SUSY DWs

Size: px
Start display at page:

Download "SUSY DWs"

Transcription

1 @ Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) (arxiv: ) ( )

2 Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding Tensor Formalism

3 p-branes : D p p D 4 : standard branes p = D 3 : defect branes p = D 2 : Domain Walls T p (g s ) +α (l s = 1) α = 0 : fundamental α = 1 : Dirichlet α = 2 : solitonic S p-brane = T p ( ) + ( brane ) Dirac-Born-Infeld type Wess-Zumino type SUSY Domain Walls - 3 -

4 D = 10 IIA/IIB D = 10 p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 α = 0 F1 IIA/IIB α = 1 D0 IIA D1 IIB D2 IIA D3 IIB D4 IIA D5 IIB D6 IIA (D7) IIB (D8) IIA (D9) IIB α = 2 NS5 IIA/IIB SUSY Domain Walls - 4 -

5 D = 10 IIA/IIB D = 10 p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 α = 0 F1 IIA/IIB α = 1 D0 IIA D1 IIB D2 IIA D3 IIB D4 IIA D5 IIB D6 IIA (D7) IIB (D8) IIA (D9) IIB α = 2 NS5 IIA/IIB p 6 sources : F1 B (2), NS5 B (6), Dp C (p+1) (p 3), Dp C (p +1) (p > 4) db (2) = 10 db (6), dc (p+1) = 10 dc (7 p) 10 dc (p +1) Dp = standard branes (p 6) RR potentials C (p+1) D7 = defect branes scalar fields (+α) D8 = Domain Walls Romans mass ( ) D9 = spacetime-filling branes I SUSY Domain Walls - 5 -

6 Domain Walls (10 D8-brane Romans mass )

7 Motivation = 32 ( ) coset space G 0 /H D U-duality G 0 R- H dim(g 0 /H) T-duality IIA R IIB SL(2, R) SO(2) GL(2, R) SO(2) 3 SO(1, 1) 8 SL(3, R) SL(2, R) SO(3) SO(2) 7 SL(2, R) SL(2, R) 7 SL(5, R) Sp(2) 14 SL(4, R) 6 SO(5, 5) Sp(2) Sp(2) 25 SO(4, 4) 5 E 6(6) USp(8) 42 SO(5, 5) 4 E 7(7) SU(8) 70 SO(6, 6) 3 E 8(8) SO(16) 128 SO(7, 7) SUSY Domain Walls - 7 -

8 Motivation Domain Walls D8-brane in 10-dim. Ramond-Ramond potential C (9) 10 dc (9) = m ( ) IIA Romans massive IIA SUGRA SUSY Domain Walls - 8 -

9 Motivation Domain Walls D8-brane in 10-dim. Ramond-Ramond potential C (9) 10 dc (9) = m ( ) IIA Romans massive IIA SUGRA (D 2)-branes in D-dim. SUSY Domain Walls Domain Walls SUSY Domain Walls - 9 -

10 1 SUSY Domain Walls Wess-Zumino 7 Domain Walls

11 D8-brane in 10D D8-brane ds 2 10 = H 9 8 (y) dy 2 + H 1 8 (y) ds 2 9 e ϕ = H 5 4 (y) dilaton C = ± 1 H(y), m = ± yh(y) RR potential (Romans mass) mass m 0 RR potentials δb 2 = dσ 1, δc 1 = mσ 1 F 2 dc 1 + mb 2 : Stückelberg pairing gauging C 1 B 2 C 3 C 5 B 6 C 7 m eaten massive massless massless eaten massive SUSY Domain Walls

12 D8-brane in 10D D8-brane (D8 back reaction ) δc 9 = dλ 8 + H 3 λ 6 : RR tensor in bulk δb 2 = dσ 1 : NSNS tensor in bulk δx = 0 : transverse scalar δb µ = dσ 0 Σ 1 : D8-brane D8-brane SUSY {X, b µ ; ψ} : on-shell (8 boson + 8 fermion ) SUSY Wess-Zumino L WZ = C 9 + C 7 F = ( C e F 2 ) 9 F 2 = db 1 + B 2, H 3 = db 2 ( ) m 0 SUSY Domain Walls

13 D SUSY DWs D Wess-Zumino L WZ (A e F ) D 1 A : F : D ( ) Domain Walls A, F D U-duality G 0 1. (A, F) SUSY 2. SUSY Domain Walls SUSY Domain Walls

14 U-duality G 0 form fields D U-duality G 0 1-forms 2-forms 3-forms 4-forms 5-forms 6-forms 7-forms 8-forms 9-forms 10-forms IIA R IIB SL(2, R) GL(2, R) SL(3, R) SL(2, R) (3, 2) (3, 1) (1, 2) (3, 1) (3, 2) (8, 1) (1, 3) 7 SL(5, R) SO(5, 5) E 6(6) E 7(7) E 8(8) (6, 2) (3, 2) (15, 1) (3, 3) (3, 1) (3, 1) F.Riccioni, D.Steele and P.West, arxiv: SUSY Domain Walls

15 U-duality G 0 form fields D U-duality G 0 1-forms 2-forms 3-forms 4-forms 5-forms 6-forms 7-forms 8-forms 9-forms 10-forms IIA R IIB SL(2, R) GL(2, R) SL(3, R) SL(2, R) (3, 2) (3, 1) (1, 2) (3, 1) (3, 2) (8, 1) (1, 3) 7 SL(5, R) SO(5, 5) E 6(6) E 7(7) E 8(8) (6, 2) (3, 2) (15, 1) (3, 3) (3, 1) (3, 1) Domain walls : (D 1)-forms F.Riccioni, D.Steele and P.West, arxiv: SUSY Domain Walls

16 U-duality G 0 form fields D U-duality G 0 1-forms 2-forms 3-forms 4-forms 5-forms 6-forms 7-forms 8-forms 9-forms 10-forms IIA R IIB SL(2, R) GL(2, R) SL(3, R) SL(2, R) (3, 2) (3, 1) (1, 2) (3, 1) (3, 2) (8, 1) (1, 3) 7 SL(5) SO(5, 5) E 6(6) E 7(7) E 8(8) (6, 2) (3, 2) (15, 1) (3, 3) (3, 1) (3, 1) 7 F.Riccioni, D.Steele and P.West, arxiv: SUSY Domain Walls

17 7 SUSY DWs 7 Domain Walls = 5-branes 7D A G 0 = SL(5, R) A 1,[MN] 1-form 10 A M 2 2-form 5 A 3,M 3-form 5 A [MN] 4 4-form 10 A 5,M N 5-form 24 (adjoint) A 6,(MN) A [MN],P 6 6-forms (M, N = 1,..., 5 of SL(5, R)) SUSY Domain Walls

18 7 SUSY DWs 15 5-brane L 15 WZ A 6,(MN) + A 5,(M P F 1,N)P + A 3,(M F 3,N) +... F 3,N = db 2,N + A 3,N F 1,NP = db 0,NP + A 1,NP X y SUSY Domain Walls

19 7 SUSY DWs 15 5-brane L 15 WZ A 6,(MN) + A 5,(M P F 1,N)P + A 3,(M F 3,N) +... F 3,N = db 2,N + A 3,N F 1,NP = db 0,NP + A 1,NP X y SUSY Domain Walls

20 7 SUSY DWs 15 5-brane L 15 WZ A 6,(MN) + A 5,(M P F 1,N)P + A 3,(M F 3,N) +... F 3,N = db 2,N + A 3,N F 1,NP = db 0,NP + A 1,NP X y M = N(= 1) case : SUSY 5-branes b 2,N=1 : 4C 2 /2 = 3 b 0,[N=1,P ] : 1 4 = 4 X y : 1 8 boson + 8 fermion 1 2 -SUSY! M = 1,..., 5 SUSY Domain Walls

21 7 SUSY DWs 15 5-brane L 15 WZ A 6,(MN) + A 5,(M P F 1,N)P + A 3,(M F 3,N) +... F 3,N = db 2,N + A 3,N F 1,NP = db 0,NP + A 1,NP X y M = N(= 1) case : SUSY 5-branes 5 b 2,N=1 : 4C 2 /2 = 3 b 0,[N=1,P ] : 1 4 = 4 X y : 1 8 boson + 8 fermion 1 2 -SUSY! M = 1,..., 5 M N case : SUSY 5-branes boson 4 SUSY SUSY Domain Walls

22 7 SUSY DWs 15 5-brane L 15 WZ A 6,(MN) + A 5,(M P F 1,N)P + A 3,(M F 3,N) +... F 3,N = db 2,N + A 3,N F 1,NP = db 0,NP + A 1,NP X y M = N(= 1) case : SUSY 5-branes 5 b 2,N=1 : 4C 2 /2 = 3 b 0,[N=1,P ] : 1 4 = 4 X y : 1 8 boson + 8 fermion 1 2 -SUSY! M = 1,..., 5 5 < 15 Elementary SUSY DWs M N case : SUSY 5-branes boson 4 SUSY SUSY Domain Walls

23 7 SUSY DWs 40 L 40 WZ A [MN],P 6 + A 5,Q P F 1,RS ϵ MNQRS + A [MN] 4 F P 2 ( ) [MNP ] brane F P 2 = db P 1 + A P 2 F 1,RS = db 0,RS + A 1,RS X y SUSY Domain Walls

24 7 SUSY DWs 40 L 40 WZ A [MN],P 6 + A 5,Q P F 1,RS ϵ MNQRS + A [MN] 4 F P 2 ( ) [MNP ] brane F P 2 = db P 1 + A P 2 F 1,RS = db 0,RS + A 1,RS X y SUSY Domain Walls

25 7 SUSY DWs 40 L 40 WZ A [MN],P 6 + A 5,Q P F 1,RS ϵ MNQRS + A [MN] 4 F P 2 ( ) [MNP ] brane F P 2 = db P 1 + A P 2 F 1,RS = db 0,RS + A 1,RS X y P = M(= 1 N) case : SUSY 5-branes 20 b P 1 : 4 b 0,[RS] : 1 3 = 3 X y : 1 8 boson + 8 fermion 1 2 -SUSY! M ( 5 C 2 = 20) P M N case : SUSY 5-branes boson 4 SUSY SUSY Domain Walls

26 7 SUSY DWs 40 L 40 WZ A [MN],P 6 + A 5,Q P F 1,RS ϵ MNQRS + A [MN] 4 F P 2 ( ) [MNP ] brane F P 2 = db P 1 + A P 2 F 1,RS = db 0,RS + A 1,RS X y P = M(= 1 N) case : SUSY 5-branes 20 b P 1 : 4 b 0,[RS] : 1 3 = 3 X y : 1 8 boson + 8 fermion 1 2 -SUSY! M ( 5 C 2 = 20) P M N case : SUSY 5-branes boson 4 SUSY SUSY Domain Walls

27 7 SUSY DWs 40 L 40 WZ A [MN],P 6 + A 5,Q P F 1,RS ϵ MNQRS + A [MN] 4 F P 2 ( ) [MNP ] brane F P 2 = db P 1 + A P 2 F 1,RS = db 0,RS + A 1,RS X y P = M(= 1 N) case : SUSY 5-branes 20 b P 1 : 4 b 0,[RS] : 1 3 = 3 X y : 1 8 boson + 8 fermion 1 2 -SUSY! M ( 5 C 2 = 20) 20 < 40 Elementary SUSY DWs P M N case : SUSY 5-branes boson 4 SUSY SUSY Domain Walls

28 Elementary SUSY DWs fundamental Dirichlet solitonic (brane s tension) (g s ) +α D U T # of EDWs α = 0 α = 1 α = 2 α = 3 α = 4 α = 5 IIA R GL(2, R) SO(1, 1) 2 3 U SL(3, R) SL(2, R) SL(2, R) SL(2, R) 6 (6, 2) U (1, 2) T 4 (3, 2) T 7 SL(5, R) SL(4, R) U 4 T 4 10 T T 5 15 U 4 10 T 1 T 6 SO(5, 5) SO(4, 4) U 8 S T C T S T 8 C T 5 E 6(6) SO(5, 5) U 16 T T T T 4 E 7(7) SO(6, 6) U 32 T T T T 32 T 3 E 8(8) SO(7, 7) U 1 T 64 T T T T T T (α 6) T, 6 64 T, 7 1 T, 8 D = 3, 4, 6 S-dual branes α = α 4(D 1) D 2 D = 3, 4, 6 S-dual branes by D-dim. S-duality (g µν) S ((g s ) α d D 2 x [NG(g µν )] = (g s ) α = e 8ϕ/(D 2) (g µν ) S ) d D 2 x [NG(g µν)] SUSY Domain Walls

29 String theory origin of Domain Walls in D-dim. fundamental Dirichlet solitonic α = α 4(D 1) D 2 via S-duality D α = 0 α = 1 α = 2 α = 3 α = 4 α = 5 α = 6 α = 7 α = 8 IIA C 9 [D8] 9 C 8 [D7] E 9,1,1 [7 (0,1) 3 ] 8 C 7 [D6] E 9,2,1 [6 (1,1) 3 ] 7 C 6 [D5] D 6 [NS5] D 7,1 [KK5] D 8,2 [5 2 2] E 9,3,1 [5 (2,1) 3 ] F 9,3 [5 3 4] 6 C 5 [D4] E 9,4,1 [4 (3,1) 3 ] F 9,4,1 [4 (3,1) 4 ] 5 C 4 [D3] E 9,5,1 [3 (4,1) 3 ] F 9,5,2 [3 (3,2) 4 ] 4 C 3 [D2] E 9,6,1 [2 (5,1) 3 ] F 9,6,3 [2 (3,3) 4 ] 3 B 2 [F1] C 2 [D1] E 9,7,1 [1 (6,1) 3 ] F 9,7,4 [1 (3,4) 4 ] F 9,7,1,1 [1 (6,0,1) 4 ] G 9,6,2m G 9,6,2m+1 G 9,7,2m,1 G 9,7,2m+1,1 H 9,7,4+n,n (S 3 (C 2 )) (S 3 (B 2 )) A D T,I1 +I 2,I 2 -forms : mixed-symmetry tensors p (I 1,I 2 ) α -branes T + p + i I i = D 1 with T = 1 : transverse, p : spatial, I i : isometry directions E.A. Bergshoeff et al, arxiv: , arxiv: SUSY Domain Walls

30 Elementary SUSY DWs Z (a) : a-form central charge D R- H Z (1) Z (2) # of EDWs 9 SO(2) SO(3) SO(2) (1, 2) Sp(2) (V), 5 (T) 6 Sp(2) Sp(2) (4, 4) U Sp(8) SU(8) SO(16) # of EDWs = {(10 D) + 1} (# of Z (2) ) 5 D 9 8 D = 4 16 D = 3 ( ) standard branes central charges 1 1 SUSY Domain Walls

31 Elementary SUSY DWs D # of (D 1)-forms # of EDWs # of non-edws (6, 2) (3, 2) Elementary SUSY DWs (EDWs) (D 1)-forms EDWs (D 2)-branes ( ) EDWs 1 2-SUSY threshold bound states of EDWs EDWs 1 2-SUSY non-threshold bound states of EDWs SUSY Domain Walls

32 2 ( ) Embedding Tensor Formalism

33 coset space G 0 /H D U-duality G 0 R- H dim(g 0 /H) T-duality IIA R IIB SL(2, R) SO(2) GL(2, R) SO(2) 3 SO(1, 1) 8 SL(3, R) SL(2, R) SO(3) SO(2) 7 SL(2, R) SL(2, R) 7 SL(5, R) Sp(2) 14 SL(4, R) 6 SO(5, 5) Sp(2) Sp(2) 25 SO(4, 4) 5 E 6(6) USp(8) 42 SO(5, 5) 4 E 7(7) SU(8) 70 SO(6, 6) 3 E 8(8) SO(16) 128 SO(7, 7) SUSY Domain Walls

34 Embedding tensor formalism embedding tensor Θ M α T M Θ M α t α t α Lie G 0 global T M Lie G local µ D µ µ ga M µ T M SUSY Domain Walls

35 Embedding tensor formalism embedding tensor Θ M α T M Θ M α t α t α Lie G 0 global T M Lie G local µ D µ µ ga M µ T M [T M, T N ] = T MN P T P, T MN P Θ M α (t α ) N P [D µ, D ν ] gf M µν T M F M µν µ A M ν ν A M µ + gt [NP ] M A N µ A P ν : 0 = f αβ γ Θ M α Θ N β + (t α ) N P Θ M α Θ P γ SUSY Domain Walls

36 Embedding tensor formalism T (MN) P Θ P α = 0 [T M, T N ] = T MN P T P T (MN) P = 0 δf M µν = 2D [µ δa M ν] 2g T (P Q) M A P [µ δaq ν] δa M µ = D µ Λ M tensor gauge fields B (NP ) µν Stückelberg pairing H M µν F M µν + g T (NP ) M B (NP ) µν SUSY Domain Walls

37 Embedding tensor formalism : Θ M α dim G dim G 0 ( Dµ = µ ga M µ Θ M α t α ) M G 0 SUSY Domain Walls

38 Embedding tensor formalism : Θ M α dim G dim G 0 ( Dµ = µ ga M µ Θ M α t α ) M G 0 D U-duality G 0 constraints on R(M) R(α) 9 GL(2, R) (2 1) (3 1) = SL(3, R) SL(2, R) (3, 2) [(1, 3) (8, 1)] = (3, 2) (3, 2) (3, 4) (6, 2) (15, 2) 7 SL(5, R) = SO(5, 5) = E 6(6) = E 7(7) = E 8(8) = F.Riccioni, D.Steele and P.West, arxiv: SUSY Domain Walls

39 Θ M α D (D 1)-form SUSY Domain Walls

40 U-duality G 0 form fields D U-duality G 0 1-forms 2-forms 3-forms 4-forms 5-forms 6-forms 7-forms 8-forms 9-forms 10-forms IIA R IIB SL(2, R) GL(2, R) SL(3, R) SL(2, R) (3, 2) (3, 1) (1, 2) (3, 1) (3, 2) (8, 1) (1, 3) 7 SL(5, R) SO(5, 5) E 6(6) E 7(7) E 8(8) (6, 2) (3, 2) (15, 1) (3, 3) (3, 1) (3, 1) (D 1)-forms Embedding Tensors F.Riccioni, D.Steele and P.West, arxiv: SUSY Domain Walls

41 Θ α M D (D 1)-form (D 1)-form DWs Elementary SUSY DWs Θ α M SUSY Domain Walls

42 Θ α M D (D 1)-form (D 1)-form DWs Elementary SUSY DWs Θ α M SUSY Domain Walls

43 9 A 1, A 1,a, A 2,a, A 3 (a = 1, 2 of GL(2, R)) SUSY Domain Walls

44 9 A 1, A 1,a, A 2,a, A 3 (a = 1, 2 of GL(2, R)) embedding tensors Θ a in 2, Θ ab in 3 ; with constraints Θ a Θ bc ϵ ab = 0, Θ (a Θ bc) = 0 SUSY Domain Walls

45 9 A 1, A 1,a, A 2,a, A 3 (a = 1, 2 of GL(2, R)) embedding tensors Θ a in 2, Θ ab in 3 ; with constraints Stückelberg pairing Θ a Θ bc ϵ ab = 0, Θ (a Θ bc) = 0 δa 1 = dλ 0 Θ a λ 1,a δa 1,a = dλ 0,a ϵ ab Θ bc λ 1,c δa 2,a = dλ 1,a ϵ ab Θ b λ 2 δa 3 = dλ 2 F 2 = da 1 + Θ a A 2,a F 2,a = da 1,a + ϵ ab Θ bc A 2,c F 3,a = da 2,a + ϵ ab Θ b A 3 F 4 = da 3 SUSY Domain Walls

46 9 A 1, A 1,a, A 2,a, A 3 (a = 1, 2 of GL(2, R)) embedding tensors Θ a in 2, Θ ab in 3 ; with constraints Stückelberg pairing Θ a Θ bc ϵ ab = 0, Θ (a Θ bc) = 0 δa 1 = dλ 0 Θ a λ 1,a δa 1,a = dλ 0,a ϵ ab Θ bc λ 1,c δa 2,a = dλ 1,a ϵ ab Θ b λ 2 δa 3 = dλ 2 F 2 = da 1 + Θ a A 2,a F 2,a = da 1,a + ϵ ab Θ bc A 2,c F 3,a = da 2,a + ϵ ab Θ b A 3 F 4 = da 3 Minimal Gauging (Θ a, Θ ab ) Gauging A 1 A 1,a=1 A 1,a=2 A 2,a=1 A 2,a=2 A 3 Θ 1 = 1, Θ 2 = 0, Θ ab = 0 eaten massless massless massive eaten massive Θ a = 0, Θ 11 = 1, Θ 22 = ±1 massive eaten eaten massive massive massless Θ a = 0, Θ 11 = 1, Θ 22 = 0 massive massless eaten massive massless massless 2 SUSY Domain Walls

47 8 A 1,Ma, A M 2, A 3,a (M = 1, 2, 3 of SL(3, R), a = 1, 2 of SL(2, R)) SUSY Domain Walls

48 8 A 1,Ma, A M 2, A 3,a Minimal gauging (M = 1, 2, 3 of SL(3, R), a = 1, 2 of SL(2, R)) (Θ Ma in (3, 2) EDWs ) Θ MN a = {Θ 11 1, Θ 11 2, Θ 22 1, Θ 22 2, Θ 33 1, Θ 33 2 } in (6, 2) 6 SUSY Domain Walls

49 8 A 1,Ma, A M 2, A 3,a Minimal gauging (M = 1, 2, 3 of SL(3, R), a = 1, 2 of SL(2, R)) (Θ Ma in (3, 2) EDWs ) Θ MN a = {Θ 11 1, Θ 11 2, Θ 22 1, Θ 22 2, Θ 33 1, Θ 33 2 } in (6, 2) 6 Θ MN 1 Θ 1 MN = diag(1 p, 1 q, 0 r ) with p + q + r = 3 CSO(p, q, r) with f MN P = ϵ MNQ Θ P Q [T 1, T 2 ] = Θ 1 33 T 3, [T 2, T 3 ] = Θ 1 11 T 1, [T 3, T 1 ] = Θ 1 22 T 2 (Θ MN 2 = 0) Minimal Θ 22 1 = Θ 33 1 = 0 CSO(1, 0, 2) = Heisenberg algebra (i = 2, 3) Gauging A 1,11 A 1,12 A 1,i1 A 1,i2 A 1 2 A i 2 A 3,a Θ 11 1 = 1, others = 0 massless eaten massive massless massive massless massless (i = 2, 3) SUSY Domain Walls

50 7 A 1,MN, A M 2 (M = 1, 2,..., 5 of SL(5, R)) SUSY Domain Walls

51 7 A 1,MN, A M 2 (M = 1, 2,..., 5 of SL(5, R)) embedding tensors Θ [MN],P v [M w N]P in w NP = diag(1 p, 1 q, 0 r ) with p + q + r = 4 minimal gauging = CSO(1, 0, 3) Gauging A 1,ij A 1,12 A 1,1i A 1,2i A 1 2 A 2 2 A i 2 Θ 12,1 = 1, others = 0 massive eaten massless massless massive massless massless (i = 3, 4, 5) embedding tensors Θ (MN) in 15 5 Θ MN = diag(1 p, 1 q, 0 r ) with p + q + r = 5 minimal gauging = CSO(1, 0, 4) Gauging A 1,1i A 1,ij A 1 2 A i 2 A 3,1 Θ 11 = 1, others = 0 massive massless eaten massless massive (i = 2, 3, 4, 5) SUSY Domain Walls

52 minimal gauging elementary SUSY Domain Walls non-minimal gauging (non)-threshold bound states of EDWs SUSY Domain Walls

53

54 D Domain Walls (DWs) 1 2-SUSY DWs (EDWs) U-duality non-edws (EDWs ) Central charges ( ) EDWs minimal gauging Non-EDWs non-minimal gauging SUSY Domain Walls

55 Elementary SUSY DWs D U T # of EDWs α = 0 α = 1 α = 2 α = 3 α = 4 α = 5 IIA R GL(2, R) SO(1, 1) 2 3 U SL(3, R) SL(2, R) SL(2, R) SL(2, R) 6 (6, 2) U (1, 2) T 4 (3, 2) T 7 SL(5, R) SL(4, R) U 4 T 4 10 T T 5 15 U 4 10 T 1 T 6 SO(5, 5) SO(4, 4) U 8 S T C T S T 8 C T 5 E 6(6) SO(5, 5) U 16 T T T T 4 E 7(7) SO(6, 6) U 32 T T T T 32 T 3 E 8(8) SO(7, 7) U 1 T 64 T T T T T T (α 6) T, 6 64 T, 7 1 T, 8 D R- H Z (1) Z (2) # of EDWs 9 SO(2) SO(3) SO(2) (1, 2) Sp(2) (V), 5 (T) 6 Sp(2) Sp(2) (4, 4) U Sp(8) SU(8) SO(16) SUSY Domain Walls

56 Embedding tensor D 32-SUSY 16-SUSY 8-SUSY 9 arxiv: (unknown) 8 arxiv: (unknown) 7 hep-th/ (unknown) 6 arxiv: (unknown) arxiv: hep-th/ hep-th/ (unknown) 4 arxiv: hep-th/ arxiv: hep-th/ arxiv: arxiv: SUSY Domain Walls

57

58 Defect branes

59 U-duality G 0 form fields D U-duality G 0 1-forms 2-forms 3-forms 4-forms 5-forms 6-forms 7-forms 8-forms 9-forms 10-forms IIA R IIB SL(2, R) GL(2, R) SL(3, R) SL(2, R) (3, 2) (3, 1) (1, 2) (3, 1) (3, 2) (8, 1) (1, 3) 7 SL(5, R) SO(5, 5) E 6(6) E 7(7) E 8(8) (6, 2) (3, 2) (15, 1) (3, 3) (3, 1) (3, 1) (D 2)-forms U-duality group G 0 F.Riccioni, D.Steele and P.West, arxiv: SUSY Domain Walls

60 Wess-Zumino terms for 7-branes in 10D L WZ i A 8,i + F 2 Γ i A A 8,i : 8-forms in bulk Γ i : SO(2, 1) SL(2, R) (i = +,, 3) F 2 = (db 1, S(db 1 )) : curvatures of DBI vector and its S-dual / spinor repr. of SO(2, 1) A 6 = (B (6), C (6) ) : 6-forms in bulk / spinor repr. of SO(2, 1) i = + i = 7-brane S-dual project-out i = 3 SUSY Domain Walls

61 Wess-Zumino terms for defect branes in D-dim. Defect branes (D 2)-form potentials scalar fields U-duality group G 0 T-duality group ( R + ) d = 10 D fundamental Dirichlet solitonic U T α = 0 α = 1 α = 2 α = 3 α = 4 D 5 E d+1(d+1) SO(d, d) Adj U spinor T (Adj + singlet) T conj. spinor T D = 4 E 7(7) SO(6, 6) Adj U singlet T spinor T (Adj + singlet) T conj. spinor T singlet T D = 3 E 8(8) SO(7, 7) Adj U vector T spinor T (Adj + singlet) T conj. spinor T vector T α = α 4 by D-dim. S-duality (g µν) S ((g s ) α d D 2 x [NG(g µν )] = (g s ) α = e 8ϕ/(D 2) (g µν ) S ) d D 2 x [NG(g µν)] E.A. Bergshoeff et al, arxiv: , arxiv: , arxiv: SUSY Domain Walls

62 Defect branes (co-dim. 2) solitonic defect brane (α = 2) supersymmetric fundamental Dirichlet solitonic (brane s tension) (g s ) +α D # of SUSY defect branes α = 0 α = 1 α = 2 α = 3 α = 4 IIB (8, 1) (2, 1) 2 (3, 1) (2, 1) 2 (1, 3) 2 (1, 3) V V E.A. Bergshoeff et al, arxiv: , arxiv: , arxiv: SUSY Domain Walls

63 String theory origin of defect branes in D-dim. fundamental Dirichlet solitonic S D -dual of (Dirichlet) S D -dual of (fundamental) D α = 0 α = 1 α = 2 α = 3 α = 4 IIB C 8 [D7] E 8 = S 10 (C 8 ) [7 3 ] 9 C 7 [D6] E 8,1 = S 9 (C 7 ) [6 1 3] 8 C 6 [D5] D 6 [NS5] D 7,1 [KK5 = 5 1 2] D 8,2 [5 2 2] E 8,2 = S 8 (C 7 ) [5 2 3] 7 C 5 [D4] E 8,3 = S 7 (C 5 ) [4 3 3] 6 C 4 [D3] E 8,4 = S 6 (C 4 ) [3 4 3] 5 C 3 [D2] E 8,5 = S 5 (C 3 ) [2 5 3] 4 B 2 [F1] C 2 [D1] E 8,6 = S 4 (C 2 ) [1 6 3] F 8,6 = S 4 (B 2 ) [1 6 4] 3 [P] C 1 [D0] E 8,7 = S 3 (C 1 ) [0 7 3] F 8,7,1 [0 (6,1) 4 ] p (I 1,I 2 ) α -brane A D T,I1 +I 2,I 2 (T, p, I 1, I 2 ) α with T + p + i I i = D 1 Mass (T,p,I1,I 2 ) α = R 1 R p (R p+1 R p+i1 ) 2 (R p+i1 +1 R p+i1 +I 2 ) 3 (g s ) α SUSY Domain Walls

64 Defect branes (co-dim. 2) D G 0 /H n P n D n S IIB SL(2, R)/SO(2) SL(2, R)/SO(2) R SL(3, R)/SO(3) SL(2, R)/SO(2) SL(5, R)/SO(5) SO(5, 5)/[SO(5) SO(5)] E 6(6) /Sp(8) E 7(7) /SU(8) E 8(8) /SO(16) n P = dim G 0 : # of (D 2)-form potentials n D = dim G 0 rank G 0 : # of SUSY defect branes (rank G 0 = rank T + 1) n S = dim G 0 dim H : # of coset scalars in D-dim. maximal SUGRA SUSY Domain Walls

65 Defect branes (co-dim. 2) Z (a) : a-form central charge D R- H Z (0) Z (1) Z (2) Z (3) n D IIB SO(2) SO(2) SO(3) SO(2) Sp(2) Sp(2) Sp(2) (10, 1) + + (1, 10) U Sp(8) SU(8) SO(16) SUSY Domain Walls

66 CSO(p, q, r) CSO(p, q, r) jump CSO(p, q, 0) = SO(p, q) CSO(p, q, 1) = ISO(p, q) CSO(p, q, r) SO(p, q) U(1) r(r 1) 2 for r 2 C.M. Hull, PL 142B (1984) 39, PL 148B (1984) 297, NPB 253 (1985) 650 L. Andrianopoli et al, hep-th/ , etc. SUSY Domain Walls

3 exotica

3 exotica ( / ) 2013 2 23 embedding tensors (non)geometric fluxes exotic branes + D U-duality G 0 R-symmetry H dim(g 0 /H) T-duality 11 1 1 0 1 IIA R + 1 1 1 IIB SL(2, R) SO(2) 2 1 9 GL(2, R) SO(2) 3 SO(1, 1) 8

More information

YITP50.dvi

YITP50.dvi 1 70 80 90 50 2 3 3 84 first revolution 4 94 second revolution 5 6 2 1: 1 3 consistent 1-loop Feynman 1-loop Feynman loop loop loop Feynman 2 3 2: 1-loop Feynman loop 3 cycle 4 = 3: 4: 4 cycle loop Feynman

More information

Kaluza-Klein(KK) SO(11) KK 1 2 1

Kaluza-Klein(KK) SO(11) KK 1 2 1 Maskawa Institute, Kyoto Sangyo University Naoki Yamatsu 2016 4 12 ( ) @ Kaluza-Klein(KK) SO(11) KK 1 2 1 1. 2. 3. 4. 2 1. 標準理論 物質場 ( フェルミオン ) スカラー ゲージ場 クォーク ヒッグス u d s b ν c レプトン ν t ν e μ τ e μ τ e h

More information

susy.dvi

susy.dvi 1 Chapter 1 Why supper symmetry? 2 Chapter 2 Representaions of the supersymmetry algebra SUSY Q a d 3 xj 0 α J x µjµ = 0 µ SUSY ( {Q A α,q βb } = 2σ µ α β P µδ A B (2.1 {Q A α,q βb } = {Q αa,q βb } = 0

More information

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

(2012 5 07 ) Flux Compactifications, and Gauged Supergravities ( ) ( ) Gauged supergravity : ( ) ( R ) Nucl. Phys. B258 (1985) 46 10D M 6 4D N = 1 10D = 4D Minkowski + 6D internal space M 6 : ds 2 10D

More information

Seiberg Witten 1994 N = 2 SU(2) Yang-Mills 1 1 3 2 5 2.1..................... 5 2.2.............. 8 2.3................................. 9 3 N = 2 Yang-Mills 11 3.1............................... 11 3.2

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv:0904.1936. Prog. Theor. Phys. 122 (2009) 339-353. 1. Introduction Palatini formalism

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38 ( ) 2011 5 14 at 1 / 38 Introduction? = String Field Theory = SFT 2 / 38 String Field : ϕ(x, t) x ϕ x / ( ) X ( σ) (string field): Φ[X(σ), t] X(σ) Φ (Φ X(σ) ) X(σ) & / 3 / 38 SFT with Lorentz & Gauge Invariance

More information

kougiroku7_26.dvi

kougiroku7_26.dvi 2005 : D-brane tachyon : ( ) 2005 8 7 8 :,,,,,,, 1 2 1.1 Introduction............................... 2 1.2......................... 6 1.3 Second Revolution (1994 )................... 11 2 Type II 26 2.1

More information

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ), 1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0. Intro ( K CohFT etc CohFT 5.IKKT 6. E-mail: sako@math.keio.ac.jp 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, ( ( ),.,,., C A (2008, ). 1,,. 1.1. (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,,. 1.2. (M, g) p M, s p : M M p, : (1) p s p, (2) s 2 p = id ( id ), (3) s p ( )., p ( s p (p) = p),,

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

Flux compactifications, N=2 gauged supergravities and black holes

Flux compactifications, N=2 gauged supergravities and black holes : 2011 11 2 Flux Compactifications, N = 2 Gauged Supergravities and Black Holes based on arxiv:1108.1113 [hep-th] Introduction 4 10 Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1 1998 1998 7 20 26, 44. 400,,., (KEK), ( ) ( )..,.,,,. 1998 1 '98 7 23, 24 :,,,,, ( ) 1 3 2 Cech 6 3 13 4 Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx, 1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

Confinement dual Meissener effect dual Meissener effect

Confinement dual Meissener effect dual Meissener effect BASED ON WORK WITH KENICHI KONISHI (UNIV. OF PISA) [0909.3781 TO APPEAR IN NPB] Confinement dual Meissener effect dual Meissener effect 1) Perturbed SU(N) Seiberg WiRen theory : 2) SU(N) with Flavors at

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

Norisuke Sakai (Tokyo Institute of Technology) In collaboration with M. Eto, T. Fujimori, Y. Isozumi, T. Nagashima, M. Nitta, K. Ohashi, K. Ohta, Y. T

Norisuke Sakai (Tokyo Institute of Technology) In collaboration with M. Eto, T. Fujimori, Y. Isozumi, T. Nagashima, M. Nitta, K. Ohashi, K. Ohta, Y. T Norisuke Sakai (Tokyo Institute of Technology) In collaboration with M. Eto, T. Fujimori, Y. Isozumi, T. Nagashima, M. Nitta, K. Ohashi, K. Ohta, Y. Tachikawa, D. Tong, M. Yamazaki, and Y. Yang 2008.3.21-26,

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

CKY CKY CKY 4 Kerr CKY

CKY CKY CKY 4 Kerr CKY ( ) 1. (I) Hidden Symmetry and Exact Solutions in Einstein Gravity Houri-Y.Y: Progress Supplement (2011) (II) Generalized Hidden Symmetries and Kerr-Sen Black Hole Houri-Kubiznak-Warnick-Y.Y: JHEP (2010)

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

DaisukeSatow.key

DaisukeSatow.key Nambu-Goldstone Fermion in Quark-Gluon Plasma and Bose-Fermi Cold Atom System ( /BNL! ECT* ") : Jean-Paul Blaizot (Saclay CEA #) ( ) (SUSY) = b f b f 2 (SUSY) Q: supercharge b f b f SUSY: [Q, H]=0 Supercharge

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

Introduction 2 / 43

Introduction 2 / 43 Batalin-Vilkoviski ( ) 2016 2 22 at SFT16 based on arxiv:1511.04187 BV Analysis of Tachyon Fluctuation around Multi-brane Solutions in Cubic String Field Theory 1 / 43 Introduction 2 / 43 in Cubic open

More information

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

5 Calabi-Yau web

5 Calabi-Yau web T- 24 6 11 NS5- T- 1 T- 2 1.1............................................ 2 1.2 Buscher............................................ 4 1.3 T-...................................... 6 1.4 D- T-...............................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

宇宙の背景輻射 現在 150億年 50億年 星や銀河の 形成 自然界には4つの力 3つの分岐点が今回のシリーズの目標 3K LHC温度 1016K (10-12 ~ 10-14s) 10億年 (2) GUTへの挑戦 超対称性による大統一 3000K 30万年 原子 分子の形成 3分 原子核の形成 10-10 秒 弱い相互作用が分離 3つの力が分離する 量子重力の世界 10-34 秒 10-43 秒

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

(Tokyo Institute of Technology) Seminar at Ehime University ( ) 9 3 U(N C ), N F /2 BPS ( ) 12 5 (

(Tokyo Institute of Technology) Seminar at Ehime University ( ) 9 3 U(N C ), N F /2 BPS ( ) 12 5 ( (Tokyo Institute of Technology) Seminar at Ehime University 2007.08.091 1 2 1.1..................... 2 2 ( ) 9 3 U(N C ), N F 11 4 1/2 BPS ( ) 12 5 ( ) 19 6 Conclusion 23 1 1.1 GeV SU(3) SU(2) U(1): W

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information