Size: px
Start display at page:

Download ""

Transcription

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 = hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N λ

19 / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA

20 Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA

21 Me = dφe ds M = dφ ds Φ Φ THBV3_0103JA le = dφe dw Φe: w : l = dφ dw Φ : w : Φ Φ THBV3_0104JA

22 Le = dle ds cosθ le: s : θ : L = dl ds cosθ l THBV3_0105JA

23 π π π π

24

25

26 4 THBV3_0201JA

27 ν ψ IIIV ν ν ψ THBV3_0202JA

28 ν ην Pν 1 η(ν) = (1 R) ( ) Ps k 1+1 kl ν ν ν

29 THBV3_0203JA

30 THBV3_0204JA THBV3_0205JA THBV3_0206JA

31 (δ) THBV3_0207JA

32

33

34

35 THBV3_0301JA

36 THBV3_0302JA µ

37 THBV3_0305JA THBV3_0306JA

38 THBV3_0307JA THBV3_0308JA

39 ± !0 80 ± !0 3-M ± THBV3_0309JA

40 THBV3_0310JA

41 THBV3_0311JA

42

43

44

45 Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa

46 THBV3_0402JAb % 25 % % 2.5 % 0.5 % 0.25 % % 1 % 0.1 % THBV3_0403JB

47 µ

48 100M 200S 200M 400K 400U 400S 401K 500K(S-20) 500U 500S 501K(S-25) 502K 700K(S-1) UV µ

49 THBV3_0404JA

50 THBV3_0405JA Sk = I K L P (A/W)

51 h c η (%) = Sk = λ e h: J s c: m s -1 e: C 1240 Sk 100 (%) λ

52 THBV3_0406JA THBV3_0407JA

53 THBV3_0408JA

54 THBV3_0409JA

55 THBV3_0410JA

56 THBV3_0411JA

57

58

59 THBV3_0412JA δ = a E k δ 1 = I d1 I K δ n = I dn I d(n-1) Ip = Ik α δ 1 δ 2 δ n Ip = α δ 1 δ 2 δ n Ik

60 µ = α δ 1 δ 2 δ n V µ = (a E k ) n = a n ( ) kn = A V kn n+1 THBV3_0413JA

61 THBV3_0414JA

62 THBV3_0415JA THBV3_0416JA

63 THBV3_0417JA THBV3_0418JA

64 FWHM FWTM THBV3_0419JA

65 THBV3_0420JA THBV3_0421JA

66 THBV3_0422JA C.R.T. = (τ 1 2 +τ 2 2 ) 1/2

67 C 1 µa 1 µa 0.1 µa 0.01 µa 10 µa 1 µa 0.1 µa 0.1 µa 0.1 µa

68 THBV3_0423JA

69 THBV3_0424JA (Ip 0 (Ip 1 +Ip 2 +Ip 3 +Ip 4 ) 1) 100 (%) Ip 0 = Ip 1 +Ip 2 +Ip 3 +Ip 4

70 R=100 kω THBV3_0425JA Ip 02 Ip 01 = 4 Ip 2 Ip 1 Ip 02 Ip 01 (Ip 2 Ip 1)-(Ip 02 Ip 01) (Ip 02 Ip 01) 100(%) (Ip 2 Ip 1 ) = (Ip 02 Ip 01 )

71 THBV3_0426JA THBV3_0427JA

72 THBV3_0428JAa THBV3_0428JAb

73 THBV3_0429JA

74 THBV3_0430JA THBV3_0431JA THBV3_0432JA

75 THBV3_0433JA

76 THBV3_0434JA

77 PMTR V 1 µa THBV3_0435JA

78 1 µa THBV3_0436JA H L = ((I MAX -I MIN ) Ii) 100 (%)

79 0.1 µa THBV3_0437JA H = ((I MAX I MIN) Ii) 100 (%)

80 THBV3_0438JA

81 i S = AT 5/4 e (-eψ/kt)

82 THBV3_0439JA

83 THBV3_0440JA

84 EADCI (lm) = (A) (A/lm)

85 THBV3_0441JA ENI = (2e Id µ B) 1/2 S (W) e: Id: µ: B: S:

86 THBV3_0442JA SN= I p i p+d SN I p i p F= (S/N) 2 in (S/N) 2 out

87 F= 1+1 δ 1 +1 δ 1 δ δ 1 δ 2 δ n F δ (δ-1) i p = µ(2 e I k α B F) 1/2 i p = µ{2 e I k α B(1+1 δ 1 +1 δ 1 δ δ 1 δ 2 δ n )} 1/2 I p = I k α µ SN = I p i p I = ( K α 1 ) 1/2 2eB 1+1 δ 1 +1 δ 1 δ δ 1 δ 2 δ n I SN K 1 ( ) 1/2 2eB δ (δ-1) SN= (I k 2eB) 1/ I k (µa) B (MHz)

88 SN= I k (2eB δ (δ-1) (I k +2I d )+N 2 A) 1/2 I SN= k (2eB δ (δ-1) (I k+2i d)) 1/2 η I k : λ: c: P: δ: I d : e: h: η: B: N A :

89 SN= I k = (2 e (I k +2 I d )F B) 1/2 I k µ (2e(I ph +2I d )FB µ 2 ) 1/2 = I p 2e(I p +2I da )µfb = S p P i 2e(S p Pi+2I da )µfb S p Pi= 2e(S p Pi+2I da )µfb (S p Pi) 2 2e(S p Pi+2I da )µfb= 0 S p Pi= ( 2eSpµFB) ± ( 2eSpµFB)2 4Sp 2 ( 4eIdaµFB) 2Sp 2 eµfb Pi= + Sp (eµfb) 2 + 4eIdaµFB Sp A/W A/W ENI THBV3_0444JA

90

91 THBV3_0445JA I I Iθ = I S cos 2 θ+i P sin 2 θ = (I P +I S )(1 P I S cos 2 θ) 2 I P +I S I S : I P : I I O = P+I S, P = 2 I P I S I P+I S θ = I O (1 P cos 2 θ)

92 THBV3_0446JA THBV3_0447JA

93 THBV3_0448JA

94

95

96

97 THBV3_0501JA THBV3_0502JA I b = V (R 1+R 2+ +R 6+R 7) I b = V (Dz1) R 1+R 2+R 3

98 THBV3_0503JA

99 THBV3_0504JA THBV3_0505JA

100 THBV3_0506JA

101 THBV3_0507JA

102 THBV3_0508JA Q 0 = Tw V 0 R L Q 3100 Q 0 C Q 0 V 3 Q 2 = Q 3 2 Q Q 1 = 2 = 2 Q 3 4 C 2 50 Q 0 V 2 C 1 25 Q 0 V 1

103 Q 0 50 mv 50 Ω 1 µs = 1 nc C C 2 50 C nc 100 V 1 nc 100 V 1 nc 100 V =1 nf = 0.5 nf = 0.25 nf

104 THBV3_0509JA THBV3_0510JA

105 THBV3_0511JA

106 THBV3_0512JA THBV3_0513JA

107 C1 R1 -H.V SHV-R MAGNETIC SHIELD ACC DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 C2 C3 C4 C5 C6 C8 C9 R17 C7 SIGNAL OUTPUT BNC-R R1: 33 kω R2, R15: 390 kω R3, R4, R13: 470 kω R5: 499 kω R6, R16: 360 kω R7: 536 kω R8 to R11: 300 kω R12: 150 kω R14: 430 kω R17: 50 Ω C1: 2200 µf C2, C3: 4700 µf C4: 0.01 µf C5, C6: µf C7: µf C8, C9: 1000 pf THBV3_0514JA Ω THBV3_0515JA

108 THBV3_0516JA

109 THBV3_0517JA µ THBV3_0518JA

110 THBV3_0519JA

111 THBV3_0520JA

112 THBV3_0521JA

113

114

115 ± ± 0.05 ± C

116 THBV3_0522JA THBV3_0523JA THBV3_0524JA

117 ZC = l 2πfC V a = E 0e -t/rc R a R a+r L

118 THBV3_0525JA THBV3_0526JA

119 1 f C = 2πC S R L (Hz) THBV3_0527JA R 0 = Rin RL R in+r L R in V 0' = V 0 R in+r L

120 THBV3_0528JA V 0 = -I p R f

121 THBV3_0529JA THBV3_0530JA

122 THBV3_0531JA V 0 = Q p /C f V 0 = 1 t C f 0 I p d t THBV3_0532JA

123 THBV3_0533JA Q τ C V(t) = (e -t/τ e -t/τs ) τ τ s Q V(t) (e t/τ e t/τs ) C Q τ V(t) (e t/τs e t/τ ) C τ s

124 THBV3_0534JA THBV3_0535JA

125 THBV3_0536JA

126

127 THBV3_0537JA S = = H out H in 3tµ 4r S' = S1 S2 S3 S n = 3t 1 µ 1 3t 2 µ 2 3t 3µ 3 4r 1 4r 2 4r 3 3t nµ n 4r n

128 µ µ THBV3_0538JA

129 THBV3_0539JA µ THBV3_0540JA

130 µ THBV3_0541JAa

131 µ THBV3_0541JAb THBV3_0542JA

132 THBV3_0543JA

133 THBV3_0544JA

134 M ± 0.1 THBV3_0545JAa ! !0 3-M ± A THBV3_0545JAb

135 ± THBV3_0546JA

136 THBV3_0547JA

137

138

139 THBV3_0601JA THBV3_0602JA

140 = (Nd Np)= η α THBV3_0603JA

141 THBV3_0604JAa THBV3_0604JAb

142 8888 THBV3_0605JA

143 THBV3_0606JA THBV3_0607JA

144 N = M 1 M t THBV3_0608JA

145 THBV3_0609JA

146 SN Iph 2eNFB{Iph+2(Ib+Id)} Iph: e: NF: Ib: Id: B: Ns T SN Ns+2(Nb+Nd) Ns: Nb: Nd: T: SN Iph 2eNF{Iph+2(Ib+Id)} SN Ns 2{Ns+2(Nb+Nd)}

147

148

149 THBV3_0701JA

150 THBV3_0702JAa THBV3_0702JAb

151 THBV3_0703JA THBV3_0704JA

152 R = P P P P H H 2 THBV3_0705JA

153 THBV3_0706JA

154 δ

155 THBV3_0707JA

156 THBV3_0708JA N η α µ Ip = τs = = 6.3

157 THBV3_0709JA THBV3_0710JA

158 n Σ n = 1 Pi P 100 D LTS = n P P Pi n DLTS = 1.0 % THBV3_0711JA

159 B D STS = (1 ) A

160 1 2 3 THBV3_0712JA

161 THBV3_0713JAa THBV3_0713JAb

162 THBV3_0713JAc

163 C C THBV3_0714JA

164

165

166

167 THBV3_0801JA

168 + THBV3_0802JA THBV3_0803JA

169 5 (mv/div) 1 (µs/div) THBV3_0804JA

170 0 V 1000 V 50 (ms/div) THBV3_0805JA

171 +15 V +0.3 V +1.1 V THBV3_0806JA +15 V (10 kω) THBV3_0807JA

172 + - LLD. RL 50 Ω +5 V GND THBV3_0808JA

173 THBV3_0809JA

174 THBV3_0810JA (%/ C) THBV3_0811JA

175 THBV3_0812JA

176 5 V 200 ns/div. THBV3_0813JA

177

178 LLD. +5 V 20 bit Counter 90 MHz 20 bit Latch I/O 128 kbyte ROM 4 kbyte RAM 16-bit CPU 16 MHz RS-232C RS-232C 9600 baud THBV3_0814JA

179 K P 1000 pf + THBV3_0815JA

180

181 THBV3_0901JA

182 THBV3_0902JA

183 M4 M16 M64 L16 L32 M THBV3_0903JA THBV3_0904JA

184 THBV3_0905JA THBV3_0906JA

185 THBV3_0907JA THBV3_0908JA

186 THBV3_0909JA OUTPUT DEVIATION (%) SPATIAL RESOLUTION AND CROSS-TALK SCAN DEAD SPACE B EFFECTIVE SPACE SIGNAL A 1 CH SCAN POSITION (TOP VIEW) 16 CH SUPPLY VOL.: -800 V LIGHT SOURCE: TUNGSTEN LAMP SPOT DIA.: 100 µm SCAN PITCH: 50 µm POSITION (channel) CH CROSS-TALK AREA B / AREA A 100 CROSS-TALK RATIO (%) THBV3_0910JA

187 ch 2 ch 3 ch 4 ch 5 ch 6 ch 7 ch 8 ch 9 ch 10 ch 11 ch 12 ch 13 ch 14 ch 15 ch 16 ch THBV3_0911JA 100 OUTPUT DEVIATION (%) CHANNEL THBV3_0912JA

188 THBV3_0914JA

189 52.0 mm 32.2 mm 25.7 mm 25.7 mm 32.2 mm Effective Area 15 mm Effective Area 22 mm Effective Area 24 mm 49 mm THBV3_0915JA

190 THBV3_0916JA THBV3_0917JA

191 THBV3_0918JA THBV3_0919JA

192 X = X2 X1 + X2 Y = Y2 Y1 + Y2 THBV3_0920JA

193 THBV3_0921JA THBV3_0922JA

194 THBV3_0923JA

195 THBV3_0925JA

196 X9 X10 THBV3_0927JA Y8 Y9 THBV3_0928JA

197 THBV3_0929JA THBV3_0930JA

198 THBV3_0931JA

199

200

201 THBV3_1001JA

202 THBV3_1002JA

203 12 MΩ 24 MΩ 6 MΩ 1000 pf 1000 pf 900 pf THBV3_1004JA

204 THBV3_1005JA

205 THBV3_1006JA

206 THBV3_1007JAa THBV3_1007JAb THBV3_1008JAa THBV3_1008JAb

207 µ µ µ THBV3_1009JA

208 THBV3_1010JA

209 S-25 (s -1 ) S ( C) THBV3_1011JA

210 THBV3_1012JAa

211 THBV3_1012JAb THBV3_1013JAa

212 THBV3_1013JAb

213 THBV3_1014JA THBV3_1015JA

214 THBV3_1016JA

215 THBV3_1017JAa THBV3_1017JAb

216 MCP THBV3_1018JAa MCP SMA-R 100 kω 450 pf 330 pf 33 kω 12 MΩ 24 MΩ 6 MΩ 330 pf 330 pf 1000 pf 1000 pf 330 pf 50 Ω GND 10 kω GND -HV SHV-R SMA-R THBV3_1018JAb

217 THBV3_1019JA THBV3_1020JA

218 THBV3_1021JA

219 THBV3_1022JAa THBV3_1022JAb

220 THBV3_1022JAc

221

222

223 THBV3_1101JA Vth THBV3_1102JA

224 Gb = (Vpc-Vth) 3.6 G = Gb Gt

225 10 4

226 THBV3_1103JA

227 THBV3_1104JA α α σ THBV3_1105JA

228 Ω THBV3_1106JA

229 THBV3_1107JA

230 µ THBV3_1108JA µ THBV3_1109JA

231 C THBV3_1110JA

232 C THBV3_1111JA Ω Ω µ THBV3_1112JA

233 Ω Ω THBV3_1113JA

234

235

236 THBV3_1203JA

237 THBV3_1204JA THBV3_1205JA

238 (V) THBV3_1206JA THBV3_1207JA

239 THBV3_1208JA THBV3_1209JA

240 µ= A E bb kn Ebb k n (V) THBV3_1210JA

241 THBV3_1211JA THBV3_1212JA

242 THBV3_1213JA THBV3_1214JA

243 Ω µ THBV3_1215JA

244 THBV3_1216JA

245

246

247 THBV3_1301JA

248 C THBV3_1302JA

249 C) THBV3_1303JA

250 (na) ( C) THBV3_1304JA 500 = 1500 V =1 µa (%) C (R1288A-14) 25 C 175 C 90 C 150 C (hours) THBV3_1305JB

251 C) THBV3_1306JA C C THBV3_1307JA

252

253 THBV3_1308JA

254 THBV3_1309JA THBV3_1310JAa

255 THBV3_1310JAb

256

257 THBV3_1311JA

258 THBV3_1312JAa THBV3_1312JAb

259 THBV3_1312JAc

260 THBV3_1313JA

261 THBV3_1314JA

262

263 THBV3_1315JAa THBV3_1315JAb

264 THBV3_1316JAa THBV3_1316JAb

265 THBV3_1317JAa THBV3_1317JAb

266 THBV3_1318JA

267

268 THBV3_1319JAa THBV3_1319JAb

269 Ω THBV3_1320JA

270 THBV3_1321JA THBV3_1322JA

271 x + σ x x - σ µ C THBV3_1323JA

272 C µ THBV3_1324JA µ µ µ ± µ µ µ THBV3_1325JA

273 ± ± THBV3_1326JA

274

275 R(t) = e -tλ t: λ λ

276

277

278

279 THBV3_1401JA ''' ' ' '' ' '' '

280 THBV3_1402JA THBV3_1403JA

281 THBV3_1404JA THBV3_1405JA

282 THBV3_1406JA THBV3_1407JA

283

284

285 THBV3_1411JA

286 THBV3_1413JA THBV3_1414JA

287 γ

288 THBV3_1415JA THBV3_1416JA

289 THBV3_1417JA

290

291 THBV3_1418JA

292 β β γ γ γ β γ

293 THBV3_1419JA TPMHC0000JA_HB

294 PMT THBV3_1421JA

295 THBV3_1422JA

296 THBV3_1423JA

297 THBV3_1424JA THBV3_1425JA

298 THBV3_1426JA

299 THBV3_1427JA THBV3_1428JA

300 THBV3_1429JA THBV3_1430JA

301

302

303 150 C 200 C THBV3_1433JA

304 THBV3_1434JA

305 THBV3_1435JA THBV3_1436JA

306 THBV3_1437JA

307 THBV3_1438JA

308 THBV3_1439JA

309 (-µρt) THBV3_1440JA THBV3_1441JA I = -I 0 e (-µρt) ρ µ

310 THBV3_1442JA

311 THBV3_1443JA

312 THBV3_1444JA THBV3_1445JA

313

314 THBV3_1447JA

315 THBV3_1448JA

316 THBV3_1449JA

317

318

319

320

321

322

323

324

325

326

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

橡博論表紙.PDF

橡博論表紙.PDF Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction 2003 3 Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction

More information

Triple 2:1 High-Speed Video Multiplexer (Rev. C

Triple 2:1 High-Speed Video Multiplexer (Rev. C www.tij.co.jp OPA3875 µ ± +5V µ RGB Channel OPA3875 OPA3875 (Patented) RGB Out SELECT ENABLE RED OUT GREEN OUT BLUE OUT 1 R G B RGB Channel 1 R1 G1 B1 X 1 Off Off Off 5V Channel Select EN OPA875 OPA4872

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

(1) 1.1

(1) 1.1 1 1 1.1 1.1.1 1.1 ( ) ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) ( ) ( ) ( ) 2 1 1.1.2 (1) 1.1 1.1 3 (2) 1.2 4 1 (3) 1.3 ( ) ( ) (4) 1.1 5 (5) ( ) 1.4 6 1 (6) 1.5 (7) ( ) (8) 1.1 7 1.1.3

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

1

1 1 2 3 4 5 6 7 8 9 10 A I A I d d d+a 11 12 57 c 1 NIHONN 2 i 3 c 13 14 < 15 16 < 17 18 NS-TB2N NS-TBR1D 19 -21BR -70-21 -70-22 20 21 22 23 24 d+ a 25 26 w qa e a a 27 28 -21 29 w w q q q w 30 r w q!5 y

More information

J.qxd

J.qxd IQ 2 I/Q IQ IQ IQ IQ 3 IQ 4 5 6 I Q 7 IQ 0 deg 8 IQ I QI I Q Q Q Q { I Q { I I 9 I/QI/QI/Q IQ IQ I/Q Q Σ I IQ I Q 10 I/Q I/Q I/Q IQ IQ 11 π 12 01 00 11 10 13 I/Q I QI I/Q IQ 14 π QI π I/QI Q IQ IQ π 15

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

高速データ変換

高速データ変換 Application Report JAJA206 V+ R 5 V BIAS Q 6 Q R R 2 Q 2 Q 4 R 4 R 3 Q 3 V BIAS2 Q 5 R 6 V Ω Q V GS + R Q 4 V+ Q 2 Q 3 + V BE V R 2 Q 5 R Op Amp + Q 6 V BE R 3 Q 7 R 4 R 2 A A 2 Buffer 2 ± Ω Ω R G V+ Q.4.2

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

現代物理化学 1-1(4)16.ppt

現代物理化学 1-1(4)16.ppt (pdf) pdf pdf http://www1.doshisha.ac.jp/~bukka/lecture/index.html http://www.doshisha.ac.jp/ Duet -1-1-1 2-a. 1-1-2 EU E = K E + P E + U ΔE K E = 0P E ΔE = ΔU U U = εn ΔU ΔU = Q + W, du = d 'Q + d 'W

More information

MO 2 E 2 POM -248/16 ev. 1.3_2 L D WP V GND 2* D IN LOD / W D OU OMP LOD 3 Min. yp. Max. V IN Y V IH V = V V = V V IL V = V 2 V =

MO 2 E 2 POM -248/16 ev. 1.3_2 L D WP V GND 2* D IN LOD / W D OU OMP LOD 3 Min. yp. Max. V IN Y V IH V = V V = V V IL V = V 2 V = ev. 1.3_2 MO 2 E 2 POM -248/16 8-Pin DIP ( DP8-DP8-E) 8-Pin OP ( FJ8-DFJ8-E) :µ Max. (V =5.5 V) :.8 m Max. (V =5.5 V, f=4khz).4 m Max. (V =4.5 V, f=1khz) :2.5 5.5 V :1.8 5.5 V 16 (-248, -2416) GN 1 2 8-Pin

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A 7 - (Electron-Donor Acceptor) : Charge-Transfer ( CT) ( (Charge-Transfer) - (electron donor-electron acceptor) [1][2][3][4] Van der Waals CT [5] Population Analysis population analysis ( ), observable

More information

縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () "64": ィャ 9997ィ

縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () 64: ィャ 9997ィ 34978 998 3. 73 68, 86 タ7 9 9989769 438 縺48 縺 378364 タ 縺473 399-4 8 637744739 683 6744939 3.9. 378,.. 68 ィ 349 889 3349947 89893 683447 4 334999897447 (9489) 67449, 6377447 683, 74984 7849799 34789 83747

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

202

202 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 DS =+α log (Spread )+ β DSRate +γlend +δ DEx DS t Spread t 1 DSRate t Lend t DEx DS DEx Spread DS

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/091961 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1 2 3 4 5 9 10 12 14 15 A B F 6 8 11 13 E 7 C D URL http://www.morikita.co.jp/support

More information

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2 12 Big Bang 12.1 Big Bang Big Bang 12.1 1-5 1 32 K 1 19 GeV 1-4 time after the Big Bang [ s ] 1-3 1-2 1-1 1 1 1 1 2 inflationary epoch gravity strong electromagnetic weak 1 27 K 1 14 GeV 1 15 K 1 2 GeV

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2 III 1 2005 Jan 30th, 2006 I : II : I : [ I ] 12 13 9 (Landau and Lifshitz, Quantum Mechanics chapter 12, 13, 9: Pergamon Pr.) [ ] ( ) (H. Georgi, Lie algebra in particle physics, Perseus Books) [ ] II

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

Hz

Hz ( ) 2006 1 3 3 3 4 10 Hz 1 1 1.1.................................... 1 1.2.................................... 1 2 2 2.1.................................... 2 2.2.................................... 3

More information

* ἅ ὅς 03 05(06) 0 ἄβιος,-ον, ἄβροτον ἄβροτος ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυ

* ἅ ὅς 03 05(06) 0 ἄβιος,-ον, ἄβροτον ἄβροτος ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυ Complete Ancient Greek 2010 (2003 ) October 15, 2013 * 25 04-23 0 ἅ ὅς 03 05(06) 0 ἄβιος,-ον, 15 99-02 0 ἄβροτον ἄβροτος 15 99-02 0 ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυσσος

More information

F8302D_1目次_160527.doc

F8302D_1目次_160527.doc N D F 830D.. 3. 4. 4. 4.. 4.. 4..3 4..4 4..5 4..6 3 4..7 3 4..8 3 4..9 3 4..0 3 4. 3 4.. 3 4.. 3 4.3 3 4.4 3 5. 3 5. 3 5. 3 5.3 3 5.4 3 5.5 4 6. 4 7. 4 7. 4 7. 4 8. 4 3. 3. 3. 3. 4.3 7.4 0 3. 3 3. 3 3.

More information

橡1010179.PDF

橡1010179.PDF 12 13 2 27 1 1 2 3 3 3 5 8 8 10 12 13 14 15 1960 70 NC NC NC NC 1 NC 2 1 3 4 NC 5 6 WA SG 10 7 , 8 m Ra 2 1.5 1 0.5 0 0 300 350 400 450 500 m 9 WA SG SG SG SG m 400 300 200 100 1000mm/min 600mm/min 0 WA

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

213 2 katurada AT meiji.ac.jp http://nalab.mind.meiji.ac.jp/~mk/pde/ 213 9, 216 11 3 6.1....................................... 6.2............................. 8.3................................... 9.4.....................................

More information

TII 0007J03

TII 0007J03 µs µs θ µs µs Feature 1 (%) TII B0113JC 100 10 1 GaAsP -74 GaAsP -73 GaAs -71 0.1 Cs-Te -03-02 0.01 100 200 300 400 500 600 700 800 900 1000 1 (nm) Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Vk

More information

D:/BOOK/MAIN/MAIN.DVI

D:/BOOK/MAIN/MAIN.DVI 8 2 F (s) =L f(t) F (s) =L f(t) := Z 0 f()e ;s d (2.2) s s = + j! f(t) (f(0)=0 f(0) _ = 0 d n; f(0)=dt n; =0) L dn f(t) = s n F (s) (2.3) dt n Z t L 0 f()d = F (s) (2.4) s s =s f(t) L _ f(t) Z Z ;s L f(t)

More information

corega UPS 250 取扱説明書

corega UPS 250 取扱説明書 2 3 4 5 6 7 8 9 10 11 12 13 10 A MP ON 1234 1234 14 15 16 17 18 19 20 21 10 A MP 10 A MP ON 1234 1234 ON 1234 1234 22 10 A MP ON 1234 1234 OUT IN 23 24 25 26 27 28 ON 1 2 3 4 29 ON 1 2 3 4 30 31 32 33

More information

16 4 1 2003 JASS5 1 16 4 1 2 16 4 1 1999 90 90 JASS5RC 180 135 90 RC -1 (D) JASS5 L2 90 2/3 2030-1 JASS5 JASS5 JASS5 JASS5 JASS5 JASS5 90 JASS5 RC RC JASS5 JASS5 JASS5 190 RC JASS5 2 JASS5 (L22/3) 3 (2)

More information

DS04-21361-4

DS04-21361-4 Cypress () FUJITSU SEMICONDUCTOR DATA SHEET DS4 236 4 ASSPDTS Bi-CMOS PLL (. GHz PLL) MB5F7SL MB5F7SL,, MHz 2 PLL (Phase Locked Loop) LSI Bi CMOS, 5 ma (VCC 2.7 V), VCC 2.4 V,.5 ma, 6 ma 2, MB5F7SL,, MHz

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

Data Sheet

Data Sheet Cypress ( ) DATA SHEET DS04 27226 1a ASSP ( DC/DC ) 2ch DC/DC IC MB3882 MB3882 (PWM ) 2ch DC/DC IC,,,, 5 V, TV, PC CPU 5.5 V 18 V 2.5 V 1 1.25 V 1 (0 C 85 C) 10 khz 500 khz Nch MOS FET SSOP, 24 (FPT-24P-M03)

More information

A大扉・騒音振動.qxd

A大扉・騒音振動.qxd H21-30 H21-31 H21-32 H21-33 H21-34 H21-35 H21-36 H21-37 H21-38 H21-39 H21-40 H21-41 H21-42 n n S L N S L N L N S S S L L log I II I L I L log I I H21-43 L log L log I I I log log I I I log log I I I I

More information

17 3 31 1 1 3 2 5 3 9 4 10 5 15 6 21 7 29 8 31 9 35 10 38 11 41 12 43 13 46 14 48 2 15 Radon CT 49 16 50 17 53 A 55 1 (oscillation phenomena) e iθ = cos θ + i sin θ, cos θ = eiθ + e iθ 2, sin θ = eiθ e

More information

閨 [

閨 [ 1303000709 000 03. 070503 170, 0 3 0806 タ07 09 090908090107060109 04030801 縺0408 縺0505 03010708030060405 タ05 縺0400703 060504050ィ 03090405080050400909 03.03. 030007030000908 060005090809 0501080507 080500705030504040701

More information

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ : (Dated: February 5, 2016), (Ch), (Oblique Helicoidal) (Ch H ), Twist-bend (N T B ) I. (chiral: ) (achiral) (n) (Ch) (N ) 1996 [1] [2] 2013 (N T B ) [3] 2014 [4] (oblique helicoid) 2016 1 29 Electronic

More information

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A 7 Lorentz 7.1 Ampère I 1 I 2 I 2 I 1 L I 1 I 2 21 12 L r 21 = 12 = µ 0 2π I 1 I 2 r L. (7.1) 7.1 µ 0 =4π 10 7 N A 2 (7.2) magnetic permiability I 1 I 2 I 1 I 2 12 21 12 21 7.1: 1m 95 96 7 1m =2 10 7 N

More information

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

閨75, 縺5 [ ィ チ573, 縺 ィ ィ 39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive evaluation:qnde) (1) X X X X CT(computed tomography)

176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive evaluation:qnde) (1) X X X X CT(computed tomography) B 1) B.1 B.1.1 ( ) B.1 1 50 100 m B.1.2 (nondestructive testing:ndt) (nondestructive inspection:ndi) (nondestructive evaluation:nde) 175 176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

untitled

untitled 1 (1) (2) (3) (4) (1) (2) (3) (1) (2) (3) (1) (2) (3) (4) (5) (1) (2) (3) (1) (2) 10 11 12 2 2520159 3 (1) (2) (3) (4) (5) (6) 103 59529 600 12 42 4 42 68 53 53 C 30 30 5 56 6 (3) (1) 7 () () (()) () ()

More information

3章 問題・略解

3章 問題・略解 S S W R S O( l) O( ) c Jg g J Jg S R J 7. K.9 JK S W S R S JK S S R J 7. K.9JK 4 (a) -Tice 7.K T ice T N 77 K S R.9 JK 4. JK T T ice N.6JK S W S R S JK S S.6JK R (b) S R JK S.6 JK T T ice N 6 O( c) O(

More information

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization) . D............................................... : E = κ ............................................ 3.................................................

More information

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e No. 1 1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e I X e Cs Ba F Ra Hf Ta W Re Os I Rf Db Sg Bh

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information