Jacobi, Stieltjes, Gauss : :

Size: px
Start display at page:

Download "Jacobi, Stieltjes, Gauss : :"

Transcription

1 Jacobi, Stieltjes, Gauss : :

2 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a , a p > 0 (a) Vitali (a) Stieltjes z + b z + b 2 p p 2 p 3 z + b 3 z + b 4..., b k (a k ), p k (a k ) > 0 (b) 903 E. B. Van Vleck [Vl03] Stieltjes Stieltjes 920 Hamburger [Ha20] 990 Pringsheim [Pr98] Vleck [Vl0a] + c c , c p C, (c) i

3 b + b 2 + b , b p C (d) (c) Pringsheim g p [0, ], (p =, 2, 3,... ) c p ( g p )g p Vleck g 0 = 0 + g g 2 g p /( g )( g 2 ) ( g p ) 2 Jacobi a 2 z + b a 2 2 z 2 + b 2 z 3 + b 3..., z p C (e) 2 ( ) 2 n p= n I(b p + z p ) x p 2 I(a p )(x p x p+ + x p x p+ ), x n C, n =, 2, 3,... p= I(z p ) > 0 Jacobi {K p (z)} {K p (z)} r p (z) {( g p )g p } 3 Jacobi {c p } {c p } 4 4 {c p } (k 0 + k u + + k n u n ) dϕ c (u) = k 0 c 0 + k c + + k n c n, k n C : (f) 3 2p (p =, 2, 3,... ) ii

4 Stieltjes [St89] Stieltjes 5 (f) Stieltjes Lebesgue {c p } µ p = 0 u p dµ(u), p = 0,, 2,... µ(u) µ(u) Stieltjes Stieltjes Jacobi Stieltjes Jacobi 6 Gauss Gauss a, b C c {0,, 2, 3, } F (a, b, c; z) = n=0 (a) n (b) n (c) n n! zn, z < F (a, b +, c + ; z)/f (a, b, c; z) [Ga76] (a) n Pochhammer (a) 0 := (a) n+ := (a) n (a + n), (n = 0,, 2,... ) Gauss Gauss a, b, c Gauss Jacobi Gauss iii

5 Worpitzky ( g p )g p x p / Jacobi Stieltjes Stieltjes Jacobi Jacobi Jacobi f /f Stieltjes Jacobi Jacobi Stieltjes Stieltjes Stieltjes iv

6 Gauss Gauss v

7 N N 0 R R >0 0 C Ĉ R R #R R R c R A B B A A B A B A B A B A\B A B a A A a R(z) z I(z) z z z = x + iy i.e., z = x iy θ = arg(z) z r = z z = x + iy i.e., z = x 2 + y 2 z = re iθ r = z θ = arg(z) g f(ω) f, g i.e., g(f(ω)) max{a, b} a, b min{a, b} a, b deg f f vi

8 572 R. Bombelli Lord W. Brouncker 4 π = T. J. Stieltjes [St94a] z + + a a 2 z + a , a p > 0, z C Stieltjes Stieltjes Jacobi Jacobi Stieltjes Jacobi Stieltjes Gauss Gauss Jacobi Stieltjes Gauss

9 3... : a b 0 + a 2 b + b (.) a p C, (p =, 2, 3,... ), b p C, (p = 0,, 2,... ) a p, b p p p a p /b p p b 0 + a b + a 2 b 2 + a 3 b 3 + b 0 + b + a a 2 b a n = b 0 + a b + a 2 b a n b n b n.2. tan ( ) ζ = ζ + 3ζ + 5ζ + for ζ > 2 π. 2 3 Jacobi ( ) ω t 0 (ω) := b 0 + ω, t p (ω) := a p, p =, 2, 3,... b p + ω 2

10 t 0 t t p (0) = b 0 + a b + a 2 b a p b p p t 0 t t p (ω) = A p ω + A p B p ω + B p, p = 0,, 2,... A p, B p p p : A =, B = 0, A 0 = b 0, B 0 = ; A p+ = b p+ A p + a p+ A p, B p+ = b p+ B p + a p+ B p, p = 0,, 2,.... (.2) A n A n B n B n = A n b n A n + a n A n 2 B n b n B n + a n B n 2 A n 2 A n = a n B n 2 B n A p B p A p B p = ( ) p a 0 a a p, p = 0,, 2,... (.3) ( a 0 = ) A p, B p {A p /B p } p=0.3. (.) p B p 0 A p lim (.4) p B p (.3) a p 0, (p = 0,, 2,... ) A p B p 0 (.4) B p 0 a p, b p 3

11 .4. (.) D C D a p, b p D (.) {A p /B p } D C.2.5. ([Eu48]) B p p =, 2, 3,... B p 0 (.5) + a 2 + a 3 + (.5) b 2 b 3 ρ p := a p+b p B p+, p =, 2, 3,... (.6) ρ ρ 2 (.7) + ρ + ρ 2 n ρ p (.7) n + ρ ρ 2 ρ p (.8) p= n n. n n ( Ap+ + A ) ( p A2 = + A ) ( A3 + A ) ( 2 An + + A ) n B p+ B p B 2 B B 3 B 2 B n B n p= = A B + A n B n. (.5) t 0 (ω) = ω, t p (ω) = a p b p + ω, (p =, 2, 3,... ), a = b = A /B = t 0 t (0) = n ( Ap+ + A ) p = A n. B p+ B p B n p= 4

12 (.3) a 2 B B 2 + a 2a 3 B 2 B 3 a 2a 3 a 4 B 3 B 4 + (.6) (.8) s = s p (ω) = + ρ p ω s = s p (ω) = ρ p ρ p +, p =, 2, 3,... ω n ω = 0 s s 2 s n (0) = + ρ ( + ρ 2 ( + ρ 3 + = + ρ ρ 2 + ρ ρ 2 ρ ρ ρ n n = + ρ ρ 2 ρ p (.8) n p= s s 2 s n+ (ω) = ρ ρ + ρ ρ n + ρ 2 ρ n ρ n+ ρ n+ +. ω (.7) ρ ρ + ρ n ρ n +. s s 2 s n+ (0) (.7) n =, 2, 3,... (.7) (.5) n (.8) n (.7) n B n = (.7) a n := ρ n, b n := + ρ n, (n =, 2, 3,... ) t 0 (ω) = + ω, t n(ω) = a n b n + ω n A n, B n A 0 /B 0 = t 0 (0) = / B 0 = A /B = t 0 t (0) = + a b = b / B = (.2) B 2 = b 2 B + a 2 B 0 = b 2 + a 2 =,..., B n = b n + a n = (.8) n (.5) (.7) B n =, (n = 0,, 2,... ) A n (.8) n ρ p ρ p (.6) (.2) :.6. ([Wa48]) p b p =, (p = 2, 3, 4,... ) ρ 0 = 0 ρ p = a p+( + ρ p ), p =, 2, 3,... (.9) + a p+ ( + ρ p ) 5

13 a = 0, ρ = ρ 0 = 0 a p+ ρ p =, p =, 2, 3,... (.0) + a p + a p+ + a p ρ p (.) {c p } p= p N c p 0 b 0 + c a c b + c c 2 a 2 c 2 b 2 + c 2c 3 a 3 c 3 b 3 + (.) (.) {c p } A p, B p (.) p (.) p c c 2 c p A p, c c 2 c p B p (.2) 0 2 p A p, B p A p, B p ( A p, B p ) p =, 2, 3,... C p 0 A p = C p A p, B p = C p B p (.2) A =, B = 0, A 0 = b 0, B 0 =, A p = b p A p + a p A p 2, B p = b p B p + a p B p 2 ( ) ( ) ( ) A p B p A p 2 B p 2 b p a p = A p B p det ( A p B p A p 2 B p 2 ) = A p B p 2 A p 2 B p 0 6

14 ( A p B p ( b p a p A p 2 B p 2 ) ( = ) A p A p 2 B p B p 2 ) ( A p B p ). A =, B = 0, A 0 = b 0, B 0 =, A p = b pa p + a pa p 2, B p = b pb p + a pb p 2 (.2) A p = A p C p = b pa p + a pa p 2 = b p C p C p C p C = C 0 = c p := C p 2 A p + a C p p A p 2. C p C p C p C p b p = c p b p, a p = c p c p a p. 2 p b p 0, c p := /b p, (p =, 2, 3,... ) (.) a p 0, (p =, 2, 3,... ), c o = c p c p c p a p = (.).4 (.) + a 2 + a 3 + (.3).8. (.3) : + a 2 a 2 + a 2 + a 3 a 2 a 3 + a 3 + a 4 a 3 a 4 + a 4 + a 5 a 4 a 5 + a 5 + a 6, (.4) a 5 a 6 + a 6 + a 7. (.5) (.3) t = t (ω) = ω, t = t p (ω) = 7, p = 2, 3, 4,... + a p ω

15 t t 2 t n () = A n /B n s p (ω) = t 2p t 2p (ω), (p =, 2, 3,... ) s (ω) = a 2p, s p (ω) =, p = 2, 3, 4, a p + a 2p + a 2p ω s s 2 s p () = t t 2 t 2p () = A 2p /B 2p.5 a p, b p a p 0, (p =, 2, 3,... ) b 0 + b + b 2 + b 3 + (.6) b p 0, (p =, 2, 3,... ) b 0 + a + a 2 + a 3 + (.7) p N a p = 0 :.9. ([Wa48]) (.) m a m = 0 (m > ) a n 0, (n =, 2, 3,..., m ) (.) k ( n) n B n 0 (.) A m /B m..3 k k (.2) B m 0 B m = B m+ = = 0 A p B m A m B p = (b p A p + a p A p 2 )B m A m (b p B p + a p B p 2 ) = b p (A p B m A m B p ) + a p (A p 2 B m A m B p 2 ) p m, m +, m + 2,... a m = 0 A p B m A m B p = 0, p m. p m p k A p /B p = A m /B m A m /B m 8

16 0 p > k B p 0.0. ([Wa48]) (.6) b 2p = 0, (p =, 2, 3,... ). (.2) B = b = 0, B 3 = b 3 B 2 + a 3 B = 0, B 5 = b 5 B 4 + a 5 B 4 = 0,... (.6) b 0 b 0.. ([Ko95]) b p (.8) b b 2 b 3 {A 2p }, {A 2p+ }, {B 2p }, {B 2p+ } F 0, F, G 0, G ( ) F G 0 F 0 G = (.9). (.2) a n =, (n =, 2, 3,... ) A 2p = b 2p A 2p + A 2p 2 = b 2p A 2p + b 2p 2 A 2p 3 + A 2p 4 = = b 2p A 2p + b 2p 2 A 2p b 2 A p = b 2r A 2r. r= b 2r {A 2p } p C > 0 A 2p C M := max{ A, A 0 } A = b A 0 + A b A 0 + A M( + b ), A 2 = b 2 A + A 0 b 2 A + A 0 M( + b ) b 2 + M M( + b )( + b 2 ). A n M( + b )( + b 2 ) ( + b n ) n =, 2, 3,... C := M ( + b p ) p= 9

17 b 2r {A 2p+ }, {B 2p }, {B 2p+ } (.3) A 2p+ B 2p A 2p B 2p+ = p (.9) F 0 /G 0, F /G.2. i + i + i + (.20) B 2 = B 5 = B 8 = = B 3p = = 0 b p (.8). a p, b p [Wa48, pp.29].6 a p / 0 c p = /b p (b p 0) a p /.3. + a 2 + a 3 + (.2) r n 0, (n =, 2,... ) r p + a p + a p+ r p r p 2 a p + a p+, p =, 2, 3,... (.22) a = r 0 = r = 0 a p :.4. ([ScWa40]) (.2) (.22) (.2) p B p 0, (p = 0,, 2,... ) ρ p = a p+b p B p+ ρ p r p, p =, 2, 3,..., (.23) 0

18 . (.22) p =, 2, 3,... r + a 2 a 2, r 2 + a 2 + a 3 a 3. B 2 = + a 2 0, B 3 = + a 2 + a 3 0 a 2 ρ = + a 2 r a 3, ρ 2 = + a 2 + a 3 r 2. p =, 2,..., k (k 2) B p+ 0, ρ p r p a k+2 = 0 a k+2 0 Case : a k+2 = 0 (.2) B k+2 = B k+ + a k+2 B k = B k+ 0 a k+2 B k ρ k+ = 0 r k+. B k+2 Case 2: a k+2 0 (.22) p = k+ r k+ +a k+ +a k+2 r k+ r k a k+ + a k+2 r k+ 0 r k+ = 0 0 a k+2 a k+2 0 r k+2 > 0 (.2) B k+2 = ( + a k + a k+2 )B k a k a k+ B k 2. (.22) B k+2 a k+2 B k = + a k+ + a k+2 a k+ akb k 2 a k+2 a k+2 B k + a k+ + a k+2 a k+ r k > 0. r k+ B k+2 0, ρ k+ r k+ a k+2 a k+2 (.2) (.22) + r r 2 r p A p A p B p = + ρ ρ 2 ρ p p= B p p =, 2, 3,... A p A p B p = ρ ρ 2 ρ p r r 2 r p (.24) B p.4.9 :.5. ([Wa48]) (.2) (.22) p N a p = 0 (.2) p=

19 .7 Worpitzky Worpitzky [Wo65].6. ([Wa48]) a C + a + a + a + (.25) a = /4 c (c R >0 ) v : if a = 2 v = { 4, + + 4a max 2, } + 4a if a 2 4. [Wa48, pp.35].7 (Worpitzky ). D C z D a p z a p+ = a p+ (z), (p = 0,, 2,... ) a p+ (z), p =, 2, 3,... (.26) 4 : (a) (.2) D (b) z (.27) (c) (a) /4 (.26) (.27). (a) : (.26) 3 + a 2 ( ) = a 2, a 2 + a 3 2 ( 4 4 ) = 4 4 a 3, p p a p + a p+ p 2(p + 2) = p(p 2) (p + 2)p p p + 2 p 2 p a p + a p+2, p = 3, 4, 5,... 2

20 p =, 2, 3,... r p := p/(p + 2) (.22) ( + r r 2 r p = ) 6 p p + 2 p= p= 2 = + (p + )(p + 2) p= ( = + 2 p + ) = 2. p + 2 p= (.2) p =, 2, 3,... a p+ /4 + r r 2 r p = 2 2 p N a p = 0 (b) : z = + 4 w (.28) w = x + a 3 + a 4 + x w 2 (.28) z w 4 2 z z w 2 z = z(2) = 2/3, + w 4 z( 2) = 2, z(2i) = 4/3 2i/3 z (c) : /4 (.26) p N a p+ = c (c > /4),.6 (.27) z = + a 2 /4 /4 = + 2a 2 a 2 /4 (.27) (b) w /4 z = /( + 2w) (.27) (b) (c) Paydon Wall [PaWa42] a p+ (z) t( t), ( < t /2) z t 2 t t 2 3

21 .8. D C (.2) a p D, (p = 2, 3, 4,... ) (.2).7 (.2) /4.8 ( g p )g p x p /.7 ( g p )g p x p / g n = /2, x p :.9. ([Wa48]) {g p } p= 0 g p <, p =, 2, 3,..., (.29) 0 < g p, p =, 2, 3,... (.30) : (a) g + ( g )g 2 x 2 + ( g 2)g 3 x 3 + (.3) x p, (p = 2, 3, 4,... ) (b) z S (.32) S = + p= g g 2 g p ( g )( g 2 ) ( g p ) (.33) x p =, (p = 2, 3, 4,... ) /S (c) z 2 g g (.34) 2 g. g ( g )g 2 ( g 2)g 3 (.35) 4

22 p =, 2, 3,... θ p := ( g p )g p+ P n, Q n (.35) n (.2) n = 2, 3, 4,... : P n = P n θ p P n 2, Q n = Q n θ p Q n 2, P 0 = 0, P = g, Q 0 =, Q =. (.36) Q n = ( g )( g 2 )( g 3 ) ( g n ) + g ( g 2 )( g 3 ) ( g n ) + g g 2 ( g 3 ) ( g n ) + + g g 2 g n ( g n ) + g g 2 g n, P n = Q n ( g )( g 2 ) ( g n ). (.37) (.29), (.30) n =, 2, 3,... Q n > 0 (.36) (.2) Q n+2 = ( θ n+ θ n+2 )Q n θ n θ n+ Q n 2, n = 2, 3, 4,... r p := θ p+q p Q p+, p =, 2, 3,... (.38) θ p+ = ( θ p θ p+ )r p r p r p 2 θ p. p =, 2, 3,... a p+ θ p+ r p + a p + a p+ r p ( θ p θ p+ ) = r p r p 2 θ p + θ p+ r 0 = r = 0, θ = a = 0. r p r p 2 a p + a p+, (.3) x p+, (p =, 2, 3,... ) (a) g + r r 2 r p p=.5 g (.35).5 P g + r r 2 r p n = lim = n Q n S p= 5

23 S (.33) (b) (c) : z = g, w, + ( g )w (.34) Scott Wall [ScWa40] Paydon Wall [PaWa42].9 (c).20. ([Vl0a]) p =, 2, 3,..., 0 g p < S := + p= g g 2 g p ( g )( g 2 ) ( g p ) + g x + ( g )g 2 x 2 + ( g 2)g 3 x 3 + (.39) x p, (p =, 2, 3,... ) S x p =, (p =, 2, 3,... ) S. (.39) (.3) x S (.3) /S(< ) (.39) x p, (p =, 2, 3,... ) (.39) S = x p =, (p =, 2, 3,... ) S = S :.2. ([PaWa42]) p =, 2, 3,..., 0 < g p < S (.39) x p, (p =, 2, 3,... ) x p = p N x p. : k N x k (.39) (.3) (.32) z z C (.39) x z = x z x = z = (.34) z = z = x z = x = z = g + ( g )x 2 z 2 6

24 z 2 = g 2 + ( g 2)g 3 x 3 + ( g 3)g 4 x 4 + z = x 2 z 2 = z 2 =, x 2 = (.3) x r <, x p, (p = 2, 3, 4,... ) (.3) :.22. ([Wa48]) p =, 2, 3,... 0 g p < 0 < g p (.39) x r < r, x p, (p = 2, 3, 4,... ).9 k, k 2 0 (.2) : r + a 2 ( + k ) a 2, r + a 2 + a 3 ( + k 2 ) a 3, (.40) r p + a p + a p+ r p r p 2 a p + a p+, p = 3, 4, 5, ([ScWa40]) k, k 2 > 0 + a 2 + a 3 + (.4) (.40). p N a p = 0.5 p = 2, 3, 4,... a p 0 (.40) r p > 0, + a p + a p+ > 0, r p + a p + a p+ a p+ > 0, (p =, 2, 3,... ) a = 0 k > 0 g p := r 2p+ + a 2p+ + a 2p+2 a 2p+2, p =, 2, 3,... r 2p+ + a 2p+ + a 2p+2 0 < g p < (.40) g = r 3 + a 3 + a 4 a 4 r 3 + a 3 + a 4 r a 3 + a 3 + a 4 ( + k ) a 2 a 3 ( + a 2 )( + a 3 + a 4 ) ; 7

25 ( g p )g p a 2p a 2p+ ( + a 2p + a 2p )( + a 2p+ + a 2p+2 ), p = 2, 3, 4,... a 2p a 2p+ ( + a 2p + a 2p )( + a 2p+ + a 2p+2 ) = ( g p )g p x p, p =, 2, 3,... g 0 = 0, x /( + k ), x p, (p = 2, 3, 4,... ) (.4) + a 2 + g x + ( g )g 2 x k 2 > 0 g p := r 2p+2 + a 2p+2 + a 2p+3 a 2p+3, p =, 2, 3,... r 2p+2 + a 2p+2 + a 2p+3 + r r 2 r p.24. ([ScWa40]) (.4) k, k 2 > 0 (.40) p = 2, 3, 4,... a p 0 b, b 2,... b =, a p+ = b p b p+, p =, 2, 3,... (.42) (.4) (.43) b b 2 b 3 B p (.4) p Q p (.43) p : Q p = b b 2 b p B p (.44) r r 3 r 2p Q 2p k ( + r b 2 + r 2 r 3 b r 2 r 2 3 r 2 2p 3r 2p b 2p ), r 2 r 4 r 2p Q 2p+ k ( + r 2 b 3 + r 2 2r 4 b r 2 2r 2 4 r 2 2p 2r 2p b 2p+ ), (.45) p =, 2, 3,..., k > 0 8

26 . (.40) (.42) r + b b 2 + k, r 2 b b 2 b 3 + b + b 3 + k 2, r p b p b p b p+ + b p + b p+ r p r p 2 b p+ + b p+, p = 3, 4, 5,... (.46) Q 0 =, Q = b =, Q 2 = + b b 2, Q 3 = b b 2 b 3 + b + b 3 2 Q 2 r Q 0 k b 2, Q 3 r 2 Q k b 3 (.47) k := min { k } k 2 r b 2, r 2 b 3, r Q 2 k( + r b 2 ), r 2 Q 3 k( + r 2 b 3 ). (.48) (.46) Q p+3 b p+ b p+2 b p+3 + b p+ + b p+3 r p+2r p b p+3 + b p+ Q p+ r p+2 b p+ Q p+ b p+ b p+3 b p+ b p+3 b p+ Q p Q p Q p+3 Q p+ r p r p+2 b p+3 b p+ ( Q p+ ) Q p. r p p =, 3, 5,... p = 2, 4, 6,... (.47) r 2p Q 2p Q 2p 2 + r r 3 r 2p k b 2p, r 2p Q 2p+ Q 2p + r 2 r 4 r 2p k b 2p+ (.49) (.48) (.45) A p+ A p B p+ B p = ( ) p+2 a a 2 a p+ B p B p+ = ( )p+2 b b 2 b 2 b 3 b p b p+ B p B p+ = Q p Q p lim sup Q p Q p+ = (.50) 9

27 .0 (.40) p =, 2, 3,... r p = k, k 2 > 0 + a 2 > a 2, + a 2 + a 3 > a 3, + a p + a p+ a p + a p+, p = 3, 4,.... (.5) p N a p = 0 (c.f..5). m, m 2,... > 0 m <, m p + m p+, p =, 2, 3,... (.52) a p+ R(a p+ ) m p, p =, 2, 3,... (.53) : + a 2 + R(a 2 ) + a 2 m > a 2, + a p + a p+ + R(a p ) + R(a p+ ) m p m p + a p + a p+ a p + a p+, p = 2, 3, 4, ([Wa48]) a p+ R(a p+ ) m p, (p =, 2, 3,... ) m <, m p + m p+, (p =, 2, 3,... ) + a 2 + a 3 + (.54) : (a) p N a p = 0, (b) p = 2, 3,..., a p 0 b =, a p+ = b p b p+, p =, 2, 3,... b p m p = /2, (p =, 2, 3,... ) Worpitzky [ScWa40].26 ( ). S C (.54) S { z R(z) /2} =: A a, a 2, A (.52) : 20

28 (a) p N a p = 0, (b) p = 2, 3,..., a p 0 b =, a p+ = b p b p+, p =, 2, 3,..., b p.27. ([Wa48]) z = x + iy, z = x iy x, y R + z + z + z + z + (.55) z R(z) 2, i.e., y2 x + 4. : n N a n A a n 0 b =, b 2 = z, b 3 = z z =,... b p.25 a 2p := z, a 2p+ := z, (p =, 2, 3,... ) : + z + z + z + z + z + z + (.56) B p (.56) p B p z + z + z + p B p = B p 2 (.56) z 2 2x z 2 2x z 2 (.57) u := z 2 2x z 2 2x z 2 u = z 2 ( + 2x) u ( + 2x) 2 4(x 2 + y 2 ) 0 y 2 x + /4 2

29 m p = /2, (p =, 2, 3,... ).25 S C b p a 2, a 3, S. S A z = a A c a S S ā S a 2p := a, a 2p+ := ā, (p =, 2, 3,... ).27.7 (.54) a 2, a 3, /4 a, a 2,... z 4/3 2/3 z /4 z R(z) /2 :.28. ([Wa48]) (.54) z, z 0 (.58) a 2, a 3,... A.26 (a) (b). (.9) + ρ p = + a p+ + a p + + a 3 + a 2 (.23) r p =, (p =, 2, 3,... ) ρ p + a p+ + a p + + a 3 + a 2. a 2, a 3,... z R(z) /2 a n (.58) Lane [La45] [ScWa4] 22

30 2 + ρ ρ 2 ρ p 0 2. a2 a2 2 (2.) b + z b 2 + z 2 b 3 + z 3 a p, b p C :, z p C, (p =, 2, 3,... ) a p a 2 p β p := I(b p ), y p := I(z p ), α p := I(a p ) z := (z, z 2, z 3,... ) z p z Jacobi Jacobi : 2.. ([Wa48]) (2.) p B p (z), (p =, 2, 3,... ) z : b + z a a b 2 + z 2 a B p (z) = 0 a 2 b 3 + z 3 a (2.2) a p 2 b p + z p a p a p b p + z p B p (z) x p C (b + z )x a x 2 = 0, a x + (b 2 + z 2 )x 2 a 2 x 3 = 0, a p x p + (b p + z p )x p = 0 (2.3) 23

31 x, x 2,..., x p p p (b r + z r ) x r 2 a r (x r x r+ + x r x r+ ) = 0. (2.4) r= y r > 0, (r =, 2, 3,..., p), p r= x r 2 > 0 r= p p (β r + y r ) x r 2 α r (x r x r+ + x r x r+ ) > 0 (2.5) r= r= (2.3) (2.4) y r > 0 x = x 2 = x 3 = = x p = 0 y r > 0, (r =, 2, 3,..., p) B p (z) ([Wa48]) ξ, ξ 2, ξ 3,... p p β r ξr 2 2 α r ξ r ξ r+ 0 (2.6) r= r= (2.5). : y r ξ r R : x r := u r + iv r, (u r, v r R) (2.5) ( p ) ( p p ) p β r u 2 r 2 α r u r u r+ + β r vr 2 2 α r v r v r+ + r= r= y r 0 r= r= p y r x r 2 r= p y r x r (6.) p =, 2, 3,... ξ, ξ 2, ξ 3,... R r= r= ( ) r= (2.7) p p β r ξr 2 2 α r ξ r ξ r+ 0 (2.8) 2.2 : 2.4. ([WaWe44a]) (2.) y r > 0, (r =, 2, 3,... ) B p (z) 0 24

32 Wetzel Wall [WaWe44b] a p, b p 2.5. ([WaWe44b]) (2.) : (i) β p 0, p =, 2, 3,..., (ii) {g p } p=0 0 g p α 2 p+ = β p+β p+2 ( g p )g p+.. : ξ = ξ 2 = = ξ n = ξ n+ = 0, ξ n 0 (2.6) β n 0 ξ 3 = ξ 4 = ξ 5 = = 0 (2.6) β ξ 2 2α ξ ξ 2 +β 2 ξ2 2 0 α 2 β β 2 α 2 = β β 2 ( g 0 )g, g 0 = 0, 0 g. β = 0 g = 0 ξ 4 = ξ 5 = = 0 (2.6) { (β ( g 0 )) /2 ξ (β 2 g ) /2 ξ 2 } 2 + β2 ( g )ξ 2 2 2α 2 ξ 2 ξ 3 + β 3 ξ β = 0 g = 0 { (β ( g 0 )) /2 ξ (β 2 g ) /2 ξ 2 } 2 = 0 β > 0 ξ := (β 2g ) /2 ξ 2 (β ( g 0 )) /2 { (β ( g 0 )) /2 ξ (β 2 g ) /2 ξ 2 } 2 = 0 ξ2, ξ 3 α 2 2 β 2 β 3 ( g ) α 2 2 = β 2 β 3 ( g )g 2 0 g 2 g = β 2 = 0 g 2 = 0 ξ 5 = ξ 6 = = 0 {(β ( g 0 )) /2 ξ (β 2 g ) /2 ξ 2 } 2 + {(β 2 ( g )) /2 ξ 2 (β 3 g 2 ) /2 ξ 3 } 2 + β 3 ( g 2 )ξ 2 3 2α 3 ξ 3 ξ 4 + β 4 ξ α 2 3 β 3 β 4 ( g 2 ) α 2 3 = β 3 β 4 ( g 2 )g 3 0 g 3 g 2 = β 3 = 0 g 3 = 0 : p β r ξr 2 2 r= p α r ξ r ξ r+ = g 0 β ξ 2 + ( g p )β p ξp 2 r= (2.6) + p r= { (β r ( g r )) /2 (β r+ g r ) /2 ξ r+ }

33 : 2.6. ([Wa48]) 2.5 g 0 = 0 (2.6) p p β r ξr 2 2 α rξ r ξ r+ 0 r= r= r =, 2, 3,..., p ξ r R α r α r. 2 p p β r ξ r 2 2 α r ξ r ξ r+ = g 0 β ξ r 2 + ( g p )β p ξ p 2 r= r= p { } 2 + (β r ( g r )) /2 ξ r (β r+ g r ) /2 ξ r+ r= 2.7. ([Wa48]) 2.5 (ii) : {g p } 0 g n, α 2 n β n β n+ ( g n )g n, n =, 2, 3,.... (2.9) 2.7 a 2 n R(a 2 n) = 2α 2 n 0 g n, a 2 n R(a 2 n) 2β n β n+ ( g n )g n, n =, 2, 3,... (2.0) p =, 2, 3,... a p =: c 2 p + a 2 + a 3 + = i i c2 i c2 2 i β p =, (p =, 2, 3,... ) (2.0) 0 g n, c 2 n R(c 2 n) 2( g n )g n, n =, 2, 3,... (2.) g n = /2, (p = 0,, 2,... ) z R(z) /2 ( g 0 )g < /2, ( g n )g n + ( g n )g n+ < /2, (n =, 2, 3,... ) (.53) {g p } 26

34 2.2 I(z ) > 0, I(z r ) 0, (r = 2, 3, 4,... ) : 2.8. ([DeWa45]) t = t p (w) = b p + z p a2 p, p =, 2, 3,... (2.2) w β p = I(b p ) 0, α 2 p = I(a p ) 2 β p β p+ ( g p )g p, 0 g p, p =, 2, 3,... (2.3) I(w) β p+ g p I(t) β p g p +y p y p = I(z p ), (p =, 2, 3,... ). I(w) β p+ g p y p > 0 I(w) β p+ g p β p ( g p ) β p ( g p ) + y p α 2 p β p ( g p ) + y p. a 2 p R(a 2 p) = 2α 2 p α2 p = { a 2 p I(ia 2 p) } /2 w + ia 2 p 2{β p ( g p ) + y p } a 2 p 2{β p ( g p ) + y p }. w i + 2{β p ( g p ) + y p } 2{β p ( g p ) + y p }. a 2 p ( ) a 2 p β p + y p I β p g p I(t) β p g p w y p y p 0 β p I(a 2 p/w) β p g p ( ) a 2 p β p + y p I β p g p + y p I(t) β p g p + y p. w t = t 0 (w) = /w I(w) β g 0 + y, y > 0 K 0 (z): t + i 2(β g 0 + y ) 2(β g 0 + y ) (2.4) 27

35 β g 0 +y > 0 I(w) β 2 g t = t 0 (t (w)) = /{b + z (a 2 /w)} I(w) g β 2 I(t (w)) g 0 β + y (K (z) ) K 0 (z) K (z) w = I(w) β 2 g t 0 (t ( )) = A (z)/b (z) K (z) a = 0 K (z) = /(b + z ) = A (z)/b (z) p K p (z) I(w) g p β p+ t = t 0 t t p (w) = a2 a 2 p b + z b 2 + z 2 b p + z p a 2 p/w, I(z r ) 0, r = 2, 3, 4,... (2.5) t 0 t t p ( ) = A p (z)/b p (z) K p (z) a p = 0 p m K p (z) = t = t 0 t t m ( ) (2.4) K 0 (z) K (z) K 2 (z) (2.6) t K p (z) : I(t) 0, t. (2.7) g 0 β + y g 0 β g 0 β + y > 0, y r 0, (r = 2, 3, 4,... ) (2.) ( ) Ap (z) I 0, B p (z) A p (z) B p (z), (2.8) g 0 β + y y g 0 β + y > 0, g r 0, (r = 2, 3, 4,... ) p A p (z)/b p (z) K 0 (z) 2.9. ([DeWa45]) (2.3) g p β p > 0, (p =, 2, 3,... ) I(z r ) 0, (r =, 2, 3,... ) B p (z) 0. p =, 2, 3,... a p 0 B p 0 p N a p = 0 (2.2) B p (z) = (b p + z p )B p (z) a 2 pb p 2 (z) (2.8) B p 0.9, 2.4, 2.9 : 2.0. ([Wa48]) (2.) #{p N: a p = 0} I(z r ) > 0, (r =, 2, 3,... ) (2.) p =, 2, 3,... g p β p > 0 I(z r ) 0, (r =, 2, 3,... ) (2.) 28

36 p =, 2, 3,... a p 0 I(z ) > 0, I(z r ) 0, (r = 2, 3, 4... ) z r C 2 Case ( ): K p (z) r p (z) lim p r p (z) = 0 f(z) lim p A p (z)/b p (z) = f(z) Case 2( ): K p (z) r p (z) c > 0 lim p r p (z) = c 2 r p (z) X p+ := A p a a 2 a p, Y p+ := X = 0, Y =, X 0 =, Y 0 = 0 B p a a 2 a p, p =, 2, 3,... (2.9) a p X p + (b p + z p )X p a p X p+ = 0, a p Y p + (b p + z p )Y p a p Y p+ = 0, p =, 2, 3,... (2.20) (2.) a 0 = (2.5) X p+ Y p X p Y p+ = a p, p =, 2, 3,... (2.2) 0 g p, α 2 p = β p β p+ ( g p )g p, p =, 2, 3,... (2.22) t = t 0 t t p (w) = A p(z)w a 2 pa p (z) B p (z)w a 2 pb p (z) (2.9) t = X p+w a p X p Y p+ w a p Y p (2.23) w = a p Y p /Y p+ t = K p (z) C p C p w = a p Y p /Y p+ I(w) = g p β p+ a p Y p Y p + 2ig p β p+ (2.24) C p = ( ) ap Y p X p+ + 2ig p β p+ a p X p Y p ( ). (2.25) ap Y p Y p+ + 2ig p β p+ a p Y p Y p 29

37 t 0 t t p ( ) = A p (z)/b p (z) K p (z) (2.25) (2.2) r p (z) = C p X p+. Y p+ 2r p (z) = gp β p+ Y p+ I ( ). (2.26) a p Y p Y p+ (2.20) Y p a r Y r Y r + (b r + z r ) Y r 2 a r Y r+ Y r, r =, 2, 3,.... Y 0 = 0 2r p (z) = p (b r + z r ) Y r 2 r= I(a p Y p+ Y p ) = p ( ) a r Yr+ Y r + Y r+ Y r = ap Y p+ Y p. r= p ( ) p α r Yr+ Y r + Y r+ Y r (β r + y r ) Y r 2. (2.27) r= p+ r= β r Y r 2 p r= α ( ) r Yr+ Y r + Y r+ Y r + p r= y r Y r 2 ( g p )β p+ Y p+ 2 (2.28) r= 2r p (z) = g 0 β + ( p r= y r Y r 2 + ), (β r ( g r )) /2 Y r (β r+ g r ) /2 2 Y r+ p =, 2, 3,.... (2.29)

38 K p (z) C p (z) C p (z) p A p (z), B p (z) (2.6) C p = a p 2 A p B p a 2 pa p B p + 2ig p β p+ A p B p a p 2 B p B p a 2 pb p B p + 2ig p β p+ B p B p r p (z) = C p A p = B p a a 2 a p 2 B p + ia 2 pb p 2 a 2 pb p 2 + (2g p β p+ ) B p 2. (2.30) (2.) z p := 0, b p := i, (p =, 2, 3,... ) (2.) i a2 i a2 2 i (2.3) B p + ia 2 pb p = ib p+ g p := /2, (p =, 2, 3,... ) β p = (2.3) r p = r p (0) = a a 2 a p 2 B p+ 2 a 2 pb p 2. c =, a 2 p = c p c p+, Q p = c c 2 c p B p, p =, 2, 3,... r p = ( i) c p+ Q p+ Q p Q p+ + Q p. (2.32) c i c 2 i c 3 i (2.33) i c + c 2 + c 3 + p =, 2, 3,... a p 0 # {p N : a p = 0} 2.0 c p lim p r p = 0 c p a 2 p R(a 2 p), p =, 2, 3,

39 + a a2, + a 2 p + a 2 p+ a 2 p + a 2 p+, p =, 2, 3,... + c c 2 2 c c 2 +, c p c p+ c p+2 + c p+2 + c p c p+2 + c p, p =, 2, 3,... (.47) Q 2 Q 0 2 c 2, Q 3 Q c 3 2 c 3 Q 2 2 ( + c 2 ), Q 3 2 ( + c 3 ) (2.34) (.49) Q 2p Q 2p c 2p, Q 2p+ Q 2p + 2 c 2p+. (2.35) (2.32) (2.34) (2.35) r 2p + p r= c 2r, r 2p + p r= c 2r+ (2.36) {K p (z)} r > r 2 > r 3 > lim p r p (z) = 0 p K p (z) a 2 := (a 2, a2 2,... ) D := { z R(z) /2} R p = p r= c r, a a 2 a p 0, 0, k ( p ) a k = 0 0 a 2 G D : 2.. ([PaWa42]) M > 0 + a 2 + a 3 + z R(z) 2, z < M 32

40 2.4 ( g p )g p+ (0 g p, p = 0,, 2,... ) 2.7 β p =, (p =, 2, 3,... ) (ii) α 2 p+ ( g p)g p+ ( g p )g p+ x p+ / (x p+ C) (2.) g p 2.2. {a p } p= p = 0,, 2,... 0 g p {g p } p=0 a p+ = ( g p )g p+ {g p } {a p } p= 2.3. /4, /4, /4, g p = /2, (p = 0,, 2,... ) 2.4. ([Wa48]) a, a, a, 0 a 4. : n =, 2, 3,... 0 g n ( g n )g n > 4 (2.37) ( g n ) + g n ( g n )g n > 2 2. g n > g n, (n =, 2, 3,... ) g 0 < g < g 2 < < {g n } g lim n g n = g ( g) + g ( g) g 2 2. ( g)g = /4 g = /2 : n = 0,, 2,... g n := + 4a 2 33

41 2.3 g p := ( ), p = 0,, 2,... 2 p ([WaWe44b, DeWa45]) g p m p g p M p, (p = 0,, 2,... ). {a p } {g p } p =, 2, 3,... a p = ( g p )g p p =, 2, 3,... m p : 0 if m p =, m 0 = 0, m p+ = a p+ (2.38) if m p < m p m 0 = 0 m 0 g 0 k ( ) m k g k m k = m k < a k+ = 0 2 m k = m k+ = 0 g k+ m k < a k+ > 0 m p (2.38) m k+ = a k+ m k = ( g k)g k+ m k ( g k)g k+ g k = g k+. p = 0,, 2,... m p g p m p m p 0 m p m p < m p (2.38) ( m p ) a p+ = m p+ ( m p ) m p = = m p g p g p = a p+ = ( g p )g p+ = 0 ( m p )m p+ = a p+ M p : M p = a p+ a p+2 a p+3, p = 0,, 2,... (2.39) k {p+, p+2,... } a k = 0 0 a p+ = 0 M p = g p a p+2 = 0 a p+ > 0 M p = a p+ = ( g p )g p+ 0 a p+, a p+2,..., a p+k > 0, a p+k+ = 0, (k > 0) M p = ( g p ) gp+ ( g p+)g p+2 ( g p+k 2)g p+k ( g p+k )g p+k. g p+k = M p = g p g p+k <.5 ( ) M p = ( g p ) T p+k p+ (g) (2.40) 34

42 p+k T p+k p+ (g) := + r=p+ g p+ g p+2 g r ( g p+ )( g p+2 ) ( g r ) (2.4) M p > m p a p+r > 0, (r =, 2, 3,... ) (2.40) T p+(g) = + r=p+ g p+ g p+2 g r (2.42) ( g p+ )( g p+2 ) ( g r ) M p m p T p+ (g) = M p 0 M p, (p = 0,, 2,... ) a p+ = 0 M p =, ( M p )M p+ = 0 = a p+ a p+ > 0 ( g p )g p+ > 0 0 < g p+ M p (2.39) M p = a p+ M p+, a p+ = ( M p )M p+. a p > 0, (p =, 2, 3,... ) M p = g p + r=p+ g p+ g p+2 g r =. (2.43) ( g p+ )( g p+2 ) ( g r ) m p = M p, (p = 0,, 2,... ) : 2.6. ([Wa48]) {a p } p= m p T0 (m) = m p m 0 = 0 : 2.7. ([Wa48]) M 0 = : 2.8. ([Wa48]) {a p } p= m p 0 m p <, (p = 0,, 2,... ) 0 < M p, (p = 0,, 2,... ) a p+ a p+2 p = 0,, 2,... 35

43 2.5 p =, 2, 3,... a p = a [, /4] {m p } m 0 = 0, m = a, m 2 = a/( a), m 3 = a a a,... a a a p m p = 4a 2 ( p + 4a r=0 + 4a M p = a a = + ) r, p = 0,, 2,... (2.44) 4a, p = 0,, 2,... (2.45) ([Wa48]) {c p } p= {c p } p= n c p <, n =, 2, 3,... (2.46) p=. p =, 2, 3,... c p 0 (2.46) 0 p= c p = c < g := c g, g 2,..., g k g c k+ < c c 2 c k = g ( g )g 2 ( g 2 )g 3 ( g k )g k = ( g )( g 2 ) ( g 2 )g 3 ( g k )g k ( g 2 ) ( g 2 )g 3 ( g k )g k = ( g 2 )( g 3 ) ( g 3 )g 4 ( g k )g k = ( g k 2 )( g k ) ( g k )g k ( g k ) ( g k )g k = ( g k )( g k ) ( g k ). 0 g k+ < g k+ c k+ = ( g k )g k+ 36

44 2.9 0 r /2 r, r 2, r 3,... 37

45 3 Jacobi Stieltjes Jacobi Jacobi Jacobi Stieltjes 3. Stieltjes Jacobi Stieltjes Jacobi Jacobi Jacobi Stieltjes 3.. Stieltjes : k z + + k 2 k 3 z + +. (3.) k 4 z C p =, 2, 3,... k p R >0 (3.) /k c + z c c 2 c 2 + c 3 + z c 3 c 4 c 3 + c 4 + z (3.2) c p := (3.) k p k p+, p =, 2, 3,... (3.3) T p (w) = /k c + z c c 2 c 2 + c 3 + z c 2p c 2p w (3.4) T p (z + c 2p + c 2p+ ) = A 2p+2 B 2p+2, T p (z + c 2p ) = A 2p+ B 2p+. (3.5) (3.) Jacobi Jacobi 38

46 a2 a2 2 b + z b 2 + z 2 b 3 + z 3 z := (z, z, z,... ) Jacobi : b + z a2 b 2 + z a2 2 b 3 + z (3.6) 3.2. Jacobi (3.6) M > 0 p =, 2, 3,... a p M 3, b p M 3 (3.7) M Jacobi (3.7) : 3.3. ([Wa48]) Jacobi (3.6) N > 0 n = 2, 3, 4,... n n b p u p v p a p (u p v p+ + u p+ v p ) N n n u p 2 v p 2 (3.8) p= p= u p, v p C. : : n n b p u p v p a p (u p v p+ + u p+ v p ) p= p= n n b p u p v p p= + a p (u p v p+ + u p+ v p ) p= M 3 n n u p 2 v p 2 + 2M 3 n u p 2 N := M p= n = M u p 2 p= p= n v p 2. p= p= p= p= n v p 2 : r p u p = v p =, u r = v r = 0 b p N r p, s p + u p = v p+ =, u r = v s = 0 a p N M := 3N p= 39

47 (3.8) Jacobi b p u p v p a p (u p v p+ + u p+ v p ) (3.8) N Jacobi Jacobi 3.4. z /4 z /4 z a p = /2, b p = 0, (p =, 2, 3,... ) a p = /2 = M/3 M = 3/2 n n n b p u p v p a p (u p v p+ + u p+ v p ) p= p= = a p (u p v p+ + u p+ v p ) p= 2M 3 n n u p 2 v p 2 N = p= n = u p 2 p= p= n v p ([Wa48]) M > 0 Jacobi z M. M > 0 Jacobi b + z a2 b 2 + z a2 2 b 3 + z n p= a 2 n (b n + z)(b n + z) a 2 n (b n + z)(b n + z) a n 2 b n + z b n + z a 2 n ( b n z ) ( b n z ) M 2 /9 (M/3 M) (M/3 M) = 4..7(a) z M 40

48 Stieltjes Jacobi 3.6. b + z a2 b 2 + z a2 2 b 3 + z, z C Jacobi p =, 2, 3,... a p, b p R Jacobi α r = I(a r ) = 0, β r = I(b r ) = 0, (r =, 2, 3,... ) 2 p r= β rξr 2 2 p r= α rξ r ξ r+ 0 Jacobi Jacobi : 3.7. ([WaWe44b]) Jacobi z a2 z a2 2 z (3.9) N {a 2 p} [Wa48, p.5] 3.8. ([Wa48]) N Jacobi I := [ N, N] d(k, I) = inf{d(x, y) : x K, y I} > 0 K z, z 2 C d(z, z 2 ) := z z : (3.8) x p R, b p = 0, (p =, 2, 3,... ) n 2 a p x p x p+ p= n x 2 p. p= n p= n x 2 p 2 a p x p x p+ p= n p= n x 2 p, n = 2, 3, 4,.... (3.0) p= n x 2 p 2 a p x p x p+ 0 (3.) p= 4

49 {a 2 p} : {a 2 p} (3.) x p ( ) p x p n n ( ) 2p x 2 p 2 ( ) 2p+ a p x p x p+ 0. p= n 2 p= a p x p x p+ p= n x 2 p. p= (3.9) /z a2 /z2 z z := /z 2 a2 2 /z2 + a2 z + a2 2 z + I z = [, ] I z = [, ] 3.9. ([Wa48]) p = 0,, 2,... g p [0, ] + ( g 0)g z + ( g )g 2 z + (3.2) L := [, ] d(k, L) = inf{d(x, y) : x K, y L} > 0 K C 3.2 Jacobi Jacobi Jacobi r z + s + r 2 z + s 2 + r 3 z + s 3 + (3.3) p =, 2, 3,... r p, s p C r p 0 A p (z), B p (z) p deg A p (z) = p, deg B p (z) = p z r p, s p f 0 := f 0 (z) = a 00 z n + a 0 z n + + a 0n, f := f (z) = a z n + a 2 z n a n (3.4) 42

50 p, q = 0,, 2,..., n a pq C f 0 f = r z + s + r 2 z + s r p ( 0), s p f 0, f r n z + s n (3.5) f p = (r p z + s p )f p + f p+, p =, 2, 3,..., n, f n+ = 0, f n = c 0 (3.6) (n p) f p (p = 2, 3,..., n ) (3.5) p =, 2, 3,..., n r p, s p C Jacobi (3.6) f 0 = f 0, f = f, r p, s p C f p = (r pz + s p)f p + f p+, p =, 2, 3,... n, f n+ = 0, f n = c 0 : deg f p = n p p = 0 = f 0 f 0 = { (r r )z + (s s ) } f + (f 2 f 2). f 2 f 2 n 2 deg f = n r = r, s = s, f 2 = f 2 p = 2 r 2 = r 2, s 2 = s 2, f 3 = f 3 p 3 z r p, s p (3.6) a 00 z n + a 0 z n + + a 0n a z n + a 2 z n a n = r z + b z n + b 2 z n b n a z n + a 2 z n a n, r = a 00 a, b = a 0 r a 2, b 2 = a 02 r a 3,..., b n = a 0n, b z n + b 2 z n b n a z n + a 2 z n a n = s + a 22z n 2 + a 23 z n a 2n a z n + a 2 z n a n, s = b a, a 22 = b 2 s a 2, a 23 = b 3 s a 3,..., a 2n = b 2n s a n. r, s, f 2 r p, s p, f p+ a 00, a,..., a pp,... 0 (3.5) a 00, a,..., a pp,

51 : a 00, a 0, a 02,..., a, a 2, a 3,..., r = a 00 a, b = a 0 r a 2, b 2 = a 02 r a 3, b 3 = a 03 r a 4,..., s = b a, a 22 = b 2 s a 2, a 23 = b 3 s a 3, a 24 = b 4 r a 4,..., r 2 = a a 22, b 22 = a 2 r 2 a 23, b 23 = a 3 r 2 a 24, b 24 = a 4 r 2 a 25,..., s 2 = b 22 a 22, a 33 = b 23 s 2 a 23, a 34 = b 24 s 2 a 24, a 35 = b 25 r 2 a 25,..., r 3 = a 22, a 33 b 33 = a 23 r 3 a 34, b 34 = a 24 r 3 a 35, b 35 = a 25 r 3 a 36,...,, (a pq = b pq = 0 for q > n). (3.7) r p, s p 3.0. f 0 = z 3 + (2 + i)z 2 + (3 + i)z + (2i + 2), f = 2z 2 + iz + 2 (3.8) f f 0 = 2 z + + i z 4i z + 27i 32 (3.9) Jacobi 3.3 (3.5) f 0, f 3.. ([Fr46]) f 0 = a 00 z n + a 0 z n + + a 0n, f = a z n + a 2 z n a n 44

52 f /f 0 (3.5) p =, 2, 3,... D p 0 : a, a 2, a 3, a 4, a 5, a 6, a 7, a 8,..., a 00, a 0, a 02, a 03, a 04, a 05, a 06, a 07,..., 0, a, a 2, a 3, a 4, a 5, a 6, a 7,..., 0, a 00, a 0, a 02, a 03, a 04, a 05, a 06,..., 0, 0, a, a 2, a 3, a 4, a 5, a 6,..., (3.20) 0, 0, a 00, a 0, a 02, a 03, a 04, a 05,..., 0, 0, 0, a, a 2, a 3, a 4, a 5,..., 0, 0, 0, a 00, a 0, a 02, a 03, a 04,...,, (a 0p = a p = 0 for p > n); a a 2 a 3 a 4 a 5 a a 2 a 3 a 00 a 0 a 02 a 03 a 04 D 0 = a 00, D = a, D 2 = a 00 a 0 a 02, D 3 = 0 a a 2 a 3 a 4, a a 2 0 a 00 a 0 a 02 a a a 2 a 3. (3.5) a 00, a, a 22,..., a nn 0 D 0 = a 00 0, D = a 0 D p f 0, f D p (f 0, f ) := D p (3.20) D p (f 0, f ) = ( ) p a 2 D p (f, f 2 ), p = 2, 3,..., n (3.2) D p (f 0, f ) = ( ) p a 2 D p (f, f 2 ), D p (f, f 2 ) = ( ) p 2 a 2 22D p 2 (f 2, f 3 ), D p 2 (f 2, f 3 ) = ( ) p 3 a 2 33D p 3 (f 3, f 4 ), D 2 (f p 2, f p ) = ( ) a 2 p,p D (f p, f p ) D (f p, f p ) = a pp D p (f 0, f ) = ( ) p k= k a 2 a 2 22 a 2 p,p a pp = ( ) p(p ) 2 a 2 a 2 22 a 2 p,p a pp 0. (3.22) (3.5) n N 0 D n 0 D 0 0, D 0 a 00, a 0 (3.22) p = 2 D 2 = ( ) 2 2 a 2 a a 22 0 a nn 0 45

53 3.4 Jacobi f /f 0 (3.5) : a 0 = r, a p = r p r p+, p =, 2, 3,..., n, (3.23) b p = s p r p, p =, 2, 3,..., n (3.24) f = a 0 f 0 b + z a b 2 + z a n b n + z (3.7) a 0 = a a 00, b p = (3.25) a p = a p+,p+ a p,p, p =, 2, 3,..., n, (3.26) b pp a p,p, p =, 2, 3,..., n (3.27) a 00 = (3.22) (3.26) D p+ = a 0 a a p D p, p = 0,, 2,..., n. (3.28) a 0 = D, a p = D p D p+, p =, 2, 3,..., n (3.29) D 0 D 2 p (3.25) Jacobi p f /f 0 z f c p := f 0 z p+ (3.30) (.3) A p+ (z) B p+ (z) A p(z) B p (z) = p=0 a 0a a p, B p+ (z)b p (z) p = 0,, 2,..., n, (3.3) A p, B p (3.25) p deg A p = p, deg B p = p, (p = 0,, 2,..., n ) deg B p+ (z)b p (z) = 2p + A p+ /B p+ A p /B p /z 2p+ A p+ = c 0 B p+ z + c z c 2p z 2p + c (p) 2p z 2p+ + c z (p) 2p+ 2p+2 +, p =, 2, 3,..., n (3.32) p(< n) f /f 0 2p f /f 0 46

54 3.2. ([Gr4]) p =, 2, 3,..., n L p > 0, x p R, x k x l (k l) f f 0 = n p= L p z x p (3.33) f /f 0 p =, 2, 3,..., n b p R a p > 0 (3.25) F (ξ, ξ 2,..., ξ n ) := n p,q= a pq ξ p ξ q, (a pq = a qp ) (3.34) ξ, ξ 2,... R n p= ξ2 p > 0 F (ξ, ξ 2,..., ξ n ) > 0 F 2 F n N : a a 2 a n a 2 a 22 a 2n D n =. (3.35) a n a n2 a nn 3.2. (3.33) l n c p c p = L l z x l = p=0 L l x p l z p+ n x p k L k, p = 0,, 2,... k= c p 2 x s x t (t s, s, t =, 2, 3,..., n) u m (< n) 0 X 0 +X u+x 2 u 2 + +X m u m u = x k, (k =, 2, 3,..., n) 0 2 m p,q=0 c p+q X p X q = x k u=x (X + X u + + X m u m ) 2 L(u), L(x k ) = L k 3.3 c 0 c c p c c 2 c p+ p = > 0, c p c p+ c 2p p = 0,, 2,..., n (3.36) 47

55 t c 0 z 2n + c z 2n 2n + + c 2n z + t z 2n+ = p=0 c p z p+ + t z 2n+ (3.37) 3. D p D 0 = 0, D = c 0 =, D 2 =,..., D n = n, D n+ = D n+ (t) = t n + D n+ (0) (3.36) D p > 0, (p = 0,, 2,..., n) t D n+ > 0 (3.37) Jacobi (n + ) a 0 b + z a b 2 + z a n b n + z a n b n+ + z, b p R, (3.29) a p > 0, (p = 0,, 2,... ) (3.32) n 2n A n (z) B n (z) = p=0 c p z p+ + c (n) 2n z 2n+ + ( ) f (z)b n (z) A n (z)f 0 (z) = P z P (/z) /z f A n z (n ) f 0 B n z n f (z)b n (z) A n (z)f 0 (z) 0 f /f 0 (3.25) A n (z) 0. (3.38) B n (z) 3.5 Stieltjes (3.5) z z f ( z) f 0 ( z) = + r z s r 2 z s r n z s n. f (z)/f 0 (z) p =, 2, 3,..., n s p = 0 p =, 2, 3,..., n s p = 0 f (z)/f 0 (z) zf (z 2 )/f 0 (z 2 ) Jacobi zf (z 2 )/f 0 (z 2 ) Jacobi s p 0 r p k p zf (z 2 ) f 0 (z 2 ) = k z + k 2 z + k 3 z + + k m z (3.39) 48

56 deg f 0 = n f 0 (0) = 0 m = 2n f 0 (0) 0 m = 2n f (z)/f 0 (z) z 2 z f (z) f 0 (z) = k z + + k 2 k 3 z + + T, T = k 2n z if f 0 (0) = 0, k 2n if f 0 (0) 0. (3.40) (3.40) (3.39) (3.40) (3.39) f (z)/f 0 (z) k p (3.7) : a 00, a 0, a 02,, a, a 2, a 3,, k = a 00 a, a 22 = a 0 k a 2, a 23 = a 02 k a 3, a 24 = a 03 k a 4,, k 2 = a a 22, a 33 = a 2 k 2 a 23, a 34 = a 3 k 2 a 24, a 35 = a 4 k 2 a 25,,. (3.4) 3.4 (3.40) p =, 2, 3,..., m zf (z 2 )/f 0 (z 2 ) D p 0 D p a, 0, a 2, 0, a 3, 0, a 4, 0,..., a 00, 0, a 0, 0, a 02, 0, a 03, 0,..., 0, a, 0, a 2, 0, a 3, 0, a 4,..., 0, a 00, 0, a 0, 0, a 02, 0, a 03,..., 0, 0, a, 0, a 2, 0, a 3, 0,..., (3.42) a 0 a 2 0 a 3 a 0 a 2 a D = a, D 2 = a 00 0 a 0, D a 0 0 a 02 = 0 a 0 a 2 0,... 0 a 0 0 a 00 0 a a 0 a 2 (3.20) : a a 2 a 3 a 4 a a 2 W = a 00 a 0, W a 00 a 0 a 02 a 03 2 =,... 0 a a 2 a 3 0 a 00 a 0 a 02 49

57 D 0 = a 00 = D 0 W 0, W 0 =, D = a = D W 0, D 2 = D W, D 3 = D 2 W, D 2p = ( ) p D p W p, D 2p+ = ( ) p D p+ W p. (3.43) : 3.4. ([Wa48]) (3.4) f 0, f f /f 0 p =, 2, 3,..., m (3.40) D p 0, (p = 0,, 2,..., n) n if f 0 (0) = 0, W k 0, (k = 0,, 2,..., m) m = n if f 0 (0) 0. (3.40) a 0 = k, a p = k p k p+, p =, 2, 3,..., m (3.44) (3.29) (3.43) a 0 z a a 2 z a 3 (3.45) a 0 = D D 0, a 2p = D p W p D p W p, a 2p = W p D p+ D p W p (3.46) 50

58 4 Jacobi ( c p /z p+) Jacobi {c p } Jacobi Jacobi 4. n = 0,, 2,... c n C c := {c n } u : (k 0 + k u + + k n u n ) dϕ c (u) = k 0 c 0 + k c + + k n c n. ϕ c (u) u u c k [0, ] {B p (u)} k p=0 c B p (u)b q (u)dϕ c (u) = 0 for p q : p = 0,, 2,..., m, (m > ) = 0 for p q, p, q m, B p (u)b q (u)dϕ c (u) 0 for p = q < m (4.) B p (u) = u p + β p u p + + β pp c 0 c c p c c 2 c p+ p = 0, c p c p+ c 2p p = 0,, 2,..., m (4.2) 5

59 0 B0(u)dϕ 2 c (u) = dϕ c (u) = c 0 0 = c < q < m B 0 (u)b q (u)dϕ c (u) = B q (u)dϕ c (u) = 0, B (u)b q (u)dϕ c (u) = ub q (u)dϕ c (u) = 0, B p (u)b q (u)dϕ c (u) = Bq 2 (u)dϕ c (u) = u p B q (u)dϕ c (u) = 0, u q B q (u)dϕ c (u) =: h p 0 q = h q q, q = 0,, 2,..., m, ( = ) (4.2) (4.2) B0(u)dϕ 2 c (u) = dϕ c (u) = c 0 = 0 0. a 0 := c 0 B (u) := u + b B 0 (u)b (u)dϕ c (u) = c + c 0 b = 0 B 0 (u)dϕ c (u) = a 0, ub 0 (u)dϕ c (u) = a 0 b a 0 0 b B n < m B 0 (u), B (u), B 2 (u),..., B n (u) p, q m (4.) a p, b p u p B p (u)dϕ c (u) = a 0 a a p 0, u p+ B p (u)dϕ c (u) = a 0 a a p (b +b 2 + +b p+ ), p = 0,, 2,..., n, B (u) = 0 B p (u) (4.3) B p (u) = (b p + u)b p (u) a p B p 2 (u), p =, 2, 3,..., n, B (u) = 0 (4.4) 52

60 B n+ (u) deg B n+ (u) = n +, B n+ (u) = (b n+ + u)b n (u) a n B n (u) + k 0 B 0 (u) + k B (u) + + k n 2 B n 2 (u) b n+, a n, k 0, k,..., k n 2 u p (u)b n+ (u)dϕ c (u) = 0, p = 0,, 2,..., n 2 k 0 a 0 = 0, k a 0 a = 0,...,k n 2 a 0 a a n 2 = 0 k 0 = k = = k n 2 = 0 u n B n+ (u)dϕ c (u) = 0, u n B n+ (u)dϕ c (u) = 0 p = n (4.3) u p B n (u)dϕ c (u) = 0, p = 0,, 2,..., n, u n B n (u)dϕ c (u) = a 0 a a n n = a 0 a a n n n 0 a n 0 b n+ p, q n + (p q) B p (u)b q (u)dϕ c (u) = 0, n + < m Bn+(u)dϕ 2 c (u) = u n+ B n+ (u)dϕ c (u) 0. n+ = 0 : 4.2. ([Wa48]) c = {c p } m > (4.2) (4.) B p (u) = u p + β n + + β nn, (p = 0,, 2,..., m) B 0 (u) =, B (u) = b + u, B p (u) = (b p + u)b p (u) a p B p 2 (u), p = 2, 3, 4,..., m; u p B p (u)dϕ c (u) = a 0 a a p, u p+ B p (u)dϕ c (u) = a 0 a a p (b + b b p+ ), p = 0,, 2,..., m (4.5) (4.6) (4.2) 4.3. {a p }, {b p } a p 0, (p =, 2, 3,... ) (4.5) (4.6) c 0, c,..., c 2m 53

61 4.2 Jacobi (4.5) B p (z) Jacobi a 0 b + z a b 2 + z a m b m + z (4.7) ( ) P := z p=0 c p z p+ (4.8) P (/z)b p (z) /z, /z 2,..., /z p u r B p (u)dϕ c (u) = 0, p = 0,, 2,..., p /z p+, /z p+2 u p B p (u)dϕ c (u) = a 0 a a p, u p+ B p (u)dϕ c (u) = a 0 a a p (b + b b p+ ) p A p (z) ( ) P B p (z) A p (z) = a 0a a p z z p+ a 0a a p (b + b b p+ ) z p+2 +, (4.9) B p (z) p = 0,, 2,..., m A p (z) B p (z) = c 0 z + c z c 2p z 2p + c 2p +. (4.0) z2p+ (3.32) Jacobi n 2n A n (z) B n (z) = p=0 c p z p+ + (p) c (n) 2n z 2n+ + (4.0) Jacobi p m =, 2, 3,... (4.2) {B m (z)} 2p P (/z) Jacobi p Jacobi {c p } Jacobi : 4.4. ([Wa48]) p = 0,, 2,... p 0 P (/z) Jacobi a p Jacobi p = a 0 a a p p, p = 0,, 2,..., ( = ) (4.) 54

62 P (/z) z p N a p = 0 p = 0 : 4.5. ([Wa48]) Jacobi p N a p 0 z (4.6) : (c 2 c ) (c 3 c 2 ) B p (z) = z p + β p z p + β p2 z p β pp, A p (z) = α p z p + α p z p β p,p ; β 00 =, c 0 β 00 = a 0, c β 00 = a 0 b = h 0 ; b = h 0 a 0, (β 0 β ) = ( b ), ( ) ( β 0 β β 0 β ) = a 0 a, = a 0 a (b + b 2 ) = h ; (c 4 c 3 c 2 ) b 2 = h 0 h, a 0 a0a ( (β 20 β 2 β 22 ) = (β 0 β ) (c 5 c 4 c 3 ) β 20 β 2 β 22 β 20 β 2 β 22 = a 0 a a 2, b b 2 ) = a 0 a a 2 (b + b 2 + b 3 ) = h 2 ; a (0 0 β 00 ), (4.2) b 3 = h h 2, a 0 a a 0 a a 2 (β 30 β 3 β 32 β 33 ) = (β 20 β 2 β 22 ) b b b 3 a 2 (0 0 β 0 β ), (α p0 α p α p2 ) = (β p0 β p β p2 ). (4.3) 55

63 c 0 c c p 0 c 0 c p c 0 2 (4.5) 2 (4.6) (4.3) (4.9) z 0, z, z 2,..., z 2p. Jacobi 4.6. c p =, p = 0,, 2,... p + ( ) z P = log z z = z + /2 z 2 + /3 z 3 + Jacobi β 00 =, c 0 β 00 = a 0 =, c β 00 = a 0 b = 2 ; (c 2 c ) (/4 /3) ( b = 2, (β 0 β ) = ( /2), ( ) ( β 0 β /2 ) = (/3 /2) /2 ) = a 0 a (b + b 2 ) = 2 = h ; = a 0 a = 2, a = 2 (/5 /4 /3) b 2 = 2, (β 20 β 2 β 22 ) = ( /2) (/6 /5 /4) /6 /6 ( = ( /6) /2 0 0 /2 = a 0 a a 2 = 80, a 2 = 5, = a 0 a a 2 (b + b 2 + b 3 ) = 20 = h 2; 56 ) (/2)(0 0 ),

64 b 3 = 2, (β 30 β 3 β 32 β 33 ) = ( 2/3 3/5 /20), (α 30 α 3 α 32 ) = ( /60). /2 + z /2 /2 + z /5 /2 + z = z 2 z + /60 z 3 3z 2 /2 + 3z/5 /20. z = log 2 = Stieltjes Stieltjes k z + + k 2 k 3 z + + k 4 Jacobi p =, 2, 3,... b p = 0 Stieltjes a 0 z a z a 2 z (4.4) a 0 z z 2 a a 2 z 2 a 3 (4.5) P (/z) (4.4) ( ) z P = c 0 z z 2 + c z 4 + c 2 z 6 + (4.6) /z z 2 z a 0 z a a 2 z a 3 (4.7) Stieltjes c 0 z + c z 2 + c 2 z 3 + (4.8) Jacobi c 0, 0, c, 0, c 2, 0, c 3,... c 0, c 0 0 c 0 0 c 0 c, 0 c 0 0, (4.9) c 0 c 2 57

65 0 c c 2 c p+ c 2 c 3 c p+2 Ω p =, c p+ c p+2 c 2p+ p = 0,, 2,... (4.20) (4.9) 0, 0 Ω 0, Ω 0, Ω, (4.8) Stieltjes (4.7) p 0, Ω p 0, p = 0,, 2,... (4.2) c 0, 0, c, 0, c 2, 0, c 3,... Jacobi (4.9) 0 Jacobi p = 0,, 2,... c 2p c p, c 2p+ 0 (4.2) b = 0, β = 0, b 2 = 0, β 2 = 0, b 3 = 0, β 3 = 0, β 33 = 0, b 4 = 0, β 4 = 0, β 43 = 0, b 5 = 0, β 5 = 0, β 53 = 0, β 55 = 0, (4.4) (4.8) Stieltjes (4.7) : 4.7. ([Wa48]) p = 0,, 2,... p 0, Ω p 0 (4.8) a p 0 Stieltjes 4.8. Stieltjes (4.7) p = 0,, 2,... a p > 0 p > 0, Ω p > 0 Jacobi (c.f. 4.5): 4.9. ([Wa48]) Stieltjes p N a p 0 z 58

66 4.4 Stieltjes Jacobi Stieltjes [St89] 4.0 (Stieltjes ). Jacobi b + z a b 2 + z a 2 b 3 + z (4.22) ( ) P = z p=0 ( ) p c p z p+ (4.23) c p+q = k 0p k 0q + a k p k q + a a 2 k 2p k 2q +, k 00 =, k rs = 0 if r > s k rs (r s) k k 0 k 0 0 k 02 k 2 k 22 0 = b a b a 2 b 3 0 k 0 k k 02 k 2 k k 03 k 3 k 23 k 33 0 (4.24) (4.25) : c p+q x p x q = (x 0 + k 0 x + k 02 x 2 + ) 2 p,q=0 + a (x + k 2 x 2 + k 3 x 3 + ) 2 + a a 2 (x 2 + k 23 x 3 + k 24 x 4 + ) 2 +. (4.26) p =, 2, 3,... a p 0 (4.26) P (/z) Jacobi (4.22) p =, 2, 3,... b = k 0, b p+ = k p,p+ k p,p (4.27) (4.23) Jacobi (4.22) Q(z) = p=0 c p z p p!, Q r(z) = 59 p=r k rp z p p!, (c 0 = ) (4.28)

67 Q(x + y) = Q(x)Q(y) + a Q (x)q (y) + a a 2 Q 2 (x)q 2 (y) + (4.29). p,q=0 c p+q x p p! yq q! = Q(x)Q(y) + a Q (x)q (y) + a a 2 Q 2 (x)q 2 (y) + y x (4.26) (4.25) C p+q := k 0p k 0q + a k p k q + a a 2 k 2p k 2q + C p,q+ = k 0p (b k 0q + a k q ) + a k p (k 0q + b 2 k q + a 2 k 2q ) + a a 2 k 2p (k q + b 3 k 2q + a 3 k 3q ) +, C p+,q = k 0q (b k 0p + a k p ) + a k q (k 0p + b 2 k p + a 2 k 2p ) + a a 2 k 2q (k p + b 3 k 2p + a 3 k 3p ) +. C p,q+ = C p+,q = C p+2,q = = C p+q+,0 = C p,q+2 = C p 2,q+3 = = C 0,p+q+. p + q = r + s C p,q = C r,s C p,q = C p+q C = p,q=0 C p+q x p x q C = (k 00 x 0 + k 0 x + k 02 x 2 + )(k 00 y 0 + k 0 y + k 02 y 2 + ) + a (k x + k 2 x 2 + k 3 x 3 + )(k y + k 2 y 2 + k 3 y 3 + ) + a a 2 (k 22 x 2 + k 23 x 3 + k 24 x 4 + )(k 22 y 2 + k 23 y 3 + k 24 y 4 + ) +. p, q > n x p, y q = 0 U 0 = k 00 x 0 + k 0 x + k 02 x k 0n x n, U = k x + k 0 x + + k n x n, U n = k nn x n, V 0 = k 00 y 0 + k 0 y + k 02 y k 0n y n, V = k y + k 0 y + + k n y n, V n = k nn y n 60

68 n p,q=0 C p+q x p y q = n a 0 a a p U p V p, (a 0 = ) p=0 k 00 k k 0n 0 k k n = 0 0 k nn C 0 C C p C C 2 C p+ p = C p C p+ C 2p = a p+ 0 a p ap 2 a 2 p a p. (4.23) Jacobi p =, 2, 3,... a p 0 p = a 0 a a p p, p = 0,, 2,..., ( = ). (4.30) x n = y n = 0, p, q > n + x p, y q = 0 p = k p,p+ a p+ 0 a p a2 p a p = (a 0 a a p )(b + b b p+ ) p (4.3) C C 2 C p+ C 2 C 3 C p+2 p = C p+ C p+2 C 2p+ (4.30) (4.3) (4.9) C p c p /z, /z 2,..., /z p p 0 c p a p, b p C p C p = c p, (p = 0,, 2... ) (4.24) (4.26) C p = c p (4.30) (4.3) Jacobi (4.22) sech k u e zu du = z + k z 2(k + ) + + z 3(k + 2) + (4.32) z 6

69 sech k u = kz2 2! + 4! k(3k + 2)z4 6! {k(5k2 + 30k + 6)}z 6 + (4.32) 0 sech k u e zu du ( = kz ! 4! k(3k + 2)z4 ) 6! {k(5k2 + 30k + 6)}z 6 + e zu du = e zu kz 2 du 0 0 2! e zu du + = z k k(3k + 2) + z3 z 5 (4.33) c = (c 0, c, c 2, c 3, c 4,... ) = (, 0, k, 0, k(3k + 2),... ), z k k(3k + 2) + z3 z 5 Jacobi sech k (x + y) = (cosh x cosh y + sinh x sinh y) k = sech k x sech k y ksech k+ x sinh x sech k+ y sinh y k(k + ) 2 sechk+2 x sinh 2 x sech k+2 y sinh 2 y = Q(x)Q(y) + a Q (x)q (y) + a a 2 Q 2 (x)q 2 (y) +, Q p (z) = sechk+p z sinh p z p! = zp z p+ p! + k p,p+ (p + )! +, a p = p(k + p ), k p,p+ = 0 Jacobi (4.25) Jacobi z + 2 t z + t t z + 2t t z + 3t

70 (4.25) t + t (4.24) = t t t 2t c 0 =, c 3 = t 2 + 4t +, t + t t 2 + 4t + t 2 + 0t + 7 3t c =, c 4 = t 3 + t 2 + t +, c 2 = t +, c 5 = t t t t +, c 6 = t t t t t Jacobi Jacobi Stieltjes z /z /z a 0 b z + a z 2 b 2 z + a 2z 2 b 3 z +, (4.34) a 0 a z a 2z (4.35) P (z) = c 0 + c z + c 2 z 2 + (4.36) 4.2. ([Vl0b]) Jacobi (4.34) M > 0 z M (4.36) M Stieltjes. {f p (z)} p=0 Jacobi ( Stieltjes ) z M k N p k f p (z) z M u (z) := f k (z), u p (z) := f k+p (z) f k+p 2 (z), p = 2, 3, 4,... 63

71 p= u p (z) = lim p f p (z) = u(z) z M u(z) z < M p= u p(z) p= u (n) p (z) = u n (z) f p (z) Jacobi (4.34) Jacobi (4.34) P (z) p n = 0,, 2,... u (n) p (0) = n!c n. u(z) = p= u (p) (0) z p = p! p=0 c p z p = P (z). p=0 6 Gauss Stieltjes 4.3. ([Vl04]) lim a p = 0, (a p 0) (4.37) p Stieltjes (4.35) f(z) f(z) K C lim a p = a 0 (4.38) p Stieltjes (4.35) Ω C\[/4a, ] f(z) K C\[/4a, ] [Wa48, pp.38] [Vl0b, pp.254] : 4.4. ([Vl0b]) {h p } p=0 h h = 0 L /4h K d(k, L) = inf{d(x, y) : x K, y L} > 0 h 0 K N(K) N + h nz + h n+z n > N(K) 64 + h n+2z + (4.39)

72 4.3. K (4.37) (4.38) /4a 4.4 N(K) N n > N(K) a n z a n+z a n+2z (4.40) K F n (z) 0 K 4.2 (4.40) F n (z) 4.9 F n (z) A m B m := a nz a n+z a n+2z Stieltjes (4.35) (n + m) A n (z) A m B m A n (z). B n (z) A m B m B n (z) A n (z) F n (z)a n (z) B n (z) F n (z)b n (z) K B n (z) F n (z)b n (z) 0 ( ) 65

73 5 Stieltjes Jacobi a p, b p Stieltjes Jacobi 0 dϕ(u) z u [St94a] ϕ(u) Van Vleck [Vl03] Jacobi 5. Stieltjes Stieltjes k p R, (p =, 2, 3,... ) Stieltjes (3.) Stieltjes 0 f(u)du z + u, f(u) > 0 p= L p z + x p, L p > 0, 0 x < x 2 < x 3 < u [a, b], (a, b R) f(u), ϕ(u) [a, b] n + u, u 2,..., u n u 0 := a u n+ := b : u 0 < u < u 2 < < u n+ k =, 2, 3,..., n + u k v k u k v k n+ S (u, v) := f(v k ) [ϕ(u k ) ϕ(u k )] k= := max{u k u k : k =, 2, 3,..., n + } 66

74 ϕ(u) f(u) Stieltjes lim S (u, v) = L L b a f(u)dϕ(u) Stieltjes [Wa48, pp.239] 5.. Stieltjes Stieltjes b a b b a a f(u)dϕ(u) ϕ(u)df(u) f(u)dϕ(u) = f(b)ϕ(b) f(a)ϕ(a) b a ϕ(u)df(u). (5.) Stieltjes f(u) ϕ(u) Stieltjes : b a b a {f (u) + f 2 (u)} dϕ(u) = f(u)d {ϕ (u) + ϕ 2 (u)} = b a b a b a f (u)dϕ(u) + f(u)dϕ (u) + b a b b k f(u)d {k 2 ϕ(u)} = k k 2 f(u)dϕ(u), a a f 2 (u)dϕ(u); f(u)dϕ 2 (u); k, k 2 : ( ) 2 [Wa48, p.244] 5.2. f(u) [a, b] ϕ(u) t > 0 f(u 0 ) > 0 ϕ(u 0 + t) > ϕ(u 0 t) u 0 (a, b) b a f(u)dϕ(u) > P (u) r 0 ϕ(u) r u 0 (a, b) t > 0 f(u 0 ) > 0 ϕ(u 0 + t) > ϕ(u 0 t) b a u k P (u)dϕ(u) = 0 for k = 0,, 2,..., n P (u) (a, b) n 67

75 Stieltjes. 5.2 Jacobi u p c p c p = u p dϕ c (u), p = 0,, 2,... {c p } Hausdorff {µ p } µ p = 0 u p dµ(u), p = 0,, 2,... µ(u) ( ) Stieltjes 5.4. (0, ) {µ p } 0 for u 0, µ(u 0) + µ(u + 0) µ(u) = for 0 < u <, 2 µ() for u > (5.2) µ p = 0 u p dµ(u), p = 0,, 2,... (5.3) µ(u) µ(u) (5.2) (5.3) Hausdorff [Wa48, p.259] 5.5. (, +) {d p } θ( ) for u <, θ(u 0) + θ(u + 0) θ(u) = for < u <, 2 θ() for u >, (5.4) θ(u) = θ( u) for < u < + (5.5) 68

76 d p = + u p dθ(u), p = 0,, 2,... (5.6) θ(u) 2 : 5.6. θ(u) u p := d 2p /2, (p = 0,, 2,... ) Hausdorff µ(u) = θ( u) Hausdorff µ(u) d 2p := 2µ p, (p = 0,, 2,... ) θ(u) = µ(u 2 ), (u 0) θ(u) = µ(u 2 ), (u < 0). µ p = 0 up dµ(u) = 0 u2p dµ(u 2 ) = 0 up dθ(u) = (/2) + u2p dθ(u) = d 2p /2 d 2p = + u2p dθ(u) = + t4p dµ(t 2 ) = + t2p dµ(t) = 2µ 2p d 2p+ = 0 Stieltjes 5.3 (5.6) d p = 0, (p = 0,, 2,... ) d p > 0 d 0 > 0 d 0 = 5.7. {d p } {d p } Stieltjes z ( g 0)g z ( g )g 2 (5.7) z 0 g p, (p = 0,, 2,... ) θ(u) + dθ(u) z u Stieltjes (5.7) (5.8). : {d p } p=0 Stieltjes (5.7) (5.7) I := [, +] d(k, I) = inf{d(x, y) : x K, y I} > 0 K [Wa48, p.255]: z ( g 0)g z ( g )g 2 + dθ(u) = z z u, (z ). 69

77 4.2 d p = zp+ z ( g 0)g z p=0 ( g )g 2 + = z /(z u) = p=0 up /z p+ dθ(u), (z ) z u d p = + u p dθ(u), p = 0,, 2,... : θ(u) {d p } p=0 d 0 = θ(u) {u p } m p=0 t > 0 p = 0,, 2,..., m θ(u p + t) > θ(u p t) (X 0 + X u + + X n u n ) 2 dθ(u) > 0, n = 0,, 2,..., m d 0 d d n d d 2 d n+ n = > 0, n = 0,, 2,..., m. d n d n+ d 2n : a 0 b + z a b 2 + z a 2 b 3 + z a m b m + z a 0 = d 0 = a, a 2,..., a m > 0 Jacobi 2m d 0, d, d 2,... (5.5) (5.8) z Jacobi z a z a 2 z a m z (5.9) p B p (z) c > 0 ++c c u r B p (u)dθ(u) = 0, r = 0,, 2,..., p, p m (5.9) 5.3 p < m B p (u) [ c, + + c] p u B p (u) > 0 u > B p (u) > 0 a p = B ( p( + c) + c B ) p+( + c), p =, 2, 3,..., m. (5.0) B p ( + c) B p ( + c) 70

78 a p > 0 0 < B p+( + c) B p ( + c) < + c, p = 0,, 2,..., m, (c > 0). B p+ ( + c) lim c 0 B p ( + c) = g p 0 g p, (p = 0,, 2,..., m ) (5.0) a p = ( g p )g p, (p =, 2, 3,..., m ) (5.9) (5.7) θ(u) n > 0, (n =, 2, 3,... ) (5.9) z a z a 2 z (5.7) /z ( g 0)g /z 2 ( g )g 2 /z 2 /z /z 2 =: z [Wa40]: 5.8. (0, ) Hausdorff µ p = 0 u p dµ(u), p = 0,, 2,... (5.) µ 0 µ z + µ 2 z 2 (5.2) µ 0 + ( g 0)g + ( g )g 2 + (5.3) µ g p, (p = 0,, 2,... ) (, + ) Hamburger [Wa48, pp.325] [Ha20] 7

79 5.9. {c p } p=0 c 0 = (, + ) c p = + u p dϕ(u), p = 0,, 2,... (5.4) ϕ(u) c 0 c c p c c 2 c p+ p = > 0, p = 0,, 2,... (5.5) c p c p+ c 2p : 5.0. (5.4) ϕ( ) = 0, ϕ(u) = [ϕ(u + 0) + ϕ(u 0)]/2, ( < u < + ) ϕ(u) Hamburger (, + ) Stieltjes [St94a]: 5.. {c p } p=0 [0, + ) c p = + 0 u p dϕ(u), p = 0,, 2,... (5.6) ϕ(u) c c 2 c p+ c 2 c 3 c p+2 Ω p = > 0, p = 0,, 2,... (5.7) c p+ c p+2 c 2p+ [Wa48, pp.327] Stieltjes Stieltjes [Wa48, p.329] [St94a] 5.2. {c p } p=0 (5.5) (5.7) (c p /z p+ ) Stieltjes k z k 2 k 3 z (5.8) k 4 Stieltjes (5.6) k p 72

80 6 Gauss Gauss Gauss 2 Stieltjes Gauss [Fr56] ([MeSc6, Kü02] ) ( g p )g p z 6. Gauss a, b C c {0,, 2, 3,... } F (a, b, c; z) = n=0 (a) n (b) n (c) n n! zn = + ab a(a + )b(b + ) z + z 2 a(a + )(a + 2)b(b + )(b + 2) + z 3 + c c(c + ) 2! c(c + )(c + 2) 3! (6.) (a) n Pochhammer (a) 0 := (a) n+ := (a) n (a+ n), (n = 0,, 2,... ) a b {0,, 2,... } F (a, b, c; z) 6.. F (,, 2; z) = z 2 + z2 3 z3 4 + = log( + z), z F ( k,, ; z) = + kz + 2 (k )z2 + 6 (k 2)(k )kz3 + = ( + z) k, ( z F 2, 2, 3 ) 2 ; z2 = z + 6 z z z7 + = arcsin(z), ( z F 2,, 3 ) 2 ; z2 = z z3 3 + z5 5 z7 7 + = arctan(z). (6.2) 73

81 (6.) z z/a a z 2 Φ(b, c; z) = + b b(b + ) b(b + )(b + 2) z + + c c(c + ) 2! c(c + )(c + 2) 3! + (6.3) (6.3) z z/b b z 2 Ψ(c; z) = + c z + c(c + ) 2! + c(c + )(c + 2) 3! + (6.4) (6.) z cz c Ω(a, b; z) = + abz + a(a + )b(b + ) z2 2! z 3 z 3 + a(a + )(a + 2)b(b + )(b + 2)z3 3! + (6.5) a b {0,, 2,... } 0 (6.) Gauss : F (a, b, c; z) = F (a, b +, c + ; z) a(c b) c(c + ) zf (a +, b +, c + 2; z). (6.6) F (a, b +, c + ; z) = F (a, b, c; z). a(c b) F (a +, b +, c + 2; z) z c(c + ) F (a, b +, c + ; z) (6.7) (6.7) a b b b + c c + F (a +, b +, c + 2; z) = F (a, b +, c + ; z). (b + )(c a + ) F (a +, b + 2, c + 3; z) z (c + )(c + 2) F (a +, b +, c + 2; z) (6.8) (6.7) (6.8) Gauss [Ga76]: a(c b) F (a, b +, c + ; z) = F (a, b, c; z) c(c + ) z (b + )(c a + ) z (c + )(c + 2) (6.9) (a + )(c b + ) (b + 2)(c b + 2) z z (c + 2)(c + 3) (c + 3)(c + 4). 74

82 {a p } z a 2p+ = (a + p)(c b + p) (c + 2p)(c + 2p + ), a 2p+2 = n = 0,, 2,... (b + p + )(c a + p + ), p = 0,, 2,... (c + 2p + )(c + 2p + 2) (6.0) P 2n (z) = P 2n+ (z) = F (a + n, b + n +, c + 2n + ; z), F (a + n, b + n, c + 2n; z) F (a + n +, b + n +, c + 2n + 2; z) F (a + n, b + n +, c + 2n + ; z) (6.) P n (z) = Gauss (6.9), a n zp n (z) n =, 2, 3,... (6.2) F (a, b +, c + ; z) F (a, b, c; z) = a z a 2z a n z a n zp n (z). (6.3) k N a, a 2,..., a k 0 a k = 0 F (a, b +, c + ; z)/f (a, b, c; z) z Gauss (6.3) p =, 2, 3,... a p 0 A p (z), B p (z) Gauss (6.3) p F (a, b +, c + ; z) F (a, b, c; z) F (a, b +, c + ; z) F (a, b, c; z) A n (z) B n (z) = = A n(z) a n zp n (z)a n (z) B n (z) a n zp n (z)b n (z). a a 2 a n z n B n (z) {B n (z) a n zb n (z)p n (z)} n A n (z)/b n (z) Gauss F (a, b +, c + ; z)/f (a, b, c; z) n Gauss Gauss Gauss : 6.2. ([Th67, Ri63, Vl0b]) Gauss (6.) C\[, ] F (a, b +, c + ; z)/f (a, b, c; z) F (a, b +, c + ; z)/f (a, b, c; z) C\[, ] Gauss K C\[, ] Gauss (6.) 75

83 . lim a (a + p)(c b + p) p = lim p p (c + 2p + )(c + 2p + ) = lim (b + p + )(c a + p + ) p (c + 2p + )(c + 2p + 2) = C 4.2 Gauss F (a, b+, c+; z)/f (a, b, c; z) Gauss F (a, b+, c+; z)/f (a, b, c; z) g 2p = c a + p c + 2p, g 2p+ = c b + p, p = 0,, 2,... (6.4) c + 2p + F (a, b +, c + ; z) = F (a, b, c; z) ( g 0)g z ( g )g 2 z ( g 2)g 3 z (6.5) b = 0 c c Gauss a F (a,, c; z) = c z c a c(c + ) z c(a + ) (c + )(c + 2) z 2(c a + ) (c + 2)(c + 3) z (6.6) {b p } z b 2p+ = (a + p)(c + p ) (c + 2p )(c + 2p), b 2p+2 = Gauss (6.6) h 2p = a + p c + 2p 2, h 2p = F (a,, c; z) = h z (p + )(c a + p), (c + 2p)(c + 2p + ) p = 0,, 2,.... (6.7) ( h )h 2 z p, c + 2p p = 0,, 2,... (6.8) ( h 2)h 3 z. (6.9) (6.4) 0 < g p <, (p = 0,, 2,... ).9 g F (a, b +, c + ; z) 0 F (a, b, c; z) 2 g 0 g 0 2 g 0 c a F (a, b +, c + ; z) c c F (a, b, c; z) c + a c + a, z (6.20) 76

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

77

77 O r r r, F F r,r r = r r F = F (. ) r = r r 76 77 d r = F d r = F (. ) F + F = 0 d ( ) r + r = 0 (. 3) M = + MR = r + r (. 4) P G P MX = + MY = + MZ = z + z PG / PG = / M d R = 0 (. 5) 78 79 d r = F d

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

, ( ) 2 (312), 3 (402) Cardano

, ( ) 2 (312), 3 (402) Cardano 214 9 21, 215 4 21 ( ) 2 (312), 3 (42) 5.1.......... 5.2......................................... 6.2.1 Cardano................................... 6.2.2 Bombelli................................... 6.2.3

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

I II

I II I II I I 8 I I 5 I 5 9 I 6 6 I 7 7 I 8 87 I 9 96 I 7 I 8 I 9 I 7 I 95 I 5 I 6 II 7 6 II 8 II 9 59 II 67 II 76 II II 9 II 8 II 5 8 II 6 58 II 7 6 II 8 8 I.., < b, b, c, k, m. k + m + c + c b + k + m log

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0 Tips KENZOU 28 7 6 P no problem 2 w = f(z) z w w z w = (z z ) b b w = log (z z ) z = z 2π 2 z = z w = z /2 z = re iθ θ (z = ) 2π 4π 2 θ θ 2π 4π z r re iθ re i2π = r re i4π = r w r re iθ/2 re iπ = r re

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a 009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin

More information

70 : 20 : A B (20 ) (30 ) 50 1

70 : 20 : A B (20 ) (30 ) 50 1 70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................

More information

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de Riemann Riemann 07 7 3 8 4 ). π) : #{p : p } log ) Hadamard de la Vallée Poussin 896 )., f) g) ) lim f) g).. π) Chebychev. 4 3 Riemann. 6 4 Chebychev Riemann. 9 5 Riemann Res). A :. 5 B : Poisson Riemann-Lebesgue

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

di-problem.dvi

di-problem.dvi III 005/06/6 by. : : : : : : : : : : : : : : : : : : : : :. : : : : : : : : : : : : : : : : : : : : : : : : : : 3 3. : : : : : : : : : : : : : : 4 4. : : : : : : : : : : : : : : : : : : : : : : 5 5. :

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

main.dvi

main.dvi 9 5.4.3 9 49 5 9 9. 9.. z (z) = e t t z dt (9.) z z = x> (x +)= e t t x dt = e t t x e t t x dt = x(x) (9.) t= +x x n () = (n +) =!= e t dt = (9.3) z

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

3 m = [n, n1, n 2,..., n r, 2n] p q = [n, n 1, n 2,..., n r ] p 2 mq 2 = ±1 1 1 6 1.1................................. 6 1.2......................... 8 1.3......................... 13 2 15 2.1.............................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information