土地税制の理論的・計量的分析

Size: px
Start display at page:

Download "土地税制の理論的・計量的分析"

Transcription

1 54 III III 1971 m 2 16, , )

2 III ( m 2 ) () , , , , , , , , , , , , , , , , , , m , ,000 m 2 1,000 m ,000 m ) III III , III

3 56 III ) (1) (2)(3)(4) (5) (6) (7) (8) (9) 10) III 3040km km km 2

4 III ( m 2 ) ( m 2 ) () 1 78, , , , , , , , , , , , , , , , ,421 87, ,909 65, , ,783 57, , ,683 53,635 53, ,669 51, , ,799 47,441 47, , ,144 43,942 41, ,387 38, , ,075 37,381 37, , ,432 37,028 35, ,268 35, , ,050 34,595 31, , ,565 31,723 31, ,226 30, , ,920 30,537 29, , ,935 28,867 28, ,982 27, , ,820 27,341 26, , ,008 26,539 26, ,682 26, , ,959 23,420 21, , ,491 20,703 20, ,924 19, ,008 19, ,675 16, III III3 GNP (10 ) () () () () , , , , , , , , , , , , , , , , ,313, ,450, I II 20) (36%) 57

5 58 III4 p c k km2cd w l τ m 2 y dummy1 dummy2 dummy3 dummy dummy dummy dummy7 dummy8 dummy9 1 2pckwlτy III (19) ),,,,,, ( 1 l w k c y P ƒ P τ + = ) )( )( )( )( ( ) ( ) ( k k 1.4 m 2

6 III5 m ) 22) k 23) 21 I II

7 III m III m m m m 2 III 699 m m m m m 2 46 m Chow T- IIIes of Equaliy of a Se of Regression Coeff- iciens in Two Regressions n1n2 60

8 III6 III ( ) ( )1971 ( m 2 ) ( m 2 ) N.A N.A III () () N.A N.A 61

9 III III III m 2 62

10 III m 2 s 1s 2 s k s s 1s 2sd ss (20) F (k, n1n22k) (sdk) s (n1n22k) k, n 1n 22k F m 2 (20) n1136n2646 I (19) s1l.28s217.63k 16 F 8.76 F

11 III III P + 1 = α 0 + α1y 2 + α 2c 1 + α 3k + α 4k 1 α w P + 1 = α 0 + α1y 2 + α 2c 1 + α 3k + α 4k 1 + α 5w 1 + α 6l + α7τ 1 dummy1 + α 8τ 1 dummy2 + α 9τ 1 dummy3 + α10τ dummy1 + α11τ dummy α 12τ dummy3 + α13 + i dummy4 + i i = α 6l + α 7τ 1 dummy7 + α 8τ 1 dummy8 + α 9τ 1 dummy9 + α10τ dummy7 + α11τ dummy 8 + α12τ dummy 9 α y-2 α c-1 α k α k-1 α w-1 α l α τ-1dummy1 α τ-1dummy2 α τ-1dummy3 α τ dummy1 α τ dummy2 α τ dummy3 α α y-2 α c-1 α k α k-1 α w-1 α l α τ-1dummy7 α τ-1dummy8 α τ-1dummy9 α τ dummy7 α τ dummy8 α τ dummy9 α III III III III

12 III101 III β + β P + β y + β c + β + β P + β y + β c + P = β 4 + β 5w 1 + β 6l + β7τ dummy1 + β dummy 2 + 8τ β9τ dummy3 d 2 + β 10+ i ummy4 + i i = 0 k P = β 4 + β 5w 1 + β 6l + β7τ dummy7 + β d + 8τ ummy8 β9τ dummy9 k β p +1 β y-1 β c β k β w-1 β l β τ dummy1 β τ dummy2 β τ dummy3 β β p +1 β y-1 β c β k β w-1 β l β τ dummy7 β τ dummy8 β τ dummy9 β k k k III10 III10 III10 k 65

13 66 III m III III III 24) 24

14 67 III m 2 II III k III12 III12 m , , III ,000 m 2

15 III111 (100m 2 ) () ( ) () ( ) () (m 2 ) () , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,036, , , , ,152, , , , ,254, , , , ,332, , , , ,389, , , , ,469, , , , ,547, , , , ,647, , , , ,712, , , , ,844, , , ,032, ,951, , , ,238, ,064, , , ,424, ,184, , , ,624, ,311, , , ,835, ,445, , , ,055, ,586, , , ,281, ,736, , , ,509, ,895, , , ,735, ,063, , , ,954, ,241, , , ,161, ,429, , , ,351, ,628, , m II

16 III112 (100m 2 ) () ( ) () ( ) () (m 2 ) () , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,023, , , , ,127, , , , ,218, , , , ,281, , , , ,334, , , , ,384, , , , ,468, , , , ,538, , , , ,589, , , , ,674, , , , ,772, , , , ,874, , , , ,983, , , , ,098, , , , ,220, , , , ,349, , , , ,485, , , , ,629, , , , ,782, , , , ,943, , , ,031, ,114, , , ,093, ,294, , III III

17 III113 ( ) k III III III ,000 m ,000 m III ,000 m ,000 m

18 III12 (a) (b) (b)(a) (a) ( ) () ( ) () () () III m III17 III

19 III12 (a) (b) (b)(a) (a) ( ) () ( ) () () ()

20 III (a) (b) (b)(a) (a) 11 ( ) () ( ) () () () () III (a) (b) (b)(a) (a) 11 ( ) () ( ) () () () () III

21 III14 11 III ( m 2 ) ( m 2 ) () 1 103,146 52, ,048 26, ,726 33, ,919 32, ,136 33, ( m 2 ) ( m 2 ) () 1 103,146 56, ,048 28, ,726 35, ,919 34, ,136 35, ,022 44, ,445 25, ,905 19, ,599 34, ,972 17, ,497 34, ,533 23, ,369 24, ,415 31, , , ,488 32, , , ,056 50, ,314, , ,075 25, ,143 35, ,877 21, ,343 29, ,540 22, ,876 17, ,551 30, ,067 44, ,828 34, ,273 35, , , ,124 27, ,146 17, , , ,486 44, ,884 16, ,395 27, ,785 27, ,344 36, ,794 18, , , ,984 87, ,185 50, , , ,237 26, ,160 25, ,255 23, ,022 46, ,445 26, ,905 20, ,972 18, ,599 36, ,497 36, ,369 25, ,533 24, ,415 33, ,488 33, ,075 26, ,877 22, , , ,056 52, ,143 36, ,343 30, , , ,314, , ,876 17, ,540 23, ,551 31, ,067 45, ,828 35, ,146 17, ,124 28, ,273 36, ,884 16, ,486 45, , , , , ,395 27, ,785 27, , ,344 37, ,984 88, ,185 50, , , ,237 26, ,160 25, ,255 23, , ,

22 III m ,000 75

23 III m , , , m 2 76

24 III (a) (b) (b)(a) (a) 12 ( ) () ( ) () () () () , III (a) (b) (b)(a) (a) 12 ( ) () ( ) () () () () ,600 III , , , , ,

25 III (a) (b) (b)(a) (a) 13 ( ) () ( ) () () () () III (a) (b) (b)(a) (a) 13 ( ) () ( ) () () () () III

26 III ( m 2 ) ( m 2 ) () 1 103,146 67, ,726 42, ,048 33, ,919 40, ,022 55, ,136 41, ,445 31, ,905 24, ,599 43, ,497 42, ,972 22, ,533 28, , , ,415 39, ,369 30, ,488 39, , , ,075 30, ,056 61, ,314, , ,877 26, ,143 42, ,343 35, ,540 27, ,876 20, ,551 36, ,067 53, ,828 41, ,146 20, ,273 41, ,124 32, , , ,486 52, ,884 19, , , ,395 31, ,785 31, ,794 21, ,344 42, , , , , ,185 56, ,237 29, , , ,160 28, ,255 26,

27 III19 11 (a) 150m 2 (b) 150m 2 (c) (d) (e) ( ) ( 11) (b)(a) ( ) (b)(d) ( ) ( ) ( ) ( ) () , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

28 III19 12 (a) 150m 2 (b) 150m 2 (c) (d) (e) ( ) ( 12) (b)(a) ( ) (b)(d) ( ) ( ) ( ) ( ) () , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

29 III19 13 (a) 150m 2 (b) 150m 2 (c) (d) (e) ( ) ( 13) (b)(a) ( ) (b)(d) ( ) ( ) ( ) ( ) () , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

30 III20 11 (a)(e) (f) (a) 150m 2 ( ) (b) 150m 2 ( 11) ,649.4 (c) (b)(a) ,304.1 (d) ( ) 4,712 7,017 9,302 5,762 8,578 11,372 (e) (f) (b)(d) (a) 150m 2 ( ) (b) 150m 2 ( 11) (c) (b)(a) (d) ( ) 6,531 9,725 12,891 5,755 8,568 11,359 (e) (f) (b)(d) (a) 150m 2 ( ) (b) 150m 2 ( 11) (c) (b)(a) (d) ( ) 4,565 6,796 9,009 4,913 7,315 9,697 (e) (f) (b)(d)

31 III20 12 (a)(e) (f) (a) 150m 2 ( ) (b) 150m 2 ( 12) , ,097.2 (c) (b)(a) (d) ( ) 4,712 7,017 9,302 5,762 8,578 11,372 (e) (f) (b)(d) (a) 150m 2 ( ) (b) 150m 2 ( 12) (c) (b)(a) (d) ( ) 6,531 9,725 12,891 5,755 8,568 11,359 (e) (f) (b)(d) (a) 150m 2 ( ) (b) 150m 2 ( 12) (c) (b)(a) (d) ( ) 4,565 6,796 9,009 4,913 7,315 9,697 (e) (f) (b)(d)

32 III20 13 (a)(e) (f) (a) 150m 2 ( ) (b) 150m 2 ( 13) (c) (b)(a) (d) ( ) 4,712 7,017 9,302 5,762 8,578 11,372 (e) (f) (b)(d) (a) 150m 2 ( ) (b) 150m 2 ( 13) (c) (b)(a) (d) ( ) 6,531 9,725 12,891 5,755 8,568 11,359 (e) (f) (b)(d) (a) 150m 2 ( ) (b) 150m 2 ( 13) (c) (b)(a) (d) ( ) 4,565 6,796 9,009 4,913 7,315 9,697 (e) (f) (b)(d)

33 86 I II 25) II ) III 26

34 Kanemoo, Hayashi and wago

35 88 I W0 r r r e e R *P *τ P P P P P R e τ + = I

36 L 0 D 0 V = EU ( e r ) = 0 D 00 h L D W W 0 = PL0 + D 0 = PL + D I W = ( 1 + e) PL + (1 + r ) D Ih U E (U ) 1a I E { U(W ) } = E [U {(1 + e)pl + (1 + r ) D } I ] h ) Wdr + ( e r ) Wdh + {(1 + r ) + ( e r ) h} dw ] = 0 U W ( ) > 0 U ( W ) < 0 I h h EU' + EU" ( e r ) hw = = lnp τ EU" ( e r ) 2 W h PL h I W D 1 h I W I I EU (W ) V I I e e ln( P + R ) lnp τ I e I10 I EU ( d lnp dτ dr ) + EU" ( e r )[( d lnp dτ ) hw + (1 I11 I11 h EU' (1 h) EU" ( e r ) W = r EU" ( e r ) 2 W h W I12 I13 2 EU" ( e r ) h + EU" ( e r )(1 + r ) = 2 EU" ( e r ) W h EU" ( e r )(1 + r ) = W EU" ( e r ) 2 W I14 V = E { U ( W )} = E[ U {((1 + r ) + ( e r ) h )W } ] I h < 0 I15 r I5 I13 89

37 W L = h I19 P I I19 L W h ( W / P = + h ) W P P P P PL PL W Arrow (1971)Pra (1964) I2 h PLW W I20 h W 0 W D = L I21 I14 P P EU" ( e r ) h = 2 EU" ( e r ) W (1 + r ) W I16 I16 I12 I I21 ( W / P ) D = P P 0 2 I22 I22 I20 h h = P lnp P EU = 2 EU" ( e r ) W 2 h 1 + r < 0 I17 L W h = P P P L ( 1 h0 ) I23 P I12 I17 D + h( P τ h ) W h = P P h τ < 0 I18 PL0 h0 = I24 W I20 I23 L I19 W I6 L W h = W P W 90

38 h W ( W / P ) + h W = 0 I22 L ( W / P = h ) W W L W h = W ( W / P ) I20 L P W h = P P w p cons. L W + W P pricescons. I25 I25 I20 I23 I17 I20 I23 D I26 h I27 D 00 h 0 D 00h 0 D I26 I27 91

39 P P C τ I28 R + P + 1 P = C I r + τ P C P R + P P + 1 = r + τ 1 + r + τ I31 P C P I31 I30 P R + P + 1 ( P + C ) τ( P + C ) = r P + C I28 +1 P + C R + P + 1 = 1 + r +τ I29 I30 P R R + 1 P = r + τ (1 + r + τ ) P ( 1 + r + τ ) 2 C I32 R R + j j 92

40 q +1 R P q + 1 = C I r + τ q +1 q + 1 R P + 2 C = + r + τ (1 + r + τ ) 1 + r + τ 1 2 I34 I34 R < C ( r + τ + τ ) I36 τ I32 I34 τ C R I32 I 34 R = C ( r + τ ) I35 I35 I35 I35 τ τ I35 1 R C 1 rc τc RCrτ

41 PA PB R A(α) PA = C A I37 r + τ n P = ( 1 + r + τ ) R B (1 α) n (1 + r + τ ) 1 C B r + τ I38 R A ( α ) < 0 R B ( 1 α) < 0 I39 I29 n C ( 1 + r + τ ) 1 C I40 I40 α PAPB CA RA α 1α RA RB α PA PB PAPB α n α RA RB n PA PB CB n RB PAPB RB α α B A B I41 94

42 τ α I41 τ R A ( r + τ ) 2 R A dα + r + τ dτ R r + τ n B n n r 1 = ( τ ) + (1 + r + τ ) RB ( r + τ ) 2 R B dα r + τ dτ ( 1 n)(1 + r + τ ) n C B P A = P B 1 dα n [ R A + (1 + r + τ ) R B ] r + τ dτ = 1 (1 ) 1 n A + r + τ [ C r + τ C 1 n( 1 + r + τ ) τ n PB (1 + r + ) B ] C B I42 I42 d α / dτ I 39 I42 I40 dα dτ > 0 I43 2) τ A α Feldsein1977 Calvo Kolikoff and Rodrigu- ez

43 96 II II II II2 10

44 II

45 II (a) (b) (c) (a)(b)(c) 3 U. S. Deparmen of Commerce, Saiscal Absrac of he U.S II 16,549 23,815 26,963 38,960 39,406 41,405 55,509 63,221 68,368 5,240 20,417 23,118 8,349 8,444 8,873 13,589 28,861 31,991 21,789 44,232 50,081 47,309 47,850 50,278 69,098 92, ,359 98

46 II

47 II (a)(b) (c) (a) (b) (c) (bc) (b/a) (c/b) (ha) (ha) (ha) (ha) () () 37,522 30,307 24,510 5, ,716 27,722 23,384 4, ,979 7,649 6,609 1, ,507 9,579 8,469 1, ,740 4,610 3, ,542 6,688 5, ,241 42,566 35,030 7, ,765 43,989 37,655 6, m

48 I n n i = ij / ij RH KH KH j = j = n m m i ik ik RC = KC / KC 1 k = 1 k = 1 m I1 ij KH ij KC i RH i RC i PH i PC i UH i UC i P ij 89 i i PH = PH / (1 + RH [ ] ( = 89) i i i i i P = ( UH PH ) + ( UC PC ) i i / ( UH + UC ) PH PC i i = = ( 76 < < PC i n KH j = 1 ij 89 / n m ik [ KH 89 / m ] 89) = PC k = 1 i 89 + s ) s = 1 89 i i 89 / (1 + RC + s ) s = 1 [ ] 101

49 II I AB 3.3m m II-1 II m m 2 1/ m 2 1/2 102

50 II I II-2 LAKLASLAO TBKTBSTBO TBKTBS LAKCLASC LAKLAS LAKCLAK 1963 LASCLAS

51 II LAK TBK LAKC TBKC TRKC ( ) LAS TBS LASC TBSC TRSC ( ) LAO TBO ( ) TBKCTBSC TBA = ( TBK TBKC ) + ( TBS TBSC ) TRKCTRSC + TRKC + TRSC + TBO TBKC TRKCTBSCTRSC LAKC 81 TBA = 1 81 LAK LAK TRKC LAKC 1.2 TBA LAKC TBK TBS LAK

52 + TBO TBA = ( TBK TBKC ) + ( TBS TBSC ) + TRKC + TRSC + TBO TBA LAKC LAK = LAK 1 TRKC 85 LAKC LASC 84 LAS LAS TRSC 85 LASC TBO LASC TBS LAS TBA LAKC LAK LAK = 1 TRKC 85 LAKC 84 LAKC TBK LAK LAKC TBS LAK TBS + TBO 105

53 III

54 Arrow,k.,(1971) Essays in he Theory of Risk-Bearing, Norh Holland. Calvo, G.A., Lawrence Kolikoff and Carlos A. Rodriguez.,(1979) The Incidence of a Tax on Pure Ren: A New (?) Reason for an Old Answer, Journal of Poliical Economy, Vol. 87, No. 4, Chow, G. C., (1960) Tess of Equaliy beween Ses of Coeffciens in Two Linear Regressions, Economerica, Vol. 28, No. 3. Feldsein, M., (1977) The Surprising Incidence of Tax on Pure Ren:A New Answer o an Old Quesio- n, Journal of Poliical Economy, Vol. 85, No. 2, Fuller, W. A., and G. E. Baese., (1974) Esimaion of Liner Models Wih Crossederror Srucure, Journal of Economerics, Vol. 2, Hsiao, C., (1986) Analysis of Panel Daa, Cambridge Universiy. Kanemoo, Y., F, Hayashi, and H, Wago., (1987) An Economeric Analysis of a Capial Gain Tax on Land, The Economeric Sudies Quarerly Vol. 38, June McCallum, B. T., (1976) Raional Expecaions and he Naural Rae Hypohesis, Economerica. Vol. 44, No. 1,Jan Pra, J. W., (1964) Risk Aversion in he Small and in he Large, Economerica, Vol. 32, No 2, Jan. Apr. Ricardo, D., (1817) On The Principle of Poliical Economy and Taxaion, Gonner, Bell and Sons, 1891 ed. Tobin, J., (1969) A General Equilibrium Approach o Moneary Theory, Journal of Money, Credi and Banking, Vol. 1, Feb

財政赤字の経済分析:中長期的視点からの考察

財政赤字の経済分析:中長期的視点からの考察 000 364 645 (ax smoohing (Barro(979 Barro(979 (consumpion smoohing Hall(978 Campbell(987 Barro(979 Hall(978 Campbell(987 Campbell(987 B ( r B G T ( ( r E B G T Y T/Y r ( No Ponzi Game ( [ Ω ] Y ( lim (

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

○松本委員

○松本委員 CIRJE-J-100 2003 11 CIRJE hp://www.e.u-okyo.ac.jp/cirje/research/03research02dp_j.hml Credi Risk Modeling Approaches 2003 11 17 Absrac This aricle originaes from a speech given by he auhor in he seminar

More information

05秋案内.indd

05秋案内.indd 1 2 3 4 5 6 7 R01a U01a Q01a L01a M01b - M03b Y01a R02a U02a Q02a L02a M04b - M06b Y02a R03a U03a Q03a L03a M08a Y03a R04a U04a Q04a L04a M09a Y04a A01a L05b, L07b, R05a U05a Q05a M10a Y05b - Y07b L08b

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

案内最終.indd

案内最終.indd 1 2 3 4 5 6 IC IC R22 IC IC http://www.gifu-u.ac.jp/view.rbz?cd=393 JR JR JR JR JR 7 / JR IC km IC km IC IC km 8 F HPhttp://www.made.gifu-u.ac.jp/~vlbi/index.html 9 Q01a N01a X01a K01a S01a T01a Q02a N02a

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:[email protected] E-mail:[email protected] E-mail:[email protected] 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

行列代数2010A

行列代数2010A a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a

More information

デフォルト相関係数のインプライド推計( )

デフォルト相関係数のインプライド推計( ) ,,,.,.,.,,.,,.,,.,,. :,, OU, SUR,.,.,,.,.., 62 1, BIS,.,.,,,,.,,.,.,, [33],,,.,,.,,,,.,,.,,,.. 2,. 3,. 4,,. 5. 2,,.,. 2.1,.,,.,. Giesecke [10] dependen defaul.,,,, GDP,.,,.,...,,,.,.,.,,.,,. Giesecke [10],

More information

案内(最終2).indd

案内(最終2).indd 1 2 3 4 5 6 7 8 9 Y01a K01a Q01a T01a N01a S01a Y02b - Y04b K02a Q02a T02a N02a S02a Y05b - Y07b K03a Q03a T03a N03a S03a A01r Y10a Y11a K04a K05a Q04a Q05a T04b - T06b T08a N04a N05a S04a S05a Y12b -

More information

17 18 2

17 18 2 17 18 2 18 2 8 17 4 1 8 1 2 16 16 4 1 17 3 31 16 2 1 2 3 17 6 16 18 1 11 4 1 5 21 26 2 6 37 43 11 58 69 5 252 28 3 1 1 3 1 3 2 3 3 4 4 4 5 5 6 5 2 6 1 6 2 16 28 3 29 3 30 30 1 30 2 32 3 36 4 38 5 43 6

More information

銀行手数料ビジネスの動向と経営安定性

銀行手数料ビジネスの動向と経営安定性 * [email protected] ** [email protected] No.06-J-22 2006 12 103-8660 30 * ** * 2006 12 1990 2001 2005 2001 * BIS (Email: [email protected]) (Email: [email protected]) 1

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

0   (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4 0 http://homepage3.nifty.com/yakuikei (18) 1 99 3 2014/12/13 (19) 1 100 3 n Z (n Z ) 5 30 (5 30 ) 37 22 (mod 5) (20) 201 300 3 (37 22 5 ) (12, 8) = 4 (21) 16! 2 (12 8 4) (22) (3 n )! 3 (23) 100! 0 1 (1)

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

iii 1 1 1 1................................ 1 2.......................... 3 3.............................. 5 4................................ 7 5................................ 9 6............................

More information

日本経済の変動要因:生産性ショックの役割

日本経済の変動要因:生産性ショックの役割 * [email protected] No.06-J-1 2006 1 103-8660 30 * * 2006 1 2 1 657-8501 Phone: +81-78-803-7014 Fax: +81-78-803-7059 Email: [email protected] [ ] GDP TFP 4 VAR TFP AD-AS VAR (i) GDP (ii)gdp

More information

ab c d 6 12 1:25,000 28 3 2-1-3 18 2-1-10 25000 3120 10 14 15 16 7 2-1-4 1000ha 10100ha 110ha ha ha km 200ha 100m 0.3 ha 100m 1m 2-1-11 2-1-5 20cm 2-1-12 20cm 2003 1 05 12 2-1-13 1968 10 7 1968 7 1897

More information

3 4 3 2 4 1 4 2 4 2 1 3 1 1 4 1 1 16,000 14,000 12,000 W) S) RC) CB 10,000 8,000 6,000 4,000 2,000 0 12,000 11,500 11,000 10,500 10,000 9,500 9,000 550 540 530 520 510 500 490 480 470 460 450 2008 2009

More information

SIRIUS_CS3*.indd

SIRIUS_CS3*.indd SIRIUS Innovations SIRIUS SIRIUS Answers for industry. SIRIUS SIRIUS S00 S0 SIRIUS SIRIUS ZX0-ORAZ-0AB0 7.5kW 6 S00 7 8 7.5kW 9 S00 0 8.5kW S0 8.5kW S0 5 6 7 IO-Link AS-InterfaceRT 8 8US 5 6 SIRIUS SIRIUS

More information

インフレの不確実性とインフレ率水準の関係

インフレの不確実性とインフレ率水準の関係 * ** Working Paper 00-0 00-863003 * ** * ** 3 4 5 96 8 ; How will we cenral bankers know when we have achieved price sabiliy? Cerainly we would deem our policies successful if we removed unproducive price-expecaion-driven

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) , ,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:[email protected] E-mail:[email protected] E-mail:[email protected] 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

90 120.0 80 70 72.8 75.1 76.7 78.6 80.1 80.1 79.6 78.5 76.8 74.8 72.4 69.5 95.6% 66.4 100.0 60 80.0 50 40 60.0 30 48.3% 38.0% 40.0 20 10 10.4% 20.0 0 S60 H2 H7 H12 H17 H22 H27 H32 H37 H42 H47 H52 H57 0.0

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

untitled

untitled 1 2 3 4 5 (1834) 1834 200 6 7 8 9 10 11 (1791) (17511764) (1824) 1843 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 (1791) (1791) (17511764) (17511764) (1824)1843

More information

140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n 1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37 4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin

More information

読めば必ずわかる 分散分析の基礎 第2版

読めば必ずわかる 分散分析の基礎 第2版 2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 : 9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log

More information

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc + .1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π

More information

1 (1) 3 4 (2) 5 () 30 35 40 45 50 55 60 410 519 599 975 1,176 1,362 1,840 250 298 426 691 735 829 693 865 1,287 1,838 2,209 2,718 2,776 3,361 888 1,061 1,448 1,598 1,849 2,157 2,214 1,324 1,172 964 808

More information

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e No. 1 1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e I X e Cs Ba F Ra Hf Ta W Re Os I Rf Db Sg Bh

More information

2 Excel =sum( ) =average( ) B15:D20 : $E$26 E26 $ =A26*$E$26 $ $E26 E$26 E$26 $G34 $ E26 F4

2 Excel =sum( ) =average( ) B15:D20 : $E$26 E26 $ =A26*$E$26 $ $E26 E$26 E$26 $G34 $ E26 F4 1234567 0.1234567 = 2 3 =2+3 =2-3 =2*3 =2/3 =2^3 1:^, 2:*/, 3:+- () =2+3*4 =(2+3)*4 =3*2^2 =(3*2)^2 =(3+6)^0.5 A12 =A12+B12 ( ) ( )0.4 ( 100)0.9 % 1 2 Excel =sum( ) =average( ) B15:D20 : $E$26 E26 $ =A26*$E$26

More information

15...1-1...1-1...1-1...1-1...1-1...1-1...1-2...1-2...1-2...1-3...1-3...1-3...1-4...1-5...1-5...1-6...1-8...1-10...1-11 ...1-15...1-18...1-18...1-18...1-19...1-22...1-28...1-35...1-45...1-56...1-72...1-117...1-127...1-127...1-130...1-135...1-137

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

SURF 200000300104 Sendai Urban Research Forum 1 1 1 4 5 5 5 5 6 8 8 13 17 18 20 20 23 29 35 35 35 35 36 36 37 37 39 40 44 44 45 45 49 51 52 54 60 52 63 69 69 70 71 72 73 70 70 70 71 71 72 74 78 86 102

More information

国試過去問集.PDF

国試過去問集.PDF I 89 16 3 130 ab c AMPcAMP a 1 --- b c --- 2 --- --- 3 --- --- 4 --- --- 5 --- --- camp camp Ca 2+ β1 camp A camp camp A β1 p.156 β p.146 b. p.157 p135 (ANP) p157 c PDE-III p.157 p.157, 183 PDE C Ca PDE-III

More information

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA Journal Article / 学術雑誌論文 ベイズアプローチによる最適識別系の有限 標本効果に関する考察 : 学習標本の大きさ がクラス間で異なる場合 (< 論文小特集 > パ ターン認識のための学習 : 基礎と応用 On the limited sample effect of bayesian approach : the case of each class 韓, 雪仙 ; 若林, 哲史

More information

数論入門

数論入門 数学のかたち 共線問題と共点問題 Masashi Sanae 1 テーマ メネラウスの定理 チェバの定理から 共線問題と共点問題について考える 共線 点が同一直線上に存在 共点 直線が 1 点で交わる 2 内容 I. メネラウスの定理 1. メネラウスの定理とその証明 2. メネラウスの定理の応用 II. 3. チェバの定理とその証明 メネラウスの定理 チェバの定理の逆 1. メネラウスの定理の逆

More information

[RP13]シリーズカタログ

[RP13]シリーズカタログ 131520 : : : 2AAWG#24 : 2AAWG#22 1315 : AC30VDC42V 20 : AC100VDC140V 1. 1315 : 15m 20 : 30m DC1A -10 ~ +60-10 ~ +60 2. 1000M DC250V 3. AC300V1 4. 10s 10~55Hz/0.75mm 32 5. 10s 490m/s 2 11ms33 6. 7. 1315

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

1-1 - 2 3-2 - - 3 - i - 4 - ii - 5 - c - 6 - 4 1-7 - 2 1-8 - 2-9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - 3-18 - - 19 - - 20 - - 21 - - 22 - - 23 - iii i - 24 - - 25 - - 26 - 4-27 - 5

More information