

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n 1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552 3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

I II

I II I II I I 8 I I 5 I 5 9 I 6 6 I 7 7 I 8 87 I 9 96 I 7 I 8 I 9 I 7 I 95 I 5 I 6 II 7 6 II 8 II 9 59 II 67 II 76 II II 9 II 8 II 5 8 II 6 58 II 7 6 II 8 8 I.., < b, b, c, k, m. k + m + c + c b + k + m log

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n Part2 47 Example 161 93 1 T a a 2 M 1 a 1 T a 2 a Point 1 T L L L T T L L T L L L T T L L T detm a 1 aa 2 a 1 2 + 1 > 0 11 T T x x M λ 12 y y x y λ 2 a + 1λ + a 2 2a + 2 0 13 D D a + 1 2 4a 2 2a + 2 a

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

, n

, n 008 11 19 1 , 1-1.. 3. 4. 5. 6. 7. n 8. 9. 10. 11. 1. 13. 14. 15. 16. 17. 1 5 1.1....................................... 5 1........................................ 7 1.3.........................................

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W 3 30 5 VI VI. W,..., W r V W,..., W r W + + W r = {v + + v r v W ( r)} V = W + + W r V W,..., W r V W,..., W r V = W W r () V = W W r () W (W + + W + W + + W r ) = {0} () dm V = dm W + + dm W r VI. f n

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37 4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

入試の軌跡

入試の軌跡 4 y O x 7 8 6 Typed by L A TEX ε [ ] 6 4 http://kumamoto.s.xrea.com/plan/.. PDF Ctrl +L Ctrl + Ctrl + Ctrl + Alt + Alt + ESC. http://kumamoto.s.xrea.com/nyusi/qdai kiseki ri.pdf 6 i i..................................

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l ABCDEF a = AB, b = a b (1) AC (3) CD (2) AD (4) CE AF B C a A D b F E (1) AC = AB + BC = AB + AO = AB + ( AB + AF) = a + ( a + b) = 2 a + b (2) AD = 2 AO = 2( AB + AF) = 2( a + b) (3) CD = AF = b (4) CE

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information