Size: px
Start display at page:

Download ""

Transcription

1 [Ver. 0.2]

2

3 1 1.1

4

5 (elasticity) 2. (plasticity) 3. (strength) (toughness) 6.

6 (elasticity) }

7 (plasticity),

8 (strength) a < b F a < F b [N/mm 2 ] = F [N] [mm 2 ] F a F b [N/mm 2 ] [MPa] 1[N/mm 2 ] = 1 [N] 1 [mm 2 ] = 1 [N] ( ) 2 [m 2 ] = [N/m 2 ] = [Pa] a b = 1[MPa] F a (a) F b (b) (a) a = 50 [mm 2 ] F a = [N] [N] = 50 [mm 2 = 400 [MPa] ] (b) b = 200 [mm 2 ] F a = [N] [N] = 200 [mm 2 = 200 [MPa] ] (b) (a)

9

10 (toughness)

11

12

13

14 C Mn Si P S Cu l Sn P S C % carbon steel steel % SS SS400 1 S steel 2 S structure SC S45C 1 S steel C carbon 100 S45C %

15

16 Ni Cr Mn Mo V

17 cast iron 2

18 Cu Zn Zn 30 % Zn 40 % 2 Cu Sn P

19 / C l Cu-Mg Cu-Mg-Mo

20 Cr 12 % stainless steel Cr Cr 17 % Ni C P N l Ti Ni Co

21

22 (load) 2. (stress)

23 (load) (a) (tension) (b) (compression) (c) (bending) (d) (shear) (e) (torsion) (f) (buckling)

24 (stress) W σ [mm 2 ] [N] [N/mm 2 = MPa] [mm 2 ] σ [N] W [N] W = σ [N] (2.1) σ = W [N/mm2 = MPa] (2.1) W σ σ W

25 1 20 mm N d = 20 [mm] W = [N] σ W = σ σ = W = W (π/4)d 2 = (π/4) 20 2 = [N/mm2 ] = 156[MPa] d W W C W = 8000 [N] 8000 [N] 8000 [N] ϕ25 ϕ20 C σ 1 d 1 = 25 [mm] σ 1 = W W = 2 1 (π/4)d = (π/4) 25 2 = 16.3 [N/mm2 = MPa] C σ 2 d 2 = 20 [mm] σ 2 = W W = 2 2 (π/4)d = (π/4) 20 2 = 25.5 [N/mm2 = MPa]

26 2 2.2 ε λ = l l l ε = l l l = λ l (2.4) [mm] [mm] ε δ = d d d ε = d d d = δ d (2.5) W ν (Poison s ratio) d l d l ν = ε ε (2.6) W ν 1/ν

27 3 10 mm 150 mm 1950 N mm d = 10 [mm], l = 150 [mm], W = 1950 [N], λ = [mm] ε ε = λ l = = = mm 500 mm 3800 N 0.08 mm 0.3 d = 12 [mm], l = 500 [mm], W = 3800 [N], λ = 0.08 [mm], ν = ε ε = δ/d = 0.3 δ λ/l δ = νλd = = = [mm] l 500 W d l d l W

28

29 W W W λ W σ ε W λ l 0 W 2 W 1 W 3 l 0 l 1 l 2 l 3 W 1 λ 0 = 0 λ W 2 1 = l 1 l 0 λ W 3 2 = l 2 l 0 λ 3 = l 3 l 0 σ = W σ σ 3 W 2 σ 2 W 1 ε = λ l 0 = σ 1 λ 1 λ 2 λ 3 λ ε 1 ε 2 ε 3 ε

30 W λ W 5 W 4 W 3 W 2 W 1 W 5 l 0 l 1 l 2 l 3 l 4 l 5 W W 4 W 3 W 1 λ 0 = 0 λ W 2 1 = l 1 l 0 λ W 3 2 = l 2 l 0 λ 3 = l 3 l 0 W 4 W 2 W 1 λ 4 = l 4 l 0 W 5 λ 5 = l 5 l 0 λ 1 λ 2 λ 3 λ 4 λ λ 5

31 W λ σ ε W P E σ σe σ P E P E λ O O ε P σ P E σ E E E E O OO

32 σ σ σ Y1 σ Y2 Y 1 M Z E Y 2 P Z O ε Y 1, σ Y1 Y 2 σ Y2 M σ

33 σ (0.2%) σ 0.2 O ε % σ 0.2

34 σ ε σ = Eε (E ) (2.7) E 2.1 E σ [Pa] ε [GPa] 1 [GPa] = [MPa] E (stifness) σ = W/ ε = λ/l σ σ E W = E λ l σ P E P (2.9) σ σ σ Y1 σ Y2 E P Y 1 M Z Y 2 Z ε O ε

35 5 20 [mm] 200 [mm] [N] 192 [GPa] a = 20 [mm] = = a 2 = 20 2 [mm 2 ], l = 200 [mm], W = [N], E = 192 [GPa] = [MPa] (2.9) λ = W l E = 20 2 = = [mm] [mm] 800 [mm] 0.2 [mm] 200 [GPa] d = 15 [mm], l = 800 [mm], λ = 0.2 [mm], E = 200 [GPa] = [MPa] (2.7) (2.4) σ = Eε = E λ l = = 50 [MPa]

36 7 I 35 [mm] 50 [mm] II 30 [mm] [kn] 200 [GPa] 100 [GPa] 2.15 I II σ 1 σ I II W = σ σ 2 2, ε = σ 1 = σ 2 E 1 E = π 4 ( )σ 1 + π σ σ = σ σ 1 = 2σ 2 σ 2 = (π/4){( ) } σ 1 = 2σ 2 = 88.6 [MPa] = 44.3 [MPa] 1 2 W = 120kN

37 2 2.4 τ W W W W = τ (2.10) W τ = W (2.10) τ τ [N/mm 2 = MPa] W

38 mm N d = 18 [mm], W = [N], a a = π 4 d2 = π [mm 2 ], (2.10) a 2 τ = W = W 2a = ( π ) = 39.29[MPa] mm 40 mm 350 MPa d = 40 [mm], t = 1.5 [mm], τ = 350 [MPa], 2.21 = πd t = πdt (2.10) W = τ = τ πdt = 350 (π ) = = [N]

39 W 1 W W 2 W W 3 W W W W = = = 6

40 2 2.5 W W W C W W l W C γ γ = tan ϕ = C ϕ ϕ tan ϕ ϕ γ = C = l l W l ϕ = tan ϕ ϕ (2.11) τ γ τ = Gγ (G ) (2.12) G 2.2 G τ [Pa] E [GPa] C ϕ

41 2 2.5 τ τ C C τ τ C τ τ τ τ 2 τ τ N N N 1 τ τ τ τ τ τ τ = τ (2.13) τ C τ N N τ 10 τ 160 MPa 80 GPa τ = 160 [MPa], G = 80 [GPa] = [MPa] τ = Gγ γ = tan ϕ ϕ ϕ = τ G = 160 = [rad]

42 2 2.6 σ a = σ f (2.14) 2.3

43

44

45 fatigue 2.24 b S N W öhler σ e JIS Z % 50%

46 a σ 0 (= W/ ) σ ma = α (2.15) α σ r 2

47 creep 623 K 350 C % 1 10

48

49 11 SS N/mm N 3 σ = 235 [MPa], W = 8000 [N], f = 3 σ a = σ f = [MPa] πd 2 (2.1) W = σ a = σ a 4 4W d = = = [mm] πσ a π kn 80 MPa W = 10 [kn], σ a = 80 [MPa] W = σ a = σ a 2 W = = = [mm] σ a 80

50 MPa 10 kn 5 σ e = 200 [MPa], W = 10 [kn] = = [N], f = 5 ( π ) W = σ a = σ a 4 d2 σ a = σ e f 4W 4W f d = = = = [mm] πσ a πσ e π mm 40 mm 12 kn 2.26 r = 2 [mm], = 40 [mm], W = 12 [kn] = = [N] r = 2 40 r = 2.26 α = W σ ma = ασ 0 = α (π/4) ( 2r) 2 = = = 30.7 [MPa] (π/4) (40 2 2) 2 α r 2

51

52 3 3.1 a W θ W X X W X X θ X θ X X = / sin θ X X W p X X θ X W = p = p sin θ p c X X σ W a W τ σ = p sin θ = W sin θ sin θ = W sin2 θ 3.1 τ = p cos θ = W sin θ cos θ = W sin 2θ sin θ θ = 90 = π/2 [rad] = σ X p p b W X σ ma 2.1 σ σ ma = W θ = θ X sin 2θ θ = 45 = π/4 [rad] 3.2 τ 45 τ ma τ ma = W 2 = σ ma 2 θ = X τ τ p p σ c σ

53 1 30 mm N 45 τ ma = σ ma 2 = 10000/ { (π/4) 30 2} 2 = [N/mm 2 ] = 7.07 [MPa] W τ τ 1 30 mm N σ = W sin2 θ = W (π/4)d 2 sin2 θ = = [N/mm 2 ] = 4.66 [MPa] (3.14/4) 30 2 sin τ = W sin 2θ 2 = W sin 2θ (π/4)d2 2 = [N/mm 2 ] = 6.65 [MPa] = sin 70 (3.14/4) 302 2

54 3 3.2 τ σ c σ t ( τa 2 ) 2 + ( τa 2 ) 2 = (σ c 2a a ) 2 τ = σ c τ = σ t

55 3 3.3 W W W W (b) w V = m = ρv = ρ w = mg = ρg W + w = σ W + ρg = σ σ = ρg + W (3.7) σ = 0 ( ) = l ( ) { λ ( (3.4) (3.7) W + ρgl + W )} /2 λ = lε = l σ E = l E ρgl + 2W 2 (3.8) l W W (a) σ σ V w W (b)

56 ( 7800 [kg/m 3 ] ) σ kg/mm 3 σ 1 = (π/4) (π/4) 60 2 = 3.60 [MPa] σ 2 σ 2 = (π/4) ( ) 9.8 (π/4) 80 2 = 2.10 [MPa] L 2 d 2 L 1 d 1 W

57 3 3.4 λ σ σ λ ( σ = W ) h 3.9 λ 3.9 h = 0 σ = 2 W = 2σ 3.10 σ σ 2

58 3 3.5 = l t[k] α l l = lα t 3.11 ε ε = l l + l l l l (l + l) l l l l σ = Eε = Eα t 3.12 l l

59 4 70 mm 80 mm 500 mm 50 K 50 C 200 GPa K 1 W W = σ = (Eα t) = π ( ) 4 = [N] = 141 [kn]

60 3 3.6, y, z ε z = σ z E σ + σ y me 3.13 ε = σ E σ y + σ z me, ε y = σ y E σ z + σ me 3.14 σ = σ y = σ z σ ε ε(ε = ε y = ε z ) = σ ( 1 2 ) 3.15 E m

61 6 180 mm 60 mm GPa ( ) 10/3 l z = 180 mm, l = l y = 60 mm l z ε z σ z 90 kn ( σz l z = l z ε z = l z E σ ) y = l ( z me E σ z σ ) y m = l ( z E Wz W y 1 ) = l ( z y z m E Wz W y 1 l l y l l z m ( = = = [mm] ) )

62

63 4 4.1 beam a b c d e a b c d e

64 4 4.2 (SF) (M) 1. 2.

65 { R 1 R 2 R 1 + R 2 W = 0 a l R 2 l 1 W = 0 b l 1 W a b 0 < < l 1 R 1 c F X τ F = +R 1 d F F = +R 1 W e SF l W R 1 R 2 X W a R 1 R 2 b R 1 c F τ W F X a (+) X ( ) X b X d R 1 F [N] e 0 (+) +R 1 R 2 X ( )

66 X b 0 < < l 1 R 1 M = R 1 a R C 1 R l 2 W X c b R 1 R d l 1 < < l R 1 W 2 M = +R 1 W ( l 1 ) M = +R 1 c l 1 W e M 0 < < l 1 :M = +R 1 d l 1 < < l : M = +R 1 R 1 W ( l 1 ) M M +M X (a) M X (b) e 0 l 1 W (+) M = +R 1 X W ( l 1 ) +R 1 l 1 l

67 1 b { R 1 R 2 R 1 + R = 0 (a) 1800 R = 0 (b) R 2 = = 2000 [N], 1800 R 1 = 5000 R 2 = 3000 [N] c 0 < < l 1 F = R 1 = [N] d l 1 < < l F = R 1 W = = 2000 [N] e SF { 0 < < l 1 : F = [N] l 1 < < l : F = 2000 [N] c a 5000 N l 1 = l = 1800 mm 5000 N b C 3000 N 2000 N 3000 N X 5000 N f M d 0 < < l 1 : M = +R 1 = N X l 1 < < l : F M = +R 1 W ( l 1 ) [N] (+) 2000 N = (W R 1 ) + W l e 1 0 = ( ) ( ) N = M 2, 160 [N m] [N m] C = l 1 f M C = +R 1 l 1 = 3, = 2, 160, 000 [N mm] = 2, 160 [N m]

68 1 4.6 SF 0 < < l 1 : F = 0 l 1 < < l 1 + l 2 : F = W 1 = 1000 [N] l 1 + l 2 < < l : F = W 1 W 2 = = 3000 [N] M 0 < < l 1 : M = 0 l 1 < < l 1 + l 2 : M = W 1 ( l 1 ) l 1 + l 2 < < l : M = W 1 ( l 1 ) W 2 ( l 1 l 2 ) C : M C = 0 : M = = 300, 000 [N mm] : M = = 1, 500, 000 [N mm] W 1 = 1000 [N] W 2 = 2000 [N] l 1 = 200 l 2 = [mm] F 0 M [N] 300 [N m] 3000 [N] l = 900 1, 500 [N m] ( ) ( )

69 1 [mm] wl [N] w [N/mm] l [mm] w [N/mm] l [mm] W = wl [N] W = wl [N] l/2 l [mm] W = wl [N] l/2 l [mm]

70 l 1 l 2 l R 1 R 2 1 2{ R 1 + R 2 W 1 W 2 = 0 (a ) l R 2 l 1 W 1 (l 1 + l 2 ) W 2 = 0 (b ) W 1 W 2 2 { W = w l 2 [N] R 1 + R 2 w l 2 = 0 (c ) l R 2 (l 1 + l 2 /2) (w l 2 ) = 0 (d ) w [N/mm] l 1 l 2 l W = w l 2 [N] l 1 + l 2 /2 l 3 W 2 = w l 3 [N] 1 W 1 w [N/mm] l 1 l 2 l 3 l W 1 W 2 l 1 l 2 + l 3 /2 l

71 SF { R 1 R 2-1 R 1 + R = 0 (a ) 740 R ( ) 1000 = 0 (b ) R 2 = = 900 [N], R 1 = 2200 R 2 = 1300 [N] < < l 1 : F = R 1 = [N] l 1 < < l 1 + l 2 : F = R 1 W 1 = = +100 [N] l 1 + l 2 < < l : F = R 1 W 1 W 2 = = 900 [N] M 0 < < l 1 : M = +R 1 l 1 < < l 1 + l 2 : M = +R 1 W 1 ( l 1 ) l 1 + l 2 < < l : M = +R 1 W 1 ( l 1 ) W 2 ( l 1 l 2 ) : M = 0 C : M C = +130R 1 = 169, 000 [N mm] : M = +510R = 207, 000 [N mm] : M = +740R = 0 W 1 = 1200 N W 2 = 1000 N l 1 = 130 l 2 = F [N] 0 M l = N (+) +100 N 900 N ( ) 169 [N m] 207 [N m] [mm] [mm] 0

72 2 p.63 1 SF w F F = w [N] w [N/mm] M F 0 w [N] l wl [N] ( ) [mm] [mm] w w /2 M = w 2 = w2 [N m] 2 w [N] w [N] l M 0 w2 2 [N m] /2 wl2 2 [N m] ( )

73 3 p.64 2 SF R 1 R 2 R 1 = R 2 = wl/2 [N] F F = R 1 w = wl/2 w [N] w [N] w [N/mm] F 0 l +wl/2 w [N] (+) +wl/2 [N] l/2 wl/2 [N] ( ) [mm] M R 1 w R 1 w /2 M = R 1 w 2 = R 1 w2 = w wl 2 = w 2 (2 l) { = w ( ) } 2 l 2 l + + w ( ) 2 l = w ( l ) 2 + w l2 [N mm] w [N] M R 1 [N] wl 2 /2 8 [N m] (+) M 0

74 w = 5 [N/mm] W = 2000 [N] 700 C [mm] C 0 < < 700 F = F C = w F = 0, F C = = 3, 500 [N] M = M C = w2 2 M = 0, M C = w [N] = 1, 225, 000 [N mm] W = 2000 [N] /2 C

75 C 700 < < 1500 F = F C = w W F C = 3, 500 2, 000 = 5, 500 [N], F = , 000 = 9, 500 [N] M = M C = w2 2 M = W ( 700) 2, = 7, 225, 000 [N mm] w [N] C W = 2000 [N] / F 0 ( ) 7500 [N] 2000 [N] M 0 ( ) [N m] [N m]

76 R, R C F M C M C SF M M ma 3 [N/mm] 600 C [mm] l = 1000 [mm], l 1 = 600 [mm] l 1 /2 = 300 [mm] wl 1 R 1 + R 2 wl 1 = 0, lr 2 wl 2 1 /2 = 0 R 2 = wl 1 2 = = 540 [N] 2l R 1 = wl 1 R 2 = = 1260 [N] wl 1 [N] 3 [N/mm] l 1 /2 C R 1 R

77 C 0 < < 600 F = F C = R 1 w F = R 1 = 1, 260 [N], F C = 1, = 540 [N] M = M C = R 1 w2 2 M = 0, M C = 1, = 216, 000 [N mm] 2 w [N] 3 [N/mm] /2 C R 1 R C 600 < < 1000 F = F C = R 1 wl 1 = 1, = 540 [N] M = M C = R 1 wl 1 ( l 1 /2) M = 0 wl 1 [N] 3 [N/mm] C R 1 l 1 / R

78 M ma M C 0 < < 600 F F C F = 0 F = R 1 w = 0 = R 1 1, 260 = = 420 [mm] w 3 F 3 [N/mm] 600 C [N] [mm] 0 M (+) 420 ( ) 540 [N] [N m] [N m] 0 (+)

79 1 SF M W 1 = 1200 N W 2 = 1400 N l = 1200 mm l 1 = 200 mm l 2 = 700 mm (1) W 1 W 2 l 1 l 2 C l (2) W 1 W 2 l 1 l 2 C l (3) W 1 W 2 l 1 l 2 C l

80 1 W 1 = 1200N W 2 = 1400N l = 1200mm l 1 = 200mm l 2 = 700mm (1) W 1 W 2 l 1 l 2 C l R R R W 1 W 2 l 1 l 2 C l R R + R = R = R = = 1250 [N], 1200 R = 2600 R = 1350 [N] F M C 0 < < l 1 R W 1 W 2 l 1 l 2 C X R F = R = 1350 [N] M = R = 1350 C M C = = 270, 000 [N mm] = 270 [N m]

81 C l 1 < < l 1 + l 2 R W 1 W 2 l 1 l 2 C X R F = R W 1 = 150 [N] M = R W 1 ( l 1 ) = , 000 M = 375, 000 [N mm] = 375 [N m] l 1 + l 2 < < l W 1 W 2 l 1 l 2 R C X R F = R W 1 W 2 = 1250 [N] M = R W 1 ( l 1 ) W 2 ( l 1 l 2 ) SF M = , 500, 000 W 1 W 2 l 1 l 2 C l [mm] F 1350 [N] 0 M 0 (+) 150 [N] 270 [N m] 1250 [N] 375 [N m] (+) ( )

82 1 W 1 = 1200N W 2 = 1400N l = 1200mm l 1 = 200mm l 2 = 700mm (2) W 1 W 2 l 1 l 2 C l F M C 0 < < l 1 W 1 W 2 l 1 l 2 C X F = 0 M = 0 C l 1 < < l 1 + l 2 W 1 W 2 l 1 l 2 C X F = W 1 = 1200 [N] M = W 1 ( l 1 ) = , 000 M = 840, 000 [N mm] = 840 [N m]

83 l 1 + l 2 < < l W 1 W 2 l 1 l 2 C X F = W 1 W 2 = 2600 [N] M = W 1 ( l 1 ) W 2 ( l 1 l 2 ) = , 500, 000 M = 1, 620, 000 [N mm] = 1, 620 [N m] SF M W 1 W 2 l 1 l 2 C l F [N] 2600 [N] ( ) M [N m] ( ) 1, 620 [N m]

84 1 W 1 = 1200N W 2 = 1400N l = 1200mm l 1 = 200mm l 2 = 700mm (3) W 1 W 2 l 1 l 2 C l R R R W 1 W 2 l 1 l 2 C l R R + R = R = R = = 2133 [N], 900 R = 2600 R = 467 [N] F M C 0 < < l 1 R W 1 W 2 l 1 l 2 C X R F = R = 467 [N] M = R = 467 C M C = = 93, 333 [N mm] = 93.3 [N m]

85 C l 1 < < l 1 + l 2 R W 1 W 2 l 1 l 2 C X R F = R W 1 = 733 [N] M = R W 1 ( l 1 ) = , 000 M = 420, 000 [N mm] = 420 [N m] l 1 + l 2 < < l R W 1 W 2 l 1 l 2 C R X F = R W 1 + R = 1400 [N] M = R W 1 ( l 1 ) + R ( l 1 l 2 ) SF M = , 680, 000 F 0 M 0 W 1 W 2 l 1 l 2 C 467 [N] ( ) 93.3 [N m] l 1400 [N] ( ) (+) 733 [N] 420 [N m]

86 2 SF M w = 4 N/mm l = 800 mm l 1 = 150 mm l 2 = 400 mm (1) l 1 l 2 C l w [N/mm] (2) l 1 l 2 C l w [N/mm] (3) l 1 l 2 w [N/mm] C l

87 2 w = 4 N/mm l = 800 mm l 1 = 150 mm l 2 = 400 mm (1) l 1 l 2 C l w [N/mm] R R l W W = wl 2 l 1 l 2 /2 l 2 /2 R C l w [N/mm] R W = wl 2 = = 1600 [N] l W = l 1 + l 2 /2 = /2 = 350 [mm] R + R 1600 = 0, 800 R = R = = 700 [N], R = 1600 R = 900 [N] 800 F M C 0 < < l 1 l 1 l 2 R C X w [N/mm] R F = R = 900 [N] M = R = 900 M = = 0 C M C = = 135, 000 [N mm]

88 C l 1 < < l 1 + l 2 W = w( l 1 ) l 1 l 2 R C X w [N/mm] R F = R W = R w( l 1 ) F F = R w( l 1 ) = 0 = R + wl = = 375 [mm] w 4 M = R W ( l 1 )/2 = M = 375 [mm] M ma = 236, 250 [N mm] l 1 + l 2 < < l R l 1 W = wl 2 l 2 /2 l 2 /2 C w [N/mm] X R F = R W = R wl 2 = = 700 [N] M = R W ( l 1 l 2 /2) = , 000 M = , 000 = 175, 000 [N mm] SF M l 1 l 2 F 0 M 0 (+) C 900 [N] = 375 [mm] 700 [N] 236 [N m] 135 [N m] (+) l w [N/mm] ( ) 175 [N m]

89 2 w = 4 N/mm l = 800 mm l 1 = 150 mm l 2 = 400 mm (2) l 1 l 2 C l w [N/mm] F M C 0 < < l 1 l 1 l 2 C X w [N/mm] F = 0 M = 0 C l 1 < < l 1 + l 2 W = w( l 1 ) l 1 l 2 C X w [N/mm] F = W = 4( 150) F = 4( ) = 1600 [N] M = W ( l 1 )/2 = 2( 150) 2 M = 320, 000 [N mm]

90 l 1 + l 2 < < l W = wl 2 l 1 l 2 /2 l 2 /2 C w [N/mm] X F = wl 2 = 1600 [N] M = wl 2 ( l 1 l 2 /2) = , 000 M = 720, 000 [N mm] SF M l 1 l 2 C l w [N/mm] F 0 ( ) M [N] ( ) 320 [N m] 720 [N m]

91 2 w = 4 N/mm l = 800 mm l 1 = 150 mm l 2 = 400 mm (3) l 1 l 2 w [N/mm] C l R R l W W = w(l l 1 ) l 1 (l l 1 )/2 (l l 1 )/2 R C l 2 l R W W = w(l l 1 ) = 4 ( ) = 2600 [N] l W = l 1 + (l l 1 )/2 = ( )/2 = 475 [mm] R + R 2600 = 0, ( ) R = R = = = 2245 [N], 550 R = 2600 R = = 355 [N] F M C 0 < < l 1 l 1 l 2 w [N/mm] R X C R F = R = 355 [N] M = R = 355 M = = 0 C M C = = 53, 182 [N mm]

92 C l 1 < < l 1 + l 2 W = w( l 1 ) l 1 l 2 w [N/mm] R C X R F = R W = R w( l 1 ) F F = R w( l 1 ) = 0 = R + wl = = [mm] w 4 F = R wl 2 = = 1245 [N] M = R W ( l 1 )/2 = M = [mm] M ma = 68, 895 [N mm] M = = 125, 000 [N mm] l 1 + l 2 < < l W = w( l 1 ) l 1 l 2 w [N/mm] R C R X F = R + R W = W w( l 1 ) F = W wl 2 = = 1000 [N] F = W w(l l 1 ) = ( ) = 0 M = R + R ( l 1 l 2 ) W ( l 1 )/2 = , 279, 750

93 SF M l 1 l 2 w [N/mm] C F 0 M 355 [N] [mm] (+) [N m] l 1000 [N] (+) ( ) 1245 [N] 68.9 [N m] ( ) 125 [N m]

94 4 4.3

95 4 4.4

96 4 4.5

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

NETES No.CG V

NETES No.CG V 1 2006 6 NETES No.CG-050001-V 2007 5 2 1 2 1 19 5 1 2 19 8 2 i 1 1 1.1 1 1.2 2 1.3 2 2 3 2.1 3 2.2 8 3 9 3.1 9 3.2 10 3.3 13 3.3.1 13 3.3.2 14 3.3.3 14 3.3.4 16 3.3.5 17 3.3.6 18 3.3.7 21 3.3.8 22 3.4

More information

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI 65 8. K 8 8 7 8 K 6 7 8 K 6 M Q σ (6.4) M O ρ dθ D N d N 1 P Q B C (1 + ε)d M N N h 2 h 1 ( ) B (+) M 8.1: σ = E ρ (E, 1/ρ ) (8.1) 66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3)

More information

untitled

untitled 9118 154 B-1 B-3 B- 5cm 3cm 5cm 3m18m5.4m.5m.66m1.3m 1.13m 1.134m 1.35m.665m 5 , 4 13 7 56 M 1586.1.18 7.77.9 599.5.8 7 1596.9.5 7.57.75 684.11.9 8.5 165..3 7.9 87.8.11 6.57. 166.6.16 7.57.6 856 6.6.5

More information

1

1 GL (a) (b) Ph l P N P h l l Ph Ph Ph Ph l l l l P Ph l P N h l P l .9 αl B βlt D E. 5.5 L r..8 e g s e,e l l W l s l g W W s g l l W W e s g e s g r e l ( s ) l ( l s ) r e l ( s ) l ( l s ) e R e r

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

untitled

untitled PGF 17 6 1 11 1 12 1 2 21 2 22 2 23 3 1 3 1 3 2 3 3 3 4 3 5 4 6 4 2 4 1 4 2 4 3 4 4 4 5 5 3 5 1 5 2 5 5 5 5 4 5 1 5 2 5 3 6 5 6 1 6 2 6 6 6 24 7 1 7 1 7 2 7 3 7 4 8 2 8 1 8 2 8 3 9 4 9 5 9 6 9 3 9 1 9

More information

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) n n (n) (n) (n) (n) n n ( n) n n n n n en1, en ( n) nen1 + nen nen1, nen ( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) ( n) Τ n n n ( n) n + n ( n) (n) n + n n n n n n n n

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l c 28. 2, y 2, θ = cos θ y = sin θ 2 3, y, 3, θ, ϕ = sin θ cos ϕ 3 y = sin θ sin ϕ 4 = cos θ 5.2 2 e, e y 2 e, e θ e = cos θ e sin θ e θ 6 e y = sin θ e + cos θ e θ 7.3 sgn sgn = = { = + > 2 < 8.4 a b 2

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2 1.500 m X Y 0.200 m 0.200 m 0.200 m 0.200 m 0.200 m 0.000 m 1.200 m m 0.150 m 0.150 m m m 2 24.5 N/ 3 18.0 N/ 3 30.0 0.60 ( ) qa 50.79 N/ 2 0.0 N/ 2 20.000 20.000 15.000 15.000 X(m) Y(m) (kn/m 2 ) 10.000

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J 26 1 22 10 1 2 3 4 5 6 30.0 cm 1.59 kg 110kPa, 42.1 C, 18.0m/s 107kPa c p =1.02kJ/kgK 278J/kgK 30.0 C, 250kPa (c p = 1.02kJ/kgK, R = 287J/kgK) 18.0 C m/s 16.9 C 320kPa 270 m/s C c p = 1.02kJ/kgK, R = 292J/kgK

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63> スピントロニクスの基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/077461 このサンプルページの内容は, 初版 1 刷発行時のものです. i 1 2 ii 3 5 4 AMR (anisotropic magnetoresistance effect) GMR (giant magnetoresistance

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

untitled

untitled ( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ Mindlin -Rissnr δ εσd δ ubd+ δ utd Γ Γ εσ (.) ε σ u b t σ ε. u { σ σ σ z τ τ z τz} { ε ε εz γ γ z γ z} { u u uz} { b b bz} b t { t t tz}. ε u u u u z u u u z u u z ε + + + (.) z z z (.) u u NU (.) N U

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

(1) 1.1

(1) 1.1 1 1 1.1 1.1.1 1.1 ( ) ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) ( ) ( ) ( ) 2 1 1.1.2 (1) 1.1 1.1 3 (2) 1.2 4 1 (3) 1.3 ( ) ( ) (4) 1.1 5 (5) ( ) 1.4 6 1 (6) 1.5 (7) ( ) (8) 1.1 7 1.1.3

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

untitled

untitled . 96. 99. ( 000 SIC SIC N88 SIC for Windows95 6 6 3 0 . amano No.008 6. 6.. z σ v σ v γ z (6. σ 0 (a (b 6. (b 0 0 0 6. σ σ v σ σ 0 / v σ v γ z σ σ 0 σ v 0γ z σ / σ ν /( ν, ν ( 0 0.5 0.0 0 v sinφ, φ 0 (6.

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

<4D F736F F D B B BB2D834A836F815B82D082C88C60202D B2E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C60202D B2E646F63> 例題で学ぶはじめての塑性力学 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/066721 このサンプルページの内容は, 初版 1 刷発行当時のものです. http://www.morikita.co.jp/support/ 03 3817 5670 FAX 03 3815 8199 i 1

More information

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9),

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9), ML rgr ML ML ML (,, ) σ τ τ u + + τ σ τ v + + τ τ σ + + (.) uv,,,, σ, σ, σ, τ, τ, τ t (Hook) σ λθ + ε, τ γ σ λθ + ε, τ γ σ λθ + ε, τ γ λ, E ν ν λ E, E ( + ν)( ν) ( + ν) Θ Θ ε + ε + ε (.) ε, ε, ε, γ, γ,

More information

ρ ( ) sgv + ρwgv γ sv + γ wv γ s + γ w e e γ ρ g s s γ s ( ) + γ w( ) Vs + V Vs + V + e + e + e γ γ sa γ e e n( ) + e γ γ s ( n) + γ wn γ s, γ w γ γ +

ρ ( ) sgv + ρwgv γ sv + γ wv γ s + γ w e e γ ρ g s s γ s ( ) + γ w( ) Vs + V Vs + V + e + e + e γ γ sa γ e e n( ) + e γ γ s ( n) + γ wn γ s, γ w γ γ + σ P σ () n σ () n σ P ) σ ( σ P σ σ σ + u V e m w ρ w gv V V s m s ρ s gv s ρ ( ) sgv + ρwgv γ sv + γ wv γ s + γ w e e γ ρ g s s γ s ( ) + γ w( ) Vs + V Vs + V + e + e + e γ γ sa γ e e n( ) + e γ γ s (

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

P13_一般構造用鋼管

P13_一般構造用鋼管 http://www.nssmc.com/ 100-8071 61 Tel: 03-6867-4111 P013_05_201705f 2012, 2017 NIPPON STEEL & SUMITOMO METL CORPORTION UOE SP JIS G 3106WEL-TEN S-TEN JIS G 3444 STK STK 290 STK 400 STK 490 STK 500 STK

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

( ) ± = 2018

( ) ± = 2018 30 ( 3 ) ( ) 2018 ( ) ± = 2018 (PDF ), PDF PDF. PDF, ( ), ( ),,,,., PDF,,. , 7., 14 (SSH).,,,.,,,.,., 1.. 2.,,. 3.,,. 4...,, 14 16, 17 21, 22 26, 27( ), 28 32 SSH,,,, ( 7 9 ), ( 14 16 SSH ), ( 17 21, 22

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

dvipsj.8449.dvi

dvipsj.8449.dvi 9 1 9 9.1 9 2 (1) 9.1 9.2 σ a = σ Y FS σ a : σ Y : σ b = M I c = M W FS : M : I : c : = σ b

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ )

x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ ) 1 8 6 No-tension 1. 1 1.1................................ 1 1............................................ 5.1 - [B].................................. 5................................. 6.3..........................................

More information

untitled

untitled 1 17 () BAC9ABC6ACB3 1 tan 6 = 3, cos 6 = AB=1 BC=2, AC= 3 2 A BC D 2 BDBD=BA 1 2 ABD BADBDA ABC6 BAD = (18 6 ) / 2 = 6 θ = 18 BAD = 12 () AD AD=BADCAD9 ABD ACD A 1 1 1 1 dsinαsinα = d 3 sin β 3 sin β

More information

3.300 m m m m m m 0 m m m 0 m 0 m m m he m T m 1.50 m N/ N

3.300 m m m m m m 0 m m m 0 m 0 m m m he m T m 1.50 m N/ N 3.300 m 0.500 m 0.300 m 0.300 m 0.300 m 0.500 m 0 m 1.000 m 2.000 m 0 m 0 m 0.300 m 0.300 m -0.200 he 0.400 m T 0.200 m 1.50 m 0.16 2 24.5 N/ 3 18.0 N/ 3 28.0 18.7 18.7 14.0 14.0 X(m) 1.000 2.000 20 Y(m)

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O : 2014 4 10 1 2 2 3 2.1...................................... 3 2.2....................................... 4 2.3....................................... 4 2.4................................ 5 2.5 Free-Body

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

untitled

untitled D nucleation 3 3D nucleation Glucose isomerase 10 V / nm s -1 5 0 0 5 10 C - C e / mg ml -1 kinetics µ R K kt kinetics kinetics kinetics r β π µ π r a r s + a s : β: µ πβ µ β s c s c a a r, & exp exp

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

05Mar2001_tune.dvi

05Mar2001_tune.dvi 2001 3 5 COD 1 1.1 u d2 u + ku =0 (1) dt2 u = a exp(pt) (2) p = ± k (3) k>0k = ω 2 exp(±iωt) (4) k

More information

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 : 2016 4 1 1 2 1.1......................................... 2 1.2................................... 2 2 2 2.1........................................ 2 2.2......................................... 3 2.3.........................................

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) = ,, uvw,, Bernoull-Euler u v, w θ dv ( ) dw u (,, ) u( ) ω(, ) φ d d v (,, ) v( ) θ ( ) w (,, ) w( ) θ ( ) (11.1) ω φ φ dθ / dφ v v θ u w u w 11.1 θ θ θ 11. vw, (11.1) u du d v d w ε d d d u v ω γ φ w u

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

重力方向に基づくコントローラの向き決定方法

重力方向に基づくコントローラの向き決定方法 ( ) 2/Sep 09 1 ( ) ( ) 3 2 X w, Y w, Z w +X w = +Y w = +Z w = 1 X c, Y c, Z c X c, Y c, Z c X w, Y w, Z w Y c Z c X c 1: X c, Y c, Z c Kentaro Yamaguchi@bandainamcogames.co.jp 1 M M v 0, v 1, v 2 v 0 v

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X 4 4. 4.. 5 5 0 A P P P X X X X +45 45 0 45 60 70 X 60 X 0 P P 4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P 0 0 + 60 = 90, 0 + 60 = 750 0 + 60 ( ) = 0 90 750 0 90 0

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

untitled

untitled C L C L 4.5m 3.0m 10% 25% 50% 90% 75% 50% N N N 90% 90% 10% 10% 100 100 10 10 10% 10% :49kN :17 :17kN CBR CBR CBR 5 3,000 / 3,000 /mm /mm 1.2mm 89dB 190dB 3,000 3,000 /mm 20% 20%

More information

untitled

untitled NPO 2006( ) 11 14 ( ) (2006/12/3) 1 50% % - - (CO+H2) ( ) 6 44 1) --- 2) ( CO H2 ) 2 3 3 90 3 3 2 3 2004 ( ) 1 1 4 1 20% 5 ( ) ( ) 2 6 MAWERA ) MAWERA ( ) ( ) 7 6MW -- 175kW 8 ( ) 900 10 2 2 2 9 -- - 10

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

吸収分光.PDF

吸収分光.PDF 3 Rb 1 1 4 1.1 4 1. 4 5.1 5. 5 3 8 3.1 8 4 1 4.1 External Cavity Laser Diode: ECLD 1 4. 1 4.3 Polarization Beam Splitter: PBS 13 4.4 Photo Diode: PD 13 4.5 13 4.6 13 5 Rb 14 6 15 6.1 ECLD 15 6. 15 6.3

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i i j ij i j ii,, i j ij ij ij (, P P P P θ N θ P P cosθ N F N P cosθ F Psinθ P P F P P θ N P cos θ cos θ cosθ F P sinθ cosθ sinθ cosθ sinθ 5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

he T N/ N/

he T N/ N/ 6.000 1.000 0.800 0.000 0.500 1.500 3.000 1.200 0.000 0.000 0.000 0.000 0.000-0.100 he 1.500 T 0.100 1.50 0.00 2 24.5 N/ 3 18.0 N/ 3 28.0 18.7 18.7 14.0 14.0 X() 20.000 Y() 0.000 (kn/2) 10.000 0.000 kn

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information