JAB RL504:201 JAB NOTE 4 2 January 25, A B
|
|
|
- まさとし えいさか
- 7 years ago
- Views:
Transcription
1 JAB RL504:201 JAB NOTE 4 JAB RL504: /
2 JAB RL504:201 JAB NOTE 4 2 January 25, A B ISO/IEC /
3 JAB RL504:201 1 ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories 2 ISO/IEC Guide 2:2004, Standardization and related activitiesgeneral vocabulary International vocabulary of metrology-basic and general concepts and associated terms :2008, issued by BIPM, IEC, ISO, IFCC, IUPAC, IUPAP and OIML VIM 4 Guide to the Expression of Uncertainty in Measurement:1995, issued by BIPM, IEC, ISO, IFCC, IUPAC, IUPAP and OIML GUM 5 IEC :2010, High-voltage test techniques. Part 1: General definitions and test requirements 6 IEC :2010, High voltage test techniques. Part 2: Measuring systems 7 IEC 62475:2010, High-current test techniques Definitions and requirements for test currents and measuring systems 8 CIGRE -96 (WG 0):1996, Uncertainty of HV Measurements the Situation at IEC and CENELEC 9 STL GUIDE TO THE INTERPRETATION OF IEC , JIS Z8101-1:1999, - measurandvim true valuevim errorvim /
4 JAB RL504:201 - uncertainty of measurementvim.9 - testiso/iec Guide 2 - calibrationvim resolution 10 - normal distribution, Laplace-Gauss distributionjis Z8101-1, x μ f ( x) = exp, < x < σ 2π 2 σ - uniform distribution, rectangular distributionjis Z8101-1, 1.24 a, b 0 - correlationiso 54 - standard deviation - experimental standard deviationvim.8 n 2 ( x x) x i i = i = 1 s = n 1 x = n = - level of confidence standard uncertaintygum combined standard uncertaintygum coverage factorgum expanded uncertaintygum /
5 JAB RL504:201 - national standardvim 6. - reference standardvim traceabilityvim 6.10 () - measuring systemvim rss root sum square method root sum square = 7 - output quantity - input quantity(ies) /
6 JAB RL504: u u c U y yu yu U Y N X 1, X 2,, X N GUM Y = f (X 1, X 2,, X N ) (1) Y X 1, X 2,, X N u i A B u c 2 u c = u i U U=ku c k /
7 JAB RL504:201 AB A B 5. A Q q n q i i = 1, 2,, n q q q 1 q = n n q i i= 1 (2) q 2 s 2 (q k ) n s ( qk ) = ( qi q) () n 1 i= 1 s(q k ) n-1 q 2 2 σ σ ( q) = n 2 2 s qk s ( q) = ( ) (4) n s 2 ( q ) s (q) Q q q u (q) s (q) u ( q) = s( q) (5) 1 n t B U /
8 JAB RL504: a s b s 5.2 ab s x min x max 5.2(b) (6) a u ( x) = (6) x max x a = min (7) 2 a Bν ν Δu( x) ( ) u x 2 (8) Δ u u 25 Δu( x) 1 = ν = 8 u( x) rss /
9 JAB RL504:201 n i= 1 [ ] 2 c u( x ) u c ( y) = i i (9) u(x i ) i X i c i Y X i f (1) X i =x i X i X i =x i x i Δ x i Y Δ y c i Δy = (10) Δx i 1(9) GUM 2(9) (9) (9)rss 6.2rss 5.6 U (9) u c (y) k U = k u c (y) (11) k p t k=2 p=95% k=2 p=95% ν 20 ν ν i (12) ν eff i= 1 4 c ( 4 ui u y) ν eff = (12) n ( y) ν i /
10 JAB RL504:201 u i (y) = c i u(x i ) (1) 5.1 t n p% t p% n k=2 ν 20 k=2 p=95% U (14) y UA (14) y U U 100 y (15) /
11 JAB RL504:201 y110-2 A (15) 2yA 5 U y 6 k 2GUM 2 k (A) ν =50 t k= /
12 JAB RL504: (E/O-O/E) -2 (E/O-O/E) D/C - A/D /
13 JAB RL504:201 A/D E/O O/E 6.2 E/O O/E D/C A/D 6. D/C A/D 6.4 D/C A/D /
14 JAB RL504: u 1 A (5) u 2 B /1 (5)/(6) -1 u B (6) u 4 B (6) u 5 B (6) u 6 A (5) u 7 B /1 (5)/(6) -2 u 8 B (6) u 9 B (6) u 10 B (6) -1 u 11 B (6) ( E/O-O/E) u 12 B (6) -2 u 1 B (6) ( E/O-O/E) u 14 B (6) - D/C u 15 B (6) u 16 B (6) u 17 B (6) A/D u 18 B (6) u 19 B (6) u 20 B (6) u 21 B (6) /
15 JAB RL504: (a) u 1 6. m = 0.017(%) u 2 (b) u /
16 JAB RL504: u u kA 50A 50A/100kA= u (5) u 1 = = 0. 01(%) 10 u 2 k = () 0.05 u 2 = = (%) 2 u (6)u = = (%) u (6) u 4 = = (%) u A/100kA= (6)u 5 = = (%) /
17 JAB RL504: Peak u 6 トレーサブルな交流分流器を用いて 同じ電流を n 比較用交流分流器 ( ) Im [ka] Ii [ka] (=Ii / Im) = 0.048(%) u 7 u 8 u u 9 トレーサブルな交流分流器を用いて /
18 JAB RL504: 比較用 交流分流器 () (=Ii / Im) Im [ka] Ii [ka] = 0.211(%) u kA 50A 50A/100kA= u (/) 0.048%n=10 u6 = = 0.011(%) 10 u % u 7 = (%) u = % u8 = = 0.029(%) u 9 (/) 0.211%a= u 9 = = 0.122(%) u A/100kA= (6)u 10 = = (%) -1 E/O-O/E -2 E/O-O/E /
19 JAB RL504:201 E/O O/E A/D E/OO/E A/D E/O O/E B -1 u / 200.4% 0.4 u 11 = = 0.21(%) u % u 12 = = 0.04(%) -2 u /0.8% 0.8 u 1 = = 0.462(%) u % u14 = = 1.155(%) /
20 JAB RL504:201 D/C D/C D/C u u 15 = = 0.115(%) u u 16 = = 0.029(%) u (/)5 u 17 = = 0.087(%) A/D A/D A/D A/D (a) A/D A/D 0 12 (b) A/D /
21 JAB RL504:201 10kHz u % = 0.08 (%) u 18 = = 0.046(%) u u 19 = = 0.00(%) STLShort-circuit Testing Liaison STL u 20 u f(t) (t) /
22 JAB RL504: u 20 = = 0.289(%) 6.6 t I( t) = I m sin( ω t + φ) sin( φ) exp( ) τ i(t) π φ = ms u 21 = = 0.115(%) 6.7 r m s /
23 JAB RL504:201 () 6.8 () IEC IEC (JAB RL ) /
24 JAB RL504: u i (%) (n-1) u % u % (2) -1 u (% / ) 0.0 (2) u (% / ) 0.09 u 5 50A (2) -1 u E/O-O/E u % (% / ) (2) (2) u % u % (2) (2) u c Uk= /
25 JAB RL504: u 1 u 2 u u 4 u 5-2 u 1 5 E/O-O/E u % (% / ) u i (%) (n-1) (2) (2) u % (2) D/C u % (2) u (% / ) 0.09 (2) A/D u % u % (2) (2) u 20 u 21 u c Uk= /
26 JAB RL504: u 1 u i (%) (n-1) u 2-1 u u 4 u 5 - u 15 D/C u 16 u 17 A/D u 18 u 19 u 20 u 21 u c Uk= /
27 JAB RL504: u i (%) (n-1) u % u 7 u % (% / ) 0.0 () u % u u 15 D/C u 16 u 17 A/D u 18 u 19 u 20 u 21 u c Uk= u 2 u /
28 JAB RL504:201 ISO/IEC JAB NOTE4 50 JAB T&D /
29 JAB RL504:201 ISO/IEC [ / (cross-sensitivity)] (cross-sensitivity) /
30 JAB RL504:201 JIS Z 8402 (GUM) SI SI SI SI SI /( ) c) b) / /
31 JAB RL504:201 X x μ a μ + a f (x) 1 f ( x) = μ a x μ + a 2a = 0 x μ a, μ + a x 2 σ = 2 = 1 2a 2 a = a a f ( x) ( x μ) dx x 2 dx 2 σ = a /
32 JAB RL504:201 JAB NF18 REV PM /
33 JAB RL504: AN F Tel Fax /
JIS Z 9001:1998JIS Z 9002:1998 ISO/IEC 17025ISO/IEC Guide 25
JIS Q 17025 IDT, ISO/IEC 17025 IT JIS Z 9001:1998JIS Z 9002:1998 ISO/IEC 17025ISO/IEC Guide 25 JIS Q 17025 IDT, ISO/IEC 17025 IT IT JIS Q 17025ISO/IEC 17025 (2) JIS Z 9358 ISO/IEC Guide 58 (3) testing
Taro12-認定-部門-ASG101-06
JIS Q 17025(ISO/IEC 17025(IDT)) JIS Q17025(ISO/IEC 17025(IDT)) --- --- JNLA JCSS ISO/IEC 17025 JIS Q 17025 IAJapan ILAC APLAC JIS Q17011 ISO/IEC 17011 MRA ILACAPLAC MRA IAJapan (3) JNLAJCSS (4) testing
EURAMET EURAMET/cg-15/v.01 "Guidelines on the Calibration of Digital Multimeters" EURAMET e.v. "General Conditions for the translation of EURAMET publ
JAB RL508-2010 20100405 2010-04-05-1/22-0 2010-04-05 EURAMET EURAMET/cg-15/v.01 "Guidelines on the Calibration of Digital Multimeters" EURAMET e.v. "General Conditions for the translation of EURAMET publications"
JAB NF01 REV JIS Q 17025: /
120070501 2004420 2004-04-20 1/27 1 2007-05-01 JAB NF01 REV.1 0 2004-04-20 26 1 JIS Q 17025:2005 2007-05-01 34 2004-04-20 2/27 1 2007-05-01 5 5... 6 2.1...6 2.2...6 2.3...7... 7... 8 4.1...8 4.2...8 4.3...8
SI SI CIPM MRA
JAB RL331-2008 2008 11 1 2008 9 1 2008-09-01-1/25-1 2008-11-01 ... 3... 3... 4 3.1...4 3.2...4... 5... 7... 8 6.1...8 6.1.1 SI...8 6.1.2 SI...9 6.2...9 6.3...9 6.4...10... 10 7.1 CIPM MRA...10 7.2 135...11
MRA CIPM-MRA Mutual Recognition Arrangement OIML-MAA Mutual Acceptance Arrangement ILAC-MRA 3 CIPM-MRA (Associate to CGPM)+2 (As o
VIM JIS JLAC 20 2008.9.24 1 VIM JIS VIM GUM JCGM JIS 3 GUM JIS 2 MRA CIPM-MRA Mutual Recognition Arrangement OIML-MAA Mutual Acceptance Arrangement ILAC-MRA 3 CIPM-MRA 1999 38+2 71+2 45+26(Associate to
ISO/IEC ISO/IEC 17020: 2012 JIS Q ILAC 2) ILAC P15:06/2014 Application of ISO/IEC 17020:2012 for the Accreditation of Inspection Bodies 20
ISO/IEC 17020:2012 JAB RI300:2015 2 2015 9 1 2005 3 28 2005-3-28 1/18 2 2015-09-01 ISO/IEC 17020 ISO/IEC 17020: 2012 JIS Q 17020 ILAC 2) ILAC P15:06/2014 Application of ISO/IEC 17020:2012 for the Accreditation
008: GUM が JCGM 書として, インターネット上で無料公開 内容は同じ 現在 : 幾つかの GUM 補足 書 周辺 書が作成され,JCGM 書として順次インターネット上で公開 JCGM 101 ( モンテカルロ法 ),JCGM 10 ( 複数の出 量 ),JCGM 104 (
GUM とその関連ガイドの動き 産業技術総合研究所榎原研正 第 1 回不確かさ総会 018/01/ 今井秀孝 JCGM の役割と最近の活動状況 : GUM と VIM の位置付け 標準化と品質管理,Vol. 71, No., -18 (018) 1. まえがき. 計量計測分野の主要な国際 書の概要 3. JCGM の設置以前の状況 4. JCGM の設置とその役割 5. GUM とは? 6. VIM
Japanese.PDF
2002 11 2 3 Part I 4 5 6 3.1WTO/TBT 2 3 6 3.2ISO/IEC 7 3.3 7 3.4 7 3.5 8 3.6 8 9 4.1 9 4.2 9 4.3 10 12 Part II 13 1.1 13 1.2 13 1.3 14 1.4 14 1.5 14 2 14 3 15 3.1 15 3.2 16 3.3 17 3.4 17 3.5 18 3.6 18
試験データの信頼性の条件 - 国際的な枠組みと各国の技術インフラ -
- - ( - ISO/IEC 17000 - determination One standard, One test, Accepted everywhere 1) 2) competence 3) 4) 1) ISO/IEC 17025 JIS Q 17025 - ISO/IEC 17025 - ISO/IEC 17025 ISO/IEC 17025 (1) - - ISO/IEC 17025
Untitled
II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j
http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................
5005-toku3.indd
3 1 CMMICMM Capability Maturity Model ISO : International Organization for Standardization IEC : International Electrotechnical CommissionJTC1 : Joint Technical Committee 1SC7 : Sub Committee 7 SC7 WG
c 2009 i
I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................
all.dvi
72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G
Microsoft Word - 11問題表紙(選択).docx
A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx
m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)
2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ
Microsoft PowerPoint - 02_資料.ppt [互換モード]
db log db db db log log log db log log log4 y log4 log y log log y log4 log log log y log 4 log log log y log log log log y log log y log log y log y 5V.5 m db db log db db.893 - +..5.779-3 +3.43 db(.)
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
DVIOUT-fujin
2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................
数学の基礎訓練I
I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................
18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α
18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t
untitled
8- My + Cy + Ky = f () t 8. C f () t ( t) = Ψq( t) () t = Ψq () t () t = Ψq () t = ( q q ) ; = [ ] y y y q Ψ φ φ φ = ( ϕ, ϕ, ϕ,3 ) 8. ψ Ψ MΨq + Ψ CΨq + Ψ KΨq = Ψ f ( t) Ψ MΨ = I; Ψ CΨ = C; Ψ KΨ = Λ; q
LLG-R8.Nisus.pdf
d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
Gmech08.dvi
145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2
ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +
2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j
SO(2)
TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6
II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re
II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier
89865TVS_JA.fm
VISHAY GENERAL SEMICONDUCTOR Transient Suppressors Application Note (TVS) Soo Man Sweetman Kim Senior Application Manager TVS Vishay General Semiconductor ITVS TVS TVS TVS 1 10 s 1000 sbellcore 1089 2
Microsoft PowerPoint JAIMA_ehara.pptx
JAIMA セミナー (2016/09/07) 不確かさガイド (GUM) に関わる国際動向とベイズ統計の利 産業技術総合研究所計量標準総合センター榎原研正 1 概要 1. GUMをめぐる国際的動き GUM 改訂ドラフト 改訂の動機は? 2. ベイズ統計を利 した不確かさ評価 3. まとめ *) GUM: Guide to the Expression of Uncertainty in Measurement
0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =
RC LC RC 5 2 RC 2 2. /sc sl ( ) s = jω j j ω [rad/s] : C L R sc sl R 2.2 T (s) ( T (s) = = /CR ) + scr s + /CR () 0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db(
* 2
* 2 3 H2400 2 2 3 4 5 5 (at +25 ) H2400-00-0 H2400-0-0 H2400-20-0 420 3(X) (Y) 2-50 26 5 50 80 200 8.0 0.2 80 62 30 5 60 70.6 5 2. 4 0.3 3.2 8.0.3 2 6 3.5 5 +5 +50-20 +50 630 nm mm µa µa 300 µa/lm 400
.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,
[ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b
64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k
63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5
2012 JAB JABLAS 4 JABLAS JABLAS JABLAS 2012 5 16 2012 3 31 107 91 198 1 7 11 4 JABLAS JABLAS 1
2012 4 1 2012 1 JAB 2 ISO/IEC 17025 ISO/IEC 17025 11 JABLAS 15 15 17 19 2012 JAB JABLAS 4 JABLAS JABLAS JABLAS 2012 5 16 2012 3 31 107 91 198 1 7 11 4 JABLAS JABLAS 1 JABLAS JABLAS NEWS 42 20 JABLAS 5.
1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100
7 7., ) Q, 7. Q ) 7. Z = R +jx Z / Z 7. 7. Abs. admittance x -3 S) 5 4 3 R Series ircuit Y R = Ω = mh = uf Q = 5 5 5 V) Z = R + jx 7. Z 7. ) R = Ω = mh = µf ) 7 V) R Z s = R + j ) 7.3 R =. 7.4) ) f = π.
JIS Z803: (substitution method) 3 LCR LCR GPIB
LCR NMIJ 003 Agilent 8A 500 ppm JIS Z803:000 50 (substitution method) 3 LCR LCR GPIB Taylor 5 LCR LCR meter (Agilent 8A: Basic accuracy 500 ppm) V D z o I V DUT Z 3 V 3 I A Z V = I V = 0 3 6 V, A LCR meter
量子力学 問題
3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,
第5章 偏微分方程式の境界値問題
October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ
= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds
(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0
1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45
http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg
n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz
1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x
The Physics of Atmospheres CAPTER :
The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(
H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [
3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e
2 1,384,000 2,000,000 1,296,211 1,793,925 38,000 54,500 27,804 43,187 41,000 60,000 31,776 49,017 8,781 18,663 25,000 35,300 3 4 5 6 1,296,211 1,793,925 27,804 43,187 1,275,648 1,753,306 29,387 43,025
PowerPoint プレゼンテーション
JAIMA セミナー (2018/09/05) これであなたも専門家 - 不確かさ編 不確かさを巡るガイド 規格について 産業技術総合研究所 榎原研正 1 1. 不確かさの規範文書 勧告 INC-1, GUM 概要 2. JCGM の活動と発行文書 GUM 補完文書 周辺文書 GUM 改訂の動き 3. ISO/TC69 による不確かさ関係文書 ISO 21748 ISO/TS 21749 ) GUM:
2014.3.10 @stu.hirosaki-u.ac.jp 1 1 1.1 2 3 ( 1) x ( ) 0 1 ( 2)NOT 0 NOT 1 1 NOT 0 ( 3)AND 1 AND 1 3 AND 0 ( 4)OR 0 OR 0 3 OR 1 0 1 x NOT x x AND x x OR x + 1 1 0 x x 1 x 0 x 0 x 1 1.2 n ( ) 1 ( ) n x
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a
1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0
7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±
7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α
2
16 1050026 1050042 1 2 1 1.1 3 1.2 3 1.3 3 2 2.1 4 2.2 4 2.2.1 5 2.2.2 5 2.3 7 2.3.1 1Basic 7 2.3.2 2 8 2.3.3 3 9 2.3.4 4window size 10 2.3.5 5 11 3 3.1 12 3.2 CCF 1 13 3.3 14 3.4 2 15 3.5 3 17 20 20 20
2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )
http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b
Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence
Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................
B's Recorderマニュアル_B's Recorderマニュアル
5 Part 6 - 8 9 - 0 5 A C B AB A B A B C 7-6 - 8 9-5 0 5 7 A D B C E F A B C D F E 6 9 8 0 Part - - 5 5 7 6 9-7 6 8 0 5 5-6 7 9 8 5-5 50 5 5 5 -6 5 55 5 57-7 56 59 8 7 6 58 0 8 9 6 6 7 6 5 60 7 5 6 6-8
B's Recorderマニュアル
2 3 4 5 Part 1 6 1-1 8 9 1-2 10 11 12 13 A B C A C B AB A B 14 15 17 1-4 2 1 16 1-3 18 19 1-5 2 1 20 21 22 23 24 25 A B C D E F A B C D E F 26 27 28 29 30 31 Part 2 32 2-1 2-2 1 2 34 35 5 37 4 3 36 6 2-3
2000年度『数学展望 I』講義録
2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53
Note.tex 2008/09/19( )
1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................
. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n
003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........
001†`032 (Page 1)
ISO の国際標準化専門委員会 2 International Organization for Standardization (ISO) CASCO COPOLCO DEVCO INFCO General Assembly Member Bodies Correspondent Members Subscriber Members Council Technical Management
4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.
A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c
数値計算:有限要素法
( ) 1 / 61 1 2 3 4 ( ) 2 / 61 ( ) 3 / 61 P(0) P(x) u(x) P(L) f P(0) P(x) P(L) ( ) 4 / 61 L P(x) E(x) A(x) x P(x) P(x) u(x) P(x) u(x) (0 x L) ( ) 5 / 61 u(x) 0 L x ( ) 6 / 61 P(0) P(L) f d dx ( EA du dx
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2
2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6
Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1
Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) µ = lim xk( k = autocorrelation function R( t, t + τ) = lim ( ) ( + τ) xk t xk t k = V p o o R p o, o V S M R realization
IA [email protected] Last updated: January,......................................................................................................................................................................................
2005 2006.2.22-1 - 1 Fig. 1 2005 2006.2.22-2 - Element-Free Galerkin Method (EFGM) Meshless Local Petrov-Galerkin Method (MLPGM) 2005 2006.2.22-3 - 2 MLS u h (x) 1 p T (x) = [1, x, y]. (1) φ(x) 0.5 φ(x)
