(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

Size: px
Start display at page:

Download "(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi"

Transcription

1 II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Law of Large Numbers) (Radom Walks) 6 2. (Markov Chais) d (d-dimesioal Radom Walks) (Oe-dimesioal Ati-symmetric Radom Walks) ( 2.2(iii)) (Applicatos of Probability Thoery; Other Topics) 8 4. (Rui problem) (Prisoer s Dilemma)

2 (Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-field); (2 Ω Ω ) (i) Ω F (ii) A F A c F (iii) A F ( =, 2,...) A F, A F (evet). P = P (dω) (Ω, F) (probability measure), i.e., ; P : F [0, ]. (i) P (Ω) = (ii) A F ( =, 2,...) P ( A ) = P (A ) (σ ). (Ω, F, P ),. (i) σ-., F σ- A, B, A F F, A B, A \ B, A B := (A \ B) (B \ A), A. lima lim sup A := A, lima lim if A := A F. N N N N (lim = if sup, lim = sup if.) = (ii) P ( ) = 0, A k F (k =, 2,..., ) P ( A k) = P (A k) ( ). (iii) A, B F; A B P (A) P (B) ( ). ( ) (iv) A F, A P A = lim P (A ). ( ) (v) A F, A P A = lim P (A ).. ( ) (vi) A F ( ) P A P (A ) ( ). (vii) (Borel-Catelli ) A F ( ), ( P (A ) < P ) lim sup A = 0, i.e., P ( ) lim if Ac =.

3 (Ω, F, P ) X = X(ω) : Ω R {X a} := {ω Ω; X(ω) a} F ( a R). (radom variable). X S = {a j } j R, {X = a j } F ( j ). X k (Ω, F, P ) (k =, 2,..., ). {X k } (idepedet) P (X a,, X a ) = P (X a ) P (X a ) ( a k R, k =,..., ). {X k } k N {X k } N. X k S = {a j } j, : P (X = b,, X = b ) = P (X = b ) P (X = b ) (b k S, k =,..., ). µ(a) = P (X A) X (distributio), F (x) = P (X x) X (distributio fuctio)..2, (Expectatios, Meas) X Z := Z {± }. X (expectatio) or (mea) EX = E[X] = XdP = X(ω)P (dω). () X 0 EX := P (X = ) + P (X = ). =0 (P (X = ) = 0 P (X = ) = 0. P (X = ) > 0 EX =.) (2) X X + := X 0, X := ( X) 0 ( X ± 0, X = X + X.) EX := EX + EX.,. EX = Z P (X = ), f : Z R, Ef(X) = f()p (X = ). (.) Z ;f()>0 ;f()<0 X, V (X) := E[(X EX) 2 ] = E[X 2 ] E[X] 2.. (Chebichev ) p. a > 0, P ( X a) E[ X p ] a p. [ ] P ( X a) = P ( X p a p ) p =. E X = P ( X = ) a P ( X = ) a a P ( X = ) = ap ( X a). Ω.2 X,..., X Z, E[Xk 2 ] < (k =,..., ). X,..., X, E[X j X k ] = E[X j ]E[X k ] (j k). 0 (E[X k ] = 0) ( ) 2 E X k = E[Xk]. 2 2

4 [ ] () j k P (X j = m, X k = ) = P (X j = m)p (X k = ) E[X j X k ] = m, mp (X j = m, X k = ) = m, mp (X j = m)p (X k = ) = E[X j ]E[X k ]. ( ) 2 (2) X k = X j X k () j k E[X j X k ] = E[X j ]E[X k ] = 0. X 2 k + j k.3 (Law of Large Numbers), /2.,., X =, X = 0. EX = /2 ( V (X ) = /2 )., X k,, /2..3 ( (Weak Law of Large Numbers)) X, X 2,... EX = m v := sup V (X ) < ϵ > 0, lim P ( ) X k m ϵ = 0, i.e., lim P ( ) X k m < ϵ =. [ ] {X } { X = X m} ( ). X k m = (X k m), X X m = 0, i.e., E[X ] = 0 V (X ) = E[X] 2, ( ) 2 E X k = E[Xk] 2 = V (X k ) sup V (X ) = v. ϵ > 0, ( P ) X k ϵ = P ( ) X k ϵ v ϵ 2 2 = v ϵ 2 0 E[( X k) 2 ] ϵ 2 2 ( ). X, X, ϵ > 0, P ( X X ϵ) 0 ( ), X X i pr., X X. P (X X) =, X X, P -a.s., X X. (a.s. almost surely ).2, i.e., X X, P -a.s. X X i pr.. 3

5 ( P (X X) = P { X X < } = P k k N N k N N k, lim P { X X } = P N k N N N ( = k, lim P X N X ) lim N k P N N (, /k ϵ > 0. ) { X X k } = 0 { X X k } = 0 { X X k } = 0.,.,.,,..3, i.e., X X i pr. { k }; X k X a.s.. (, (?) { k }; P ( X k X 2 ) k 2 k. Borel-Catelli P { X k X < 2 } k =..) N,.. k N.4 ( (Strog Law of Large Numbers)) X, X 2,... EX = m v := sup V (X ) < ( ) P lim X k = m =..2,,. ( ) P lim (X k EX k ) = 0 =. [ ] EX = 0, S = (X k /k), (i) Kolmogorov sup k S k S 0 ( ) i pr. (ii), {S } Cauchy,. (iii) Kroecker X k 0 P -a.s..,,. 4

6 [ sup E[X 4 ] < ] X X = X m m = 0, i.e., E[X ] = 0 ( ) 4 X k 0 E[Y 2 ] (E[Y 4 ]) /2 ( ; 0 V (X) = E[(X EX) 2 ] = E[X 2 ] (EX) 2.) ( ) 4 E X k = E[Xk] 4 + i j, i,j E[Xi 2 ]E[Xj 2 ] 2 sup E[Xk] 4 k Fubii ( ) 4 ( E ) 4 X k = 4 E X k 2 sup E[Xk] 4 < k P = ( = ( = ) ) ( X k < =,, P lim lim., δ > 0,. (X k EX k ) = 0 P -a.s. +δ = ) X k = 0 = δ 0 ( ).. R ( ) µ(dx) = g(x)dx g(x) = e (x m)2 2v 2πv, m, v (ormal dist.), (Gaussia dist.), N(m, v).. X, Y a R, P (X a) = P (Y a), X (d) = Y. (X = Y i the sese of distributio ).5 ( (Cetral Limit Theorem)) {X } (idepedet idetically distributed = i.i.d. ). EX = m, V (X ) = v (X k m) 0, v N(0, v), i.e., a < b,, v lim P ( a (X k m) b ) = b 2πv a e x2 2v dx. (X k m) 0, N(0, v),,, Fourier,. (. 5

7 2 (Radom Walks),,.,,. d, d. Z d ( j = (j,..., j d )) d (lattice). (X, P ) d (simple radom walk),, 2d,. Y = X X ( ) {X 0, Y, Y 2,...}, {Y }, P (Y = k) = /(2d) ( k = ), = 0 ( k = ). k = (k,..., k d ), k = k k2 d. {X 0, Y, Y 2,...}, k 0, k,..., k Z, P (X 0 = k 0, Y = k,..., Y = k ) = P (X 0 = k 0 )P (Y = k ) P (Y = k ). Z d {p k } k Z d (p k 0, p k = ), (X, P ), d. P (Y = k) = p k (, k Z d ). P j (X = k,..., X = k ) := P (X = k,..., X = k X 0 = j) P j (X, P j ) j d. 2. P (A B) := P (A B)/P (B) P (B) > 0. A, B F P (A B) = P (A). 2. (Markov Chais),,.. 2. S,,.,,,.,.,,,,.. S, (X, P ) = (X (ω), P (dω)) ( = 0,, 2,...) S (Stochastic Processes), 0, X, i.e., j S, {X h = j} F. (X, P ) (Markov Chai) : 6

8 (M) [ ], j 0, j,..., j, j, k S, P (X + = k X 0 = j 0,..., X = j, X = j) = P (X + = k X = j).. (M2) [ ], j, k S, P (X + = k X = j) = P (X = k X 0 = j).,. 0, j, k S, q () j,k = P (X = k X 0 = j), Q () = (q () j,k ) ( ) (-step trasitio probability (trasitio matrix)),, Q () Q = (q j,k ),, ( ). 2.. (i) q () j,k 0, k q() j,k = (j S), (ii), j 0, j,..., j S. P (X = j,..., X = j X 0 = j 0 ) = P (X = j X = j )P (X = j X 2 = j 2 ) P (X = j X 0 = j 0 ) = q j0,j q j,j = P (X m+ = j,..., X m+ = j X m = j 0 ) (m 0) (iii) Q (0) = I := (δ jk ) ( ), Q () = Q ( ). (Q ) jk = q j,j q j,j 2 q j,k j,...,j X 0 µ = {µ j }; µ j = P (X 0 = j) (iitial distributio),, j S, P (X 0 = j) = P P j, (X, P j ) j. ( P (X 0 = j) > 0, P j ( ) := P ( X 0 = j),.) 2.2 P j0 : ( ) P j0 z(x + = k X 0 = j 0,..., X = j, X = j) = P j0 (X + = k X = j) = P j0 (X 2 = k X = j) = q j,k 2.2 P j0 ( ) := P ( X 0 = j 0 ) P j0 (X 2 = k X = j) = q j,k. 2.3 µ = {µ j },. (i) P (X 0 = j 0, X = j,..., X = j ) = µ j0 q j0,j q j,j, (ii) P (X = k) = j S µ j q () j,k. 2.4 (i) {B k }, A, C, P (A B k) = P (A C) ( k ). P (A B k ) = P (A C). (ii) m,, j,..., j m, k 0, k,..., k S P (X + = j,..., X +m = j m X 0 = k 0, X = k,..., X = k ) = q k,j q j,j 2 q jm,j m ( 2.3 (i)),. P (X + = j,..., X +m = j m X 0 = k 0, X = k,..., X = k ) = P (X + = j,..., X +m = j m X = k ). 7

9 , j S (recurrece time): T j : T j = if{ ; X = j} (= if { } = ). j (recurret) j (trasiet) def P j (T j < ) =, def P j (T j < ) <. j, T j, j (positive-recurret) def E j [T j ] < ( P j (T j < ) = ), j (ull-recurret) def E j [T j ] =, P j (T j < ) =. E j [T j ] T j P j, : E j [T j ] = mp j (T j = m) + P j (T j = ). m= j (or,, ) (X ) (or,, ). 2.5 E j [T j ] < P j (T j < ) =. {X } Q = (q j,k ) π = {π j } π (statioary distributio) def π k = j π jq j,k (k S), π (reversible distributio) def π k q k,j = π j q j,k (j, k S) (i) π,, X π. (ii) π, {X } :, j 0,..., j S, P (X 0 = j 0,..., X = j ) = P (X 0 = j,..., X = j 0 ). {X } Q = (q j,k ) (irreducible) j, k,, q () j,k > 0.,,. (,,.), : 2.2 j, k S. (i) j : a) q () j,j =. =0 b) P j ({X } j ) =. 8

10 (ii) j : a) q () j,j <. (iii) =0 b) P j ({X } j ) = 0. {X },,,,,. (π j ) [ k, j π jq j,k = π k ], π j = /E j [T j ] ( ). (i), (ii) b), a), (iii). (iii). 2. (i) j S P j ({X } j ) =. (ii) j S P j ({X } j ) = 0..,,,., 0. m j T (m) j. P j (T (m) j T () j = T j, T (m) j = mi{ > T (m ) j ; X = j} (= if { } = ). < ) = P j (T j < ) m. s, t,, P j (T (m) j = s + t T (m ) j = s) = P j (T j = t). (, [ ]= P j (X s+t = j, X s+u j ( u t ) T (m ) j = s), {T (m ) j = s} {X,..., X s } ( 2.4), ( 2. (ii)) [ ]= P j (X s+t = j, X s+u j ( u t ) X s = j) =[ ].)., P j (T (m) j P j (T (m ) j = s, T (m) j P j (T (m) j < ) = P j (T (m ) j = = s + t) = P j (T (m ) j = s)p j (T j = t) s=m t= < T (m) j < ) P j (T (m ) j = P j (T (m ) j < )P j (T j < ) < ) = P j (T j < ) m. P j ({X } j ) = P j ( m P j (T j < ) =, 0. = s, T (m) j = s + t) {T (m) j < }) = lim m P j(t (m) j < ) = lim m P j(t j < ) m. 9

11 ,. j, k S, f (m) j,k := P j(t k = m) (m ) Q jk (s) := =0 q () j,k s ( s < ), F jk (s) := m= f (m) j,k s ( s ). {q () j,k } 0, {f (m) j,k } m (geeratig fuctios). F jk () = P j (T k < ). 2. j, k S, : q () j,k = m= f (m) j,k q m k,k ( ), Q jk (s) = δ jk + F jk (s)q kk (s) ( s < ). {T k = m} = {X m = k, X s k ( s m )} m= f (m) j,k q( m) k,k = = = P j (T k = m)p j (X = k X m = k) m= P j (T k = m)p j (X = k T k = m) m= P j (X = k, T k = m) m= = P j (X = k) = q () j,k. Q jk (s) = δ jk + = δ jk + = q () j,k s f (m) j,k q( m) k,k s = m= = δ jk + F jk (s)q kk (s). 2.2 j S =0 q () j,j =. Q jj (s)( F jj (s)) = ( s < ) F jj () = P j (T j < ) lim Q jj (s) = s =0 q () j,j s. : =0 q () j,j ( P j(t j < )) =. 0

12 2.8 j k j S =0 q () k,j < ( k S), k S; =0 q () k,j = j :. ( q() k,j = F kj() q() j,j.) 2.2 j j k [i.e., ; q () j,k > 0] P k(t j < ) =., i, j S P i (T j < ) = q i,j +. (, k S;k j q i,k P k (T j < ) P i (X = k, T j = ) = q i,k P k (T j = ) P i (T j < ) = P i (X = k, T j = ) = k S.) i = j j, k ; q j,k > 0, P k (T j < ) =., k 2 ; q k,k 2 > 0, i.e, q (2) j,k 2 > 0, P k2 (T j < ) =., q () j,k > 0 (k,..., k ); q j,k q k,k 2 q k2,k 3 q k,k > 0, : j, j k =0 q () k,j =. j, k S j k k j j k. 2.3 j, k S; j k, j,, k.,,,. l, m 0; q (l) j,k > 0, q(m) k,j > 0. j, =0 q (l+m+) j,j q (l) j,k q() k,k q(m) k,j ( 0) Q jj (s) s l+m q (l) j,k q(m) k,j Q kk(s). lim Q jj (s) = s =0 q () j,j < q () k,k <, k. j, k.

13 . 2. Q jj (s)( F jj (s)) = F jj (s) = Q jj (s)/q jj(s) 2. j. lim s Q jj (s) Q jj (s) 2 = F jj( ) = E j [T j ] <. Q kk (s) s l+m q (m) k,j q(l) j,k Q jj(s), Q jj(s) (l + m + )s l+m+ q (l+m+) =0 s l+m q (l) j,k q(m) k,j Q kk(s) Q kk (s) Q kk (s) 2 Q jj (s) s 3(l+m) (q (l) j,k )3 (q (m) k,j )3 Q jj (s) 2. j,j E k [T k ] = F kk( ) Q kk = lim (s) s Q kk (s) 2 < k. j, k. 2.0 k S E k [T k ] = F kk ( ) , 2.9 j, k S, q() j,k =. j, k S, q() j,k <., j, k S, q() j,k,. 2.2 d (d-dimesioal Radom Walks) (X, P ) d., {p k } k Z d Z d, {X 0, X X 0, X 2 X,...}, P (X X = k) = p k (, k Z d ). ( p k = /(2d).), d. Q = (q j,k ) q j,k = p k j [,,, ] 2. (X, P ) d. (i) X + X (X 0, X,..., X ), i.e., P (X + X = j, X 0 = k 0, X = k,..., X = k ) = P (X + X = j)p (X 0 = k 0, X = k,..., X = k ). k 0, k,..., k Z d, X + X X. (ii) P (X + = j X 0 = k 0, X = k,..., X = k ) = P (X + = j X = k ) = p j k {X }, q j,k = p k j.. 2

14 (iii). ( j k := j k + + j d k d j k, j = k.), Q = (q j,k ) = (p k j ),,,., : 2.3 d (i) d =, 2 (i.e., E j [T j ] = P j (T j < )), (ii) d ( ), q () 0,0. q (2+) 0,0 = 0, q (2) 0,0.. ( 2.2.) 2.4 d Q = (q j,k ) (i) d =, 2 q (2) 0,0 { / π (d = ) /(π) (d = 2) (ii) d = 3 C q (2) 0,0 C 3/2. 2.4,, : (d = 3 (3/π) 3 /4) q (2) 0,0 2 d d d/2 (π) d/2 ( ). a b ( ) def a /b ( ). 2.2 {a }, {b }, a b ( ) c, c 2 > 0; c b a c 2 b ( ).. [ (Stirlig s formula)]! 2π +/2 e ( ). 2.4 d =, : ( ) q (2) 2 0,0 = 2 2. d = 2 q (2) 0,0 = j,k 0;j+k= (2)! (j!k!) = ( 2 ) j=0 ( ) k 3

15 , j=0 d = 3 ( ) 2 = k, 3 ( ) 2. q (2) 0,0 = j,k,m 0;j+k+m= (2)! (j!k!m!) q (2) (2)! 0,0 c 3 6 2!. c = max j,k,m 0;j+k+m= (j!k!m!). c,,. c c3 +3/2 3/2 e (c > 0 ). (), 3 (m!) 3 ( = 3m) c (m!) 2 ((m + )!) ( = 3m + ) (m!) ((m + )!) 2 ( = 3m + 2) (2),, c, c 2 > 0 c +/2 e! c 2 +/2 e (2), (), d = 3 ( ). d =, 2,. 2.5 d =, 2 Z d (i.e., E 0 [T 0 ] = ). 2.3 (i) α > α s Γ(α + ) ( s) α+ (s ). = (ii) α = s = log s. = α > log(/s) s (s ) : α = log x α s x dx = ( log s ) α Γ(α + ). 4

16 2.3 F 00(s) = Q 00(s)/Q 00 (s) 2, d =, q (2) 0,0 / π ( ), s Q 00 (s) = + Q 00(s) = = = s 2 q (2) 0,0 + 2s 2 q (2) 0,0 = = s 2 Γ(/2) π π ( s 2 ), /2 2s 2 2 Γ(3/2) π π ( s 2 ). 3/2 F 00(s) = Q 00(s) Q 00 (s) 2 2 πγ(3/2) Γ(/2) 2 s (s ). s 2 E 0 [T 0 ] = lim s F 00(s) =. d = 2 q (2) 0,0 /(π) ( ), s Q 00(s) E 0 [T 0 ] = lim s 2 Q 00 (s) π log s 2, [ 2 πs( s 2 ) 2 π( s 2 ) π( s 2 ) ( ) ] 2 log s 2 =. 2.3 (Oe-dimesioal Ati-symmetric Radom Walks) Z {X } p (0 < p < ), p. p /2, {X = X (p) }. d, d, ( 0 ). q j,j+ = q 0, = p, q j,j = q 0, = p, q () j,k = ( ) +j k p ( j+k)/2 ( p) (+j k)/2 ( + j k 2Z) 2 0 ( + j k 2Z + ) [ + l, m, l + m =. l m = k j.] 5

17 q (2) 0,0 = ( ) 2 (p( p)) (4p( p)) ( ) π 2.6. p /2 4p( p) < : 2.4 {X = X (p) } (0 < p <, p /2)., Y := X X EY = 2p, : ( ) X P lim = 2p =.,, ε > 0, N, N, (2p ε) < X < (2p +ε). 2.7 p > /2 j, u j (s) := F j0 (s) = m sm P j (T 0 = m) (0 < s < ) u (s) = psu 2 (s) + ( p)s u j (s) = psu j+ (s) + ( p)su j (s) (j 2) lim j u j(s) = 0,,.. ( ) j 4p( p)s F j0 (s) = 2 (0 < s < ) 2ps ( ) j p P j (T 0 < ) = (j ) p [ {X = j + }, {X = j }., P j (T 0 = m) = P j (T 0 = m X = j + )P j (X = j + ) + P j (T 0 = m X = j )P j (X = j ), P j (T 0 = m X = j ) j 2 P j (T 0 = m ), j = P (T 0 = m X = 0) = δ m., P j (T 0 = m) = { pp j+ (T 0 = m ) + ( p)p j (T 0 = m ) (j 2) pp 2 (T 0 = m ) + ( p)δ m (j = ) lim j P j (T 0 = m) = 0 ( m ). psx 2 x + ( p)s = 0 x = α, β (α < β), 0 < α < < β ( 2ps < 4p( p)s 2 ) u 2 αu = β(u α), u 2 βu = α(u β) u j+ αu j = β(u j αu j ), u j+ βu j = α(u j βu j ) (j 2), u j = (β j (u α) α j (u β))/(β α) j u = α. ] 2.8 u j := P j (T 0 < ) (j Z). p > /2 j, u j = P j (T 0 < ) =, j = 0 u 0 = pu + ( p), P 0 (T 0 < ) = u 0 = 2( p) <. 6

18 3.,. 3. ( 2.2 (iii)) 3.. π = (π j ) π j = /E j [T j ] > 0,. i, j S, 2. Q ij (s) = δ ij + F ij (s)q jj (s) i j s lim( s)q jj (s) = lim s s F jj (s) = F jj ( ) = E j [T j ]. lim( s)q ij (s) = F ij() s E j [T j ]., 2.2 F ij () = P i (T j < ) = i, j S, lim( s)q ij (s) = s E j [T j ] (=: π j ). E j [T j ] < 0 < π j. j S ( s)q ij (s) = Fatou j S π j, k S, j S π j q j,k lim if s ( s)q ij (s)q j,k j S lim( s) s =0 s q (+) i,k = lim s ( s)s (Q ik (s) δ ik ) = π k, k π j q j,k = π k (k S) j S. π j ( s)q jk (s) = ( s) j S =0 s j S π j q () j,k = π k. (3) s Lebesgue j π j π k = π k j π j =. π = (π j ). π = (π j ), (3) s π k = F jk () π j E k [T k ] + π k E k [T k ] E k [T k ] j k 7

19 . k; π k > 0 E k [T k ] <,. k S E k [T k ] <, 2.2 F jk () = P j (T k < ) = ( j, k S),., π k = /E k [T k ] > 0 (k S). π = (π j ). 3. Fubii s)q ij (s) =. j S( 3.2 Fatou Lebsgue. [], ( ), (Applicatos of Probability Thoery; Other Topics),,,. 4. (Rui problem) A, B 2, a, b,., A, B,. A 0 < p <., q = p., 0,. A P A.,, P P = 0,..,. 4. () p = /2. P A = b a + b, P B = a a + b. (2) p /2. r := q/p = /p ( ). P A = ra r a+b r a+b, P B = ra r a+b. (3), P = 0,,,,. a A u a.,. u a = pu a+ + qu a (a ), u 0 =, u a+b = 0. (4) 4.. 8

20 , 2. 0,,, a + b, B, 0.,,. Y, A,, A Y =. Y =, i.e., P (Y = ) = p, P (Y = ) = q. X 0 = a, X = X 0 + Y k ( ), A. T 0 = if{ 0; X = 0}, T a+b = if{ 0; X = a + b}, u a = P a (T 0 < T a+b ) = P (T a < T a+b X 0 = a)., Y = ± X = a ±, P a (T 0 < T a+b ) = P a (T 0 < T a+b Y = )P a (Y = ) + P a (T 0 < T a+b Y = )P a (Y = ), (4), a,, a + b, = P a+ (T 0 < T a+b )P (Y = ) + P a (T 0 < T a+b )P (Y = ). u u 0 = u a+ u a = (q/p)(u a u a ) = r a (u u 0). { r k (u u 0) (r = ) (u u 0) = r (u r u 0 ) (r ), = a + b,, u 0 =, u a+b = 0, u u 0 = /(a + b) if r =, = ( r)/( r a+b ) if r., u a = a/(a + b) = b/(a + b) if r =, = ( r a )/( r a+b ) = (r a r a+b )/( r a+b ) if r.., N, B b, v a = E a [N] A a, A. v = + pv + + qv ( a a + b ), v 0 = v a+b = 0., v a = ab (r = ), {(a + b) } ra p q r a+b a (r ). r =, (v a+ v a ) (v a v a ) + 2 = 0, v a = v a v a (a ), v a+ v a + 2 = 0. a =, v + v + 2 = 0., v + = v 2 = v 2. (v 0 = 0.) v + = + v k = ( + )(v )., v = (v ( ))., 0 = v a+b = (a + b)(v (a + b )) v = a + b., v a = a(v (a )) = ab. 9

21 r. p v a+ + = q v a, pv + = qv, v = /(q p)., p( v a+ v) = q( v a v). v a+ v = (q/p)( v a v) = r a ( v v)., v a v = r a (v v). (v 0 = 0.) v a = a v a = av + a r k (v v) = av + ra (v v). r, 0 = v a+b = (a + b)v + ra+b r (v v), v v = (a + b)v r r a+b v a = av (a + b)v ( ra r = v a (a + b) ) ra. a+b r a+b r =,, p = q = /2, a =, b = 00, A P A = 00/0, 00, /2. 4.2,, 3,,.,, 2,.,,,.,,, /3,, 2, /2., 2,,,.,,. /3,, 2/3., /2, 3, /3,,,, 2,, 2/3.,, ( ).,,,,,..,. (,,,.) 4.3 (Prisoer s Dilemma),, 2, (i), 2 2 (ii),, 0 20

22 (iii) 2, 5, 2, 5.,,, A, B, C 3, 2,.,., A B C B, A, 2/3 /2. A,,,,,,.,,,,,.,,, B,, A C, A., C,,, A,.,,,, A,,,,, A 0. 2

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( )

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) 1 (Introduction) 1 1.1... 1 1.2 Riemann Lebesgue... 2 2 (Measurable sets and Measures) 4 2.1 σ-... 4 2.2 Borel... 5 2.3...

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

I

I I io@hiroshima-u.ac.jp 27 6 A A. /a δx = lim a + a exp π x2 a 2 = lim a + a = lim a + a exp a 2 π 2 x 2 + a 2 2 x a x = lim a + a Sic a x = lim a + a Rect a Gaussia Loretzia Bilateral expoetial Normalized

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

I II III IV V

I II III IV V I II III IV V N/m 2 640 980 50 200 290 440 2m 50 4m 100 100 150 200 290 390 590 150 340 4m 6m 8m 100 170 250 µ = E FRVβ β N/mm 2 N/mm 2 1.1 F c t.1 3 1 1.1 1.1 2 2 2 2 F F b F s F c F t F b F s 3 3 3

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

行列代数2010A

行列代数2010A (,) A (,) B C = AB a 11 a 1 a 1 b 11 b 1 b 1 c 11 c 1 c a A = 1 a a, B = b 1 b b, C = AB = c 1 c c a 1 a a b 1 b b c 1 c c i j ij a i1 a i a i b 1j b j b j c ij = a ik b kj b 1j b j AB = a i1 a i a ik

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

(JAIST) (JSPS) PD URL:

(JAIST) (JSPS) PD URL: (JAIST) (JSPS) PD URL: http://researchmap.jp/kihara Email: kihara.takayuki.logic@gmail.com 2012 9 5 ii 2012 9 4 7 2012 JAIST iii #X X X Y X

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47

(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47 4 Typeset by Akio Namba usig Powerdot. / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 (radom variable):

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

i ii iii iv v vi vii ( ー ー ) ( ) ( ) ( ) ( ) ー ( ) ( ) ー ー ( ) ( ) ( ) ( ) ( ) 13 202 24122783 3622316 (1) (2) (3) (4) 2483 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 11 11 2483 13

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

名称未設定

名称未設定 2007 12 19 i I 1 1 3 1.1.................... 3 1.2................................ 4 1.3.................................... 7 2 9 2.1...................................... 9 2.2....................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

応用数学III-4.ppt

応用数学III-4.ppt III f x ( ) = 1 f x ( ) = P( X = x) = f ( x) = P( X = x) =! x ( ) b! a, X! U a,b f ( x) =! " e #!x, X! Ex (!) n! ( n! x)!x! " x 1! " x! e"!, X! Po! ( ) n! x, X! B( n;" ) ( ) ! xf ( x) = = n n!! ( n

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552 3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1 III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 1 1 1.1 ϵ-n ϵ-n lim n = α n n α 1 lim n = 0 1 n k n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n = α ϵ Nϵ n > Nϵ n α < ϵ 1.1.1 ϵ n > Nϵ n α < ϵ 1.1.2

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

() 3 3 2 5 3 6 4 2 5 4 2 (; ) () 8 2 4 0 0 2 ex. 3 n n =, 2,, 20 : 3 2 : 9 3 : 27 4 : 8 5 : 243 6 : 729 7 : 287 8 : 656 9 : 9683 0 : 59049 : 7747 2 : 5344 3 : 594323 4 : 4782969 5 : 4348907 6 : 4304672

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

読めば必ずわかる 分散分析の基礎 第2版

読めば必ずわかる 分散分析の基礎 第2版 2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)

More information

2

2 1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

untitled

untitled i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

Peano-Jordan-Borel Lebesgue Archimedes Gallilei, Pascal, Torricelli, Fermat Newton Leibniz Cauchy Daniell (1963) ( 4,200) 1

Peano-Jordan-Borel Lebesgue Archimedes Gallilei, Pascal, Torricelli, Fermat Newton Leibniz Cauchy Daniell (1963) ( 4,200) 1 2007 5 23 Peao-Jorda-Borel Lebesgue Archimedes Gallilei, Pascal, Torricelli, Fermat Newto Leibiz Cauchy Daiell (1963) ( 4,200) 1 (1965) ( 2,600) (1966) (1972) ( 2,700) (1980) (1995) (2000) ( 2,500) (2000)

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information