04-04 第 57 回土木計画学研究発表会 講演集 vs

Size: px
Start display at page:

Download "04-04 第 57 回土木計画学研究発表会 講演集 vs"

Transcription

1 04-04 vs shuhei.yamaguchi.p7@dc.tohoku.ac.jp akamatsu@plan.civil.tohoku.ac.jp Fujita and Ogawa(1982) Fujita and Ogawa Key Words: agglomeration economy, multiple equilibria, urban subcenter formation, stochastic stability 1. Fujita and Ogawa 1) ( FO ) 2 Fujita and Thisse 2) FO Osawa and Akamatsu 3) FO FO (Sandholm 4) ) FO 5) (NEG) FO 1

2 FO 2 FO 3 4 FO FO (1) 1 K K 1,, K} S S S/K N M (2) i j j W j z U(s = S H, z) s S H > 0 1 W j T ij = S H R i + z (1) T ij R i i i j T ij = t i j (2) t > 0 i j where z ij = arg max z max z ij (3) i,j U(s = S H, z) =W j T ij S H R i (4) i j i j n ij (3) i Π i max i Π i (m) = maxa i (m) S F R i L W i } (5) i S F, L m [m i ] A i (m) ( ) m A i (m) = j D ij m j (6) D ij τ > 0 D ij = exp( τ i j ) (7) (4) FO a) z = W j T ij S H R i if n ij > 0 z W j T ij S H R i if n ij = 0 i, j K (8) z Π i Π = A i S F R i LW i if m i > 0 Π A i S F R i LW i if m i = 0 i K Π (9) 2

3 b) S = S H n ij + S F m i if R i > 0 j K S S H j K n ij + S F m i if R i = 0 i K (10) R i n ij = Lm i if W j > 0 i K n ij Lm i if W j = 0 i K j K (11) W j c) FO m i = M (12) i K n ij = N (13) 3. FO (1) 1 logit dynamics t m [m i ] i Π i K (m) m M t 1 i j ρ ij 1 FO m exp[θπ j (m e i + e j )] ρ ij (m) = k S exp[θπ k(m e i + e k )] i, j S (14) e i i 1 0 K θ θ = 0 θ t t + 1 m m m i p m m = M ρ ij m = m e i + e j 0 otherwise (15) t m π t m π t t + 1 m π t+1 = P π t P P [p m m ] (2) π = P π π m π m m 1 π θ π m > 0 (3) 2 Π [Π i ] Z Z(m) m j Z(m) m i = Π j Π i i, j S (16) Sandholm 4) (14) 3

4 πm Z πm = 1 M! H k K (Mm exp(θz(m)) (17) i)! H m M π m = 1 2 πm πm = k K(Mm k )! k K (Mm k)! exp[θ(z(m) Z(m ))] (18) θ 1 lim θ θ log π m πm = lim (Z(m) Z(m )) + 1θ log k K(Mm k )! } θ k K (Mm k)! =Z(m) Z(m ) m, m M (19) Z(m) > Z(m ) π m > π m 1 Z(m) m FO 4. FO FO (1) FO FO 1 FO m [m i ] n [n ij ] 2 max Z(m, n) = m 0,n 0 ZF (m) Z H (n) (20) s.t. n ij S H + m i S F S i K (21) j K Lm j i K n ij j K (22) n ij = N (23) m i = M (24) i K 1 2 Z F (m) = 1 m i D ij m j (25) 2 Z H (n) = n ij T ij (26) KKT FO ( I ) (2) (20) (24) Bendes decomposition 2 m [P] min n ij T ij (27) n 0 s.t. (21) (22) (23) [P] [D] max z,r,w ZH (z, R, W m) z N + (R i S F + W i L)m i S R i (28) i K i K s.t. z W j S H R i T ij i, j K (29) R i 0 i K (30) W j 0 j K (31) [P] [D] m ẐH (m) ẐH (m) ẐH (m) = ẐH (m) max m 0 ẐF (m) 1 m i D ij m j 2 ẐH (m) (32) s.t. (24) (20) (24) m ẐF (m) m i = Π i i S (33) ẐF (m) Π(m) FO ẐF (m) 4

5 1 5. (1) FO 1 S x [ S/2, S/2] x S 1 m, n m(x), n(x, y) z ij, Π i (m), R i, W j z(x, y), Π(x), R(x), W (x) A i (m) A[m(x)] = D(x, y)m(y)dy x S (34) S D(x, y) D(x, y) exp[ τ x y ] (35) x y 2 x, y i, j i j T (x, y) t x y (36) Z(m(x), n(x, y)) = Z F (m(x)) Z H (n(x, y)) (37) Z F (m(x)) = 1 D(x, y)m(x)m(y)dxdy (38) 2 S S Z H (n(x, y)) = T (x, y)n(x, y)dxdy (39) S S Z F (m(x)),z H (n(x, y)) (20) 1 2 (21),(22) S H n(x, y)dy + S F m(x) 1 x S (40) S n(x, y)dx L m(y) y S (41) S (40),(41) S H N + S F M S (42) N LM (43) 2 1 (N = LM) 2 (S H N + S F M = S) (2) 2 3 ( BA) ( RA) ( IA) m(x) m(x) BA RA IA ( BA/RA ) (e.g., 2 b 0, b 1, b 2 ) BA/RA BA RA 2 BA 4 N BA N 5 ( a) e)) a) 2 (a) BA/RA 5

6 3 4 e) 2 Z c b) 2 (b) IA BA RA IA RA BA BA/RA b (1) [b 0, b 1 ] T Z (1) c) 1 2 (c) 1 x [ b 0, b 0 ] BA BA/RA b 0 = MSF 2 Z m d) 2 BA 2J (J N) 3 x 0 x = 0 RA RA BA BA/RA b (2J) [b 0, b 1,..., b 2J 1 ] T Z (2J) 3 BA 2J + 1 (J N) 4 x 0 x = 0 BA RA BA BA/RA b (2J+1) [b 0, b 1,..., b 2J ] T Z (2J+1) 6. 2 BA/RA 1 BA/RA 2 1 (1) BA/RA b (i) BA/RA Z (i) (b (i) ) i BA/RA b (i) BA/RA Z(i) Z (i) = max b (i).z (i) (b (i) ) i (44) 6

7 (2) 1 Step 1 τ, t, M, L, S F, S H Step 2 Z (i) := max.z (i) (b (i) ) ( i) b (i) Step 3 Zc, Zm, Z(i) ( i) Step 4 maxz c, Z m, max i Z (i) }} Step τ, t τ, t 33 (M, L, S F, S H ) = (100, 1, 1, 1) (1) 5 (τ, t) t t t t 1, t 2 t < t 2 (e.g., t = ) τ 6 t = 0.05, τ = τ 6 τ 1 1 τ 1 2 τ 1 τ t < t 2 τ

8 7 1 6) Core-Periphery 7) SISC (2) FO 7 3 t t t < t τ 1 1 t 1 8. FO 3 Osawa and Akamatsu 3) 7 BA/RA 1 FO FO NEG FO 1 2 FO FO FO I 1 4.(1) KKT 2.(4) (20) (24) L(m, n, R, W, z ) = Z(m, n) + i + j W j (L m j i R i (S H n ij + S F m i S) j n ij ) + z ( i s.t. n ij, m i, R i, W j, z 0 n ij N) j (I.1) R i, W j, z 1 n ij n ij = 0 n ij 0, n ij 0 m i m i = 0 m i 0, m i 0 i, j i (I.2) (I.3) 8

9 R i S S H n ij S F m i = 0 j S S H n ij S F m i 0, R i 0 j i (1) Z F (τ) = m2 m [exp( τs) + τs 1] (τ) 2 ( ) W j n ij Lm j = 0 i n ij Lm j 0, W j 0 i N i n ij = 0 j j (I.4) (I.5) (I.6) (I.4) (10) (I.5) (11) (I.6) (13) n ij = T ij + R i S H W j + z i, j (I.7) (I.2) (8) m i = j D ij m j + R i S F LW i I, i (I.8) Π = 0 (I.3) (9) II (38),(39) BA/RA Z F (τ) Z H (t) Z(τ, t) = Z F (τ) Z H (t) m b = 1/S F x B m(x) = m r = 0 x R (II.1) m m = 1/(S F + LS H ) x I n b = 0 x B n(x) = n r = 1/S H x R (II.2) n m = L/(S F + LS H ) x I n(x, y)dy n(x) B, R, I S BA,RA,IA x (38),(39) Z H (t) = 0 (2) 1 b 0 b 1 b 1 = L 1 + L b 0 + M 2m b Z F (τ) = 2m2 m (τ) 2 τb 0 exp[ τb 0 ] sinh[τb 0 ]} + 2m2 b (τ) 2 τ(b 1 b 0 ) exp[ τb 1 ](sinh[τb 1 ] sinh[τb 0 ])} + 2m b (τ) 2 (m b 2m m ) sinh[τb 0 ](exp[ τb 1 ] exp[ τb 0 ])} y x x x ( b 1, b 1 ) b 1 b 0 y(x) = (x b 1 ) + b 0 x [b 1, S/2] S/2 b 1 b 1 b 0 (x + b 1 ) b 0 x [ S/2, b 1 ] S/2 b 1 Z H (t) = n r (S/2 b 1 )(S/2 b 0 )t (3) 1 Z F (τ) = m2 b (τ) 2 [exp ( b 0τ) + b 0 τ 1] y x b 0 (x b 0 ) x [b 0, S/2] S/2 b 0 y(x) = b 0 (x + b 0 ) x [ S/2, b 0 ] S/2 b 0 x otherwise Z H (t) = n r S/2(S/2 b 0 )t 9

10 (4) 2J J N [ J 1 Z F (τ) = 2m2 b (τ) 2 τ(b 2i+1 b 2i ) i=0 + sinh[τb 2i ](exp[ τb 2i+1 ] exp[ τb 2i ]) exp[ τb 2i+1 ](sinh[τb 2i+1 ] sinh[τb 2i ]) J 1 2(exp[ τb 2i+1 ] exp[ τb 2i ]) i=1 }] i 1 (sinh[τb 2j+1 ] sinh[τb 2j ]) j=0 } (II.3) 2 (II.3) 4,5 b 2k,2k+1 = nr Lm b (b 2k b 2k 1,2k ) + b 2k b 2k+1,2k+2 = Lm b n r (b 2k+1 b 2k,2k+1 ) + b 2k+1 where k = 0, 1,..., J 1 b 2k,2k+1 b 2k (x b 2k 1,2k ) + b 2k b 2k b 2k 1,2k x [b 2k 1,2k, b 2k ] y(x) = b 2k+1 b 2k,2k+1 (x b 2k+1 ) + b 2k,2k+1 b 2k+1,2k+2 b 2k+1 x [b 2k+1, b 2k+1,2k+2 ] where k = 0, 1,..., J 1 J 1 Z H (t) =tn r [(b 2k b 2k 1,2k )(b 2k,2k+1 b 2k 1,2k ) k=0 + (b 2k+1,2k+2 b 2k+1 )(b 2k+1,2k+2 b 2k,2k+1 )] (5) 2J + 1 J N [ J Z F (τ) = 2m2 b (τ) 2 τ(b 2i b 2i 1 ) i=1 + (sinh[τb 2i 1 ] sinh[τb 0 ])(exp[ τb 2i ] exp[ τb 2i 1 ]) exp[ τb 2i ](sinh[τb 2i ] sinh[τb 2i 1 ]) } sinh[τb 0 ](exp[ τb 2i ] exp[ τb 2i 1 ]) J 2[(exp[ τb 2i ] exp[ τb 2i 1 ]) i=2 } i 1 (sinh[τb 2j ] sinh[τb 2j 1 ]) j=1 + τb 0 exp[ τb 0 ] sinh[τb 0 ] ] (II.4) 3 (II.4) 5,6 b 2k,2k+1 = Lm b (b 2k b 2k 1,2k ) + b 2k b 2k+1,2k+2 = n r nr Lm b (b 2k+1 b 2k,2k+1 ) + b 2k+1 where k = 0, 1,..., J 1 b 0 (x b 0 ) b 0,1 b 0 y(x) = x [b 0, b 0,1 ] b 2k 1,2k b 2k 1 (x b 2k 2,2k 1 ) + b 2k 1 b 2k 1 b 2k 2,2k 1 x [b 2k 2,2k 1, b 2k 1 ] b 2k b 2k 1,2k (x b 2k ) + b 2k 1,2k b 2k,2k+1 b 2k where k = 1, 2,..., J x [b 2k, b 2k+1 ] Z H (t) = tn r [b 0,1 (b 0,1 b 0 ) J + (b 2k 1 b 2k 2,2k 1 )(b 2k 1,2k b 2k 2,2k 1 ) k=1 + (b 2k,2k+1 b 2k )(b 2k,2k+1 b 2k 1,2k )}] 1) Fujita, M., Ogawa, H. : Multiple equilibria and structural transition of non-monocentric urban configurations, Regional science and urban economics, Vol. 12, No.2, pp , ) Fujita, M. and Thisse, J.-F., Economics of Agglomeration: Cities, Industrial Location, and Globalization (2nd Edition), Cambridge University Press, ) Osawa, M.,Akamatsu, T.: Stochastically stablity analysis of a model of endogenous urban subcenter formation, (CD-ROM), Vol.54, ) Sandholm, W. H.: Population games and evolutionary dynamics, MIT press, ) Reza Sobhaninejad D3() Vol.69, No.1, pp.53-63, ) 1 D Vol. 66, No. 4, pp , ) Social Interaction D3( ) Vol.67 No.1 pp ( ) 10

11 STOCHASTIC STABILITY ANALYSIS OF A MODEL OF POLYCENTRIC URBAN CONFIGURATIONS: LINEAR CITY VS. CIRCULAR CITY Shuhei YAMAGUCHI and Takashi AKAMATSU 11

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

22-04 第 53 回土木計画学研究発表会 講演集

22-04 第 53 回土木計画学研究発表会 講演集 22-04 1 2 1 980-8579 6-6-06-408 E-mail: osawa@plan.civil.tohoku.ac.jp 2 980-8579 6-6-06-408 E-mail: akamatsu@plan.civil.tohoku.ac.jp (i) (ii) Allen and Arkolakis 1) 2 Key Words: agglomeration economy,

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

131 はじめに エコノミア 第 64 巻第 1 号 (2013 年 5 月 ), 頁 [Economia Vol. 64 No.1(May 2013),pp ]

131 はじめに エコノミア 第 64 巻第 1 号 (2013 年 5 月 ), 頁 [Economia Vol. 64 No.1(May 2013),pp ] 131 はじめに 2011 3 11 2 3.11 3.11 3.11 2 3.11 3.11 3.11 エコノミア 第 64 巻第 1 号 (2013 年 5 月 ),131--143 頁 [Economia Vol. 64 No.1(May 2013),pp.131-143] 132 1. 地域経済学研究と現実からの乖離 (1)2 つの地域経済学 NAFTA EU 2 1990 2007 2008

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 二次元空間 Fujita-Ogawa モデルの数値解法の開発 第 56 回土木計画学研究発表会 秋本克哉, 赤松隆 東北大学 情報科学研究科 1 研究の背景 (1) 中心市街地空洞化の問題 中心市街地の活性化が求められる 都心形成現象を説明する理論が必要 Fujita and Ogawa [FO] (1982) モデル 企業と消費者が立地競争する 企業が複数の都心に集積する立地パターンが均衡解となるメカニズムを示した

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i = 1 1980 1) 1 2 3 19721960 1965 2) 1999 1 69 1980 1972: 55 1999: 179 2041999: 210 211 1999: 211 3 2003 1987 92 97 3) 1960 1965 1970 1985 1990 1995 4) 1. d ij f i e i x i v j m a ij m f ij n x i = n d ij

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

- II

- II - II- - -.................................................................................................... 3.3.............................................. 4 6...........................................

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

(MIRU2008) HOG Histograms of Oriented Gradients (HOG) (MIRU2008) 2008 7 HOG - - E-mail: katsu0920@me.cs.scitec.kobe-u.ac.jp, {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

立命館21_松本先生.indd

立命館21_松本先生.indd 2143-552010 1 2 () 1 2 3 456 78- Key Words 1 3 12007 2 3 508 19992008 1 23 4 43 2120107 4 2008 1992 2003 2005 1989 2008 4 2 2-1 10 4 4 6 5 4 5 2946 1 155 11 41 44 45 4 2-2 2003 1 21 2 1 3 4 5 6 7 3 2120107

More information

立命館20_服部先生.indd

立命館20_服部先生.indd 20 93-105 2010 2 () ' - 1 ( ) ( ' 2005) Key Words 2 1967 93 20 2010 1 94 1 ' 2002 2 2 1996 1996 1999 2 2 2 1993 1999 4 1 2 1985 1989 1986 1994 4 1 2 1 1 4 2 4 4 1 4 1966 4 10-1970 20 1993-1972 95 20 2010

More information

1996 2000 2004 1984 2005 7150 000 9 500 9 4 13 10 95 11 11 12 20002004 9 70

1996 2000 2004 1984 2005 7150 000 9 500 9 4 13 10 95 11 11 12 20002004 9 70 14 2006 1 Key Words 2002 3 1 2 3 3 1 2 3 1969 1987 69 1996 2000 2004 1984 2005 7150 000 9 500 9 4 13 10 95 11 11 12 20002004 9 70 14 2006 1 15 71 72 1 22 6 32 9 200 6 3 1 2 2000 10 1 2003 10 2005 6 5 4

More information

立命館16_坂下.indd

立命館16_坂下.indd 1669-792008 1 - ' 85- -108 ' Key words 1 2 2003 69 1620082 5 3 1990 1997 4 5 2001 1307 6 7 1 1 1 1996 100 2 1997 71 3 1998 71 4 1999 96 5 2000 95 6 2001 145 7 2002 191 8 2003 174 9 2004 120 10 2005 122

More information

立命館人間科学研究No.10

立命館人間科学研究No.10 1 77 5 Key words 1 23 3 11417 14310045 20022004 2 2003 20022005 20022004 2 10200511 3 2003 1152003 59 1995 3 32003 19932002 20032003 2005 20052005 4 1997 2000521986 2001 42001 3 1981 6 1 7 5 1000248 1632647

More information

立命館21_川端先生.indd

立命館21_川端先生.indd 21 119-132 2010 ( ) ' Key Words 119 21 2010 7 1962 2001 2001 2007 1982 1988 1997 2007 1997 1998 1863 1880 1 1998 1998 2001 1599 120 121 1599 1695 8 1695 1714 4 1714 1715 5 1715 100 1812 9 1812 1864 2001

More information

立命館14_前田.indd

立命館14_前田.indd 1499-1122007 1 ) ) ) ) ) (1) -- ) ) ) ) ) ) ( ) ) ' ) ) ) ) - 1) 2)' 3) Key words 19811994 1721 99 1420073 100 20012004 2005 2004 2002 33 34 10 1987 45 20002003 2002 1 1 2000 1 1 2001 2 200341 12004 2

More information

立命館17_坂下.indd

立命館17_坂下.indd 1793-1052008 1 () -- -- - Key words 1 93 1720088 2 3 2003 15 1996 50 3040 2 3 4050 50 10 1980 1995 1950 1958 1968 1972 94 95 1987 4 4 70 3 3 1 2000 2001 4 1720088 96 2001 2003 2 1978 1990 1997 130 2 3

More information

立命館人間科学研究No.10

立命館人間科学研究No.10 49 00 7 Key words 980 995 50 0005 90 997 99 990 994 99 99 99990 99 996 988988 994 99 995 995 995 994 984 988 986 997 997 00 995 00 5 7 5 5 999 997 997 998 6 998 999 997 997 998 0040000 994 996 000 00 5

More information

立命館19_椎原他.indd

立命館19_椎原他.indd 191-132009 1 ( ) ' Key Words 1 11 12007 2007 200520062 201120062 7558 4009 1 1920098 2007 2 2000 028 2005 1999 12 1999 13 1968 2 3 '1992 2007 2001 20052001 1977 2005 2005 2007 21 21 22 461927 3 13 1920098

More information

立命館人間科学研究No.10

立命館人間科学研究No.10 61 10 1990 Key words 1 102005 11 62 2000 1 1920 10 1892 63 1 1 19 100 1914 100 1 1 20 1 2 102005 11 64 1946 21 4 1947 1949 1947 22 1 3 1956 1959 1958 2 1964 65 2 10 1975 7080 70 2 1 1987 1990 40 1989 1989

More information

立命館19_徳田.indd

立命館19_徳田.indd 1991-1022009 1 2 () )--) 28 2827 1 2 Key Words 1 (1721 2000 20012001 20082009 91 1920098 92 20042004 2004 2001 12 2005 20082009 2005 3 1997 200820096 2007 2 20082009 93 20012001 12 2008 2009 19611966 1

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

note4.dvi

note4.dvi 10 016 6 0 4 (quantum wire) 4.1 4.1.1.6.1, 4.1(a) V Q N dep ( ) 4.1(b) w σ E z (d) E z (d) = σ [ ( ) ( )] x w/ x+w/ π+arctan arctan πǫǫ 0 d d (4.1) à ƒq [ƒg w ó R w d V( x) QŽŸŒ³ džq x (a) (b) 4.1 (a)

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5

2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5 1D000425-2 1 2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5 3 29 29 29 30 31 31 32 35 35 35 36 41 41 41 46 48 48 48 52 57 4 700 13 1988 4 5 4 5 21 1 1 3 4 5 6 21 10 1888

More information

経済論集 46‐2(よこ)(P)☆/2.三崎

経済論集 46‐2(よこ)(P)☆/2.三崎 1 2 1869 11 17 5 10 1 3 1914 5 15 5 1872 9 12 3 1870 1 26 14 1881 11 11 12 6 11 1878 5 9 13 1880 6 17 1 15 1882 1 2 3 11 1828 2 26 24 1891 4 22 2 1849 12 1 3 1856 pp 20 21. 1971 p.429. 1973 1, pp.440 444.

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information