Skew-Frobenius IISEC, JANT18 1

Size: px
Start display at page:

Download "Skew-Frobenius IISEC, JANT18 1"

Transcription

1 Skew-Frobenius IISEC, JANT18 1

2 Frobenius C/F p Jacobian J C (F p n) Frobenius ϕ p ϕ p Z[ϕ p ] End(J C ) ϕ p J C (F p ) J C (F p n) (J C (F p n)/j C (F p )) p g(n 1) g 2, p n J C (F p ) JANT18 2

3 skew-frobenius skew-frobenius [Iijima, Matsuo, Chao and Tsujii SCIS2002] C/F p : Y 2 = F (X) F p n 2, c F p n : C t /F p n : Y 2 = F t (X), F t (X) = c 2g+1 F (c 1 X) Skew-Frobenius : ϕp : J Ct τ J C ϕp J C τ 1 J Ct U = X l + l 1 i=0 u ix i V = k i=0 v ix i (U, V ) (Ū, V ) ; J Ct Mumford Ū = X l + l 1 i=0 c(1 p)(l i) u p i Xi V = k i=0 c(1 p) ( 2g+1 2 i) v p i Xi ϕ p ( 2g p F p n ) ϕ p ϕ p n = 2 i J Ct (F p n) C t JANT18 3

4 k p ng ϕ p : Skew-Frobenius kd = n 1 i=0 k i ϕi p (D), max ( k i ) p g 0 i<n D J Ct (F p n) ϕ n p (D) = D g = 3, n = 2, p = ϕ 6 p 13 ϕ 5 p 55 ϕ 4 p ϕ 3 p 6985 ϕ 2 p ϕ p = D = D ϕ p (D) JANT18 4

5 Skew-Frobenius D, ϕ 1 p (D),..., ϕ n 1 p (D) n kd = k 0 D + k 1 ϕ1 p (D) + + k n 1 n 1 ϕ p (D) (k 0, k 1,..., k n 1 ) multi-exponentiation Interleave [Möller SAC 2001] + Width w Non Adjacent Form (NAF w ) [Miyaji, Ono and Cohen ICICS 1997, Solinas CRYPTO 1997] Simultaneous [Yen, Laih and Lenstra IEE Proc. Comput. Digit. Tech 1994, Straus Amer. Math. Montly 1964] + Colexicographically Minimal Integer Representation (CMR w ) [Heuberger and Muir J. Math. Cryptol. 2007] n = 2, 4 skew-frobenius Interleave simultaneous JANT18 5

6 Interleave Input: (k 0,..., k n 1 ) Z n, D 0,..., D n 1 J Ct (F p n), w N >1 Output: n 1 i=0 k id i J Ct (F p n) 1: (k i,j ) 0 j<li k i NAF w, l max 0 i n 1 l i 2: {D 0, 3D 0,..., (2 (w 1) 1)D 0,..., D n 1,..., (2 (w 1) 1)D n 1 } 3: D sign(k m,l 1 ) k m,l 1 D m, m s.t. k i,l 1 = 0, i < m 4: for i = m to n 1 do 5: if k i,l 1 0 then 6: D D + sign(k i,l 1 )( k i,l 1 D i ) /* */ 7: for j = l 2 down to 0 do 8: D 2D 9: for i = 0 to n 1 do 10: if k i,j 0 then 11: D D + sign(k i,j )( k i,j D i ) /* */ 12: return D JANT18 6

7 -Interleave D = D ϕ p (D), w = = ( ) NAF4 ( ) NAF4 { D, 3D, 5D, 7D, ϕ p (D), 3 ϕ p (D), 5 ϕ p (D), 7 ϕ } p (D) (( 2 2 ( ( ) ϕ p (D) ) + 7D ) ) 3 ϕ p (D) 3D JANT18 7

8 Interleave m ϕ i p (D) = ϕ i p (md) m ϕ i p (D) (1 i < n) {D, 3D,..., (2 w 1 1)D,..., {D, 3D,..., (2 w 1 1)D} n 1 ϕ p (D),..., (2 w 1 1) n 1 ϕ p (D)} : w 1 2 l NAF w Hamming weight : nl 1 2 l 1 w + 1 l w+1 JANT18 8

9 Simultaneous Input: (k 0,..., k n 1 ) Z n, D 0,..., D n 1 J Ct (F p n), w N >1 Output: n 1 i=0 k id i J Ct (F p n) 1: ((k i,j ) 0 j<l ) 0 i<n (k i ) 0 i<n CMR w 2: /* { */ m i<n d id i 0 m < n 1, d i < 2 w 1, d m > 0} /* */ 3: D sign(k m,l 1 ) m i<n k i,l 1D 0 4: for j = l 2 down to 0 do 5: D 2D 6: if (k 0,j,..., k n 1,j ) (0,..., 0) then 7: D D + sign(k m,j ) m i<n k i,jd i /* */ 8: return D JANT18 9

10 -Simultaneous D = D ϕ p (D), w = = D, 2D, 3D, ϕ p (D), 2 ϕ p (D), 3 ϕ p (D), D ± ϕ p (D), D ± 2 ϕ p (D), D ± 3 ϕ p (D), CMR 3..., 3D ± ϕ p (D), 3D ± 2 ϕ p (D), 3D ± 3 ϕ p (D) 2 2 (( ( D ϕ ) p (D) ) ( D + 3 ϕ )) p (D) + D JANT18 10

11 Simultaneous n = 2 ϕ 2 p (D) = D id + j ϕ p (D) id j ϕ p (D) ϕ p ϕ p jd + i ϕ p (D), jd i ϕ p (D) 0 i, j 2 w 1 1 id + j ϕ p (D) {D, { 2D,..., (2 w 1 1)D}: 2 w 1 2 id + ϕ } p (jd) 1 i, j 2 w 1 1 : (2 w 1 1) 2 : (2 w 1 ) 2 2 w 1 1 : CMR w joint Hamming Weight JANT18 11

12 n = l 1 Inter. 2 w l 1 w + 1 (3 2 w + 4)(l 1) Simul. 2 2w 2 2 w l 1 3w2 w + 2 w + 4w 4 JANT18 12

13 Simultaneous n = 4 ϕ 4 p (D) = D id + j ϕ p (D) + k ϕ 2 p (D) + l ϕ 3 p (D), 2w 1 < i, j, k, l < 2 w 1 ± i j k l ϕ p ± l i j k ϕ p ± k l i j ϕ p ± j k l i : 1 8 ((2w 1) 4 1) 1 : CMR w joint Hamming Weight JANT18 13

14 n = 4 4l 1 Inter. (2 w 2 1) 1 l 1 w Simul. 8 ((2w 1) 4 9) 0 l 1 cf. cheub/publications/ colexi/expectation d 4 l odd u odd.txt JANT18 14

15 g = 3 [Nagao JJIAM 2007, Gaudry, Thomé, Thériault and Diem Math. Comp. 2007] Double large prime attack g 2 3 k n = 2, log 2 p = 40 n = 2, log 2 p = 30 n = 4, log 2 p = 20 n = 4, log 2 p = 15 n = 2, log 2 p = 56 n = 2, log 2 p = 42 n = 4, log 2 p = 28 n = 4, log 2 p = 21 l = log 2 p g JANT18 15

16 k: 160, g = 2 n = 2 n = Interleave w = Simultaneous w = Interleave w = Simultaneous w = JANT18 16

17 k: 160 g 2 3 n = 2 n = 4 Interleave w = Simultaneous w = Interleave w = Simultaneous w = k NAF w : JANT18 17

18 k: 224 g 2 3 n = 2 n = 4 Interleave w = Simultaneous w = Interleave w = Simultaneous w = k NAF w : JANT18 18

19 n = 2, 4 Interleave Simultaneous skew-frobenius Interleave Simultaneous w k: 160,224 Interleave Simultaneous JANT18 19

2 2 ( M2) ( )

2 2 ( M2) ( ) 2 2 ( M2) ( ) 2007 3 3 1 2 P. Gaudry and R. Harley, 2000 Schoof 63bit 2 8 P. Gaudry and É. Schost, 2004 80bit 1 / 2 16 2 10 2 p: F p 2 C : Y 2 =F (X), F F p [X] : monic, deg F = 5, J C (F p ) F F p p Frobenius

More information

index calculus

index calculus index calculus 2008 3 8 1 generalized Weil descent p :, E/F p 3 : Y 2 = f(x), where f(x) = X 3 + AX + B, A F p, B F p 3 E(F p 3) 3 : Generalized Weil descent E(F p 4) 2 Index calculus Plain version Double-large-prime

More information

:00-16:10

:00-16:10 3 3 2007 8 10 13:00-16:10 2 Diffie-Hellman (1976) K K p:, b [1, p 1] Given: p: prime, b [1, p 1], s.t. {b i i [0, p 2]} = {1,..., p 1} a {b i i [0, p 2]} Find: x [0, p 2] s.t. a b x mod p Ind b a := x

More information

2 1,384,000 2,000,000 1,296,211 1,793,925 38,000 54,500 27,804 43,187 41,000 60,000 31,776 49,017 8,781 18,663 25,000 35,300 3 4 5 6 1,296,211 1,793,925 27,804 43,187 1,275,648 1,753,306 29,387 43,025

More information

.......p...{..P01-48(TF)

.......p...{..P01-48(TF) 1 2 3 5 6 7 8 9 10 Act Plan Check Act Do Plan Check Do 11 12 13 14 INPUT OUTPUT 16 17 18 19 20 21 22 23 24 25 26 27 30 33 32 33 34 35 36 37 36 37 38 33 40 41 42 43 44 45 46 47 48 49 50 51 1. 2. 3.

More information

SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [

SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [ SQUFOF SQUFOF NTT 2003 2 17 16 60 Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) 60 1 1.1 N 62 16 24 UBASIC 50 / 200 [ 01] 4 large prime 943 2 1 (%) 57 146 146 15

More information

#2 (IISEC)

#2 (IISEC) #2 (IISEC) 2007 10 6 E Y 2 = F (X) E(F p ) E : Y 2 = F (X) = X 3 + AX + B, A, B F p E(F p ) = {(x, y) F 2 p y2 = F (x)} {P } P : E(F p ) E F p - Given: E/F p : EC, P E(F p ), Q P Find: x Z/NZ s.t. Q =

More information

Kumagai09-hi-2.indd

Kumagai09-hi-2.indd CSR2009 CONTENTS 1 2 3 4 5 6 7 8 9 10 350 11 12 13 14 15 16 17 18 Do Check Action Plan 19 20 INPUT r r r r k k OUTPUT 21 22 Plan Action Check Do 23 24 25 26 27 28 16:50 7:30 8:00 8:30 9:30 10:00 18:00

More information

(1)2004年度 日本地理

(1)2004年度 日本地理 1 2 3 4 1 2 3 4 5 6 7 8 9 10 11 12-5.0-5.1-1.4 4.2 8.6 12.4 16.9 19.5 16.6 10.8 3.3-2.0 6.6 16.6 16.6 18.6 21.3 23.8 26.6 28.5 28.2 27.2 24.9 21.7 18.4 22.7 5 1 2 3 4 5 6 7 8 9 10 11 12 2.2 3.5 7.7 11.1

More information

2

2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 10 6 15 7 13 7 14 13 31 13 13 9 30 13 10 14 13 10 25 13 11 29 13 11 30 14 111 14 223 14 2 23 3 17 14 3 17 14 3 21 14 3 26 13 11 29 5 2 2 14 1 11 1 3 28 1 3 14 2 28 1 28

More information

rule2018.dvi

rule2018.dvi 30 2018 30 4 21 ( RC ) 1. 2. 2018 6 16 ( ) 2018 6 17 ( ) : (URL: http://www.kagakukan.sendai-c.ed.jp) 981 0903 4 1 Tel: 022-276-2201, Fax: 022-276-2204 3. : : : 2018 5 11 ( ) (ID ) 2018 5 14 ( ) () 2018

More information

2009 1. 2. 3. 4. 5. 2 2009 CONTENTS 4 6 8 TOPIC 01 10 TOPIC 02 11 TOPIC 03 12 TOPIC 04 14 TOPIC 05 15 TOPIC 06 15 TOPIC 07 16 18 18 19 20 21 22 22 22 23 24 25 26 27 27 27 28 29 30 TOPIC 08 16 TOPIC 09

More information

untitled

untitled -- -- -3- % % % 6% % % 9 66 95 96 35 9 6 6 9 9 5 77 6 6 5 3 9 5 9 9 55 6 5 9 5 59 () 3 5 6 7 5 7 5 5 6 6 7 77 69 39 3 6 3 7 % % % 6% % % (: ) 6 65 79 7 3 36 33 9 9 5 6 7 3 5 3 -- 3 5 6 76 7 77 3 9 6 5

More information

untitled

untitled NO. 2007 10 10 34 10 10 0570-058-669 http://www.i-nouryoku.com/index.html (40 ) () 1 NO. 2007 10 10 2.2 2.2 130 70 20 80 30 () () 9 10 () 78 8 9 () 2 NO. 2007 10 10 4 7 3 NO. 2007 10 10 40 20 50 2 4 NO.

More information

6 1873 6 6 6 2

6 1873 6 6 6 2 140 2012 12 12 140 140 140 140 140 1 6 1873 6 6 6 2 3 4 6 6 19 10 39 5 140 7 262 24 6 50 140 7 13 =1880 8 40 9 108 31 7 1904 20 140 30 10 39 =1906 3 =1914 11 6 12 20 1945.3.10 16 1941 71 13 B29 10 14 14

More information

ê ê ê 2007 ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê b b b b b b b b b b b ê ê ê b b b b ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê b

More information

- 1 - - 0.5%5 10 10 5 10 1 5 1

- 1 - - 0.5%5 10 10 5 10 1 5 1 - - - 1 - - 0.5%5 10 10 5 10 1 5 1 - 2 - - - - A B A A A B A B B A - 3 - - 100 100 100 - A) ( ) B) A) A B A B 110 A B 13 - 4 - A) 36 - - - 5 - - 1 - 6-1 - 7 - - 8 - Q.15 0% 10% 20% 30% 40% 50% 60% 70%

More information

genus 2 Jacobi Pila Schoof 42 Adleman Huang 2 19 3 Gaudry Harley l genus 2 Jacobi 17 Jacobi Spallek 52 theta CM Jacobi genus2 Wang 61 Weber 60 Wamelen

genus 2 Jacobi Pila Schoof 42 Adleman Huang 2 19 3 Gaudry Harley l genus 2 Jacobi 17 Jacobi Spallek 52 theta CM Jacobi genus2 Wang 61 Weber 60 Wamelen 6 2000 Journal of the Institute of Science and Engineering5 Chuo University Jacobi CM Type Computation of CM Type of Jacobian Varieties Jacobi CM CM Jacobi CM type reflex CM type Frobenius endomorphism

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

.o...EPDF.p.indd

.o...EPDF.p.indd Social and Environmental report 28 1 2 3 5 7 9 11 12 17 18 19 22 24 25 26 27 28 29 3 2 3 4 5 6 7 4 1 2 5 3 6 8 9 1 1 2 3 4 11 12 1 2 3 4 13 14 1 2 3 4 5 6 7 8 15 16 17 1 2 3 18 19 1 2 3 4 2 21 1 2 3 4

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

フカシギおねえさん問題の高速計算アルゴリズム

フカシギおねえさん問題の高速計算アルゴリズム JST ERATO 2013/7/26 Joint work with 1 / 37 1 2 3 4 5 6 2 / 37 1 2 3 4 5 6 3 / 37 : 4 / 37 9 9 6 10 10 25 5 / 37 9 9 6 10 10 25 Bousquet-Mélou (2005) 19 19 3 1GHz Alpha 8 Iwashita (Sep 2012) 21 21 3 2.67GHz

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

IV (2)

IV (2) COMPUTATIONAL FLUID DYNAMICS (CFD) IV (2) The Analysis of Numerical Schemes (2) 11. Iterative methods for algebraic systems Reima Iwatsu, e-mail : iwatsu@cck.dendai.ac.jp Winter Semester 2007, Graduate

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

野岩鉄道の旅

野岩鉄道の旅 29th 5:13 5:34 5:56 6:00 6:12 6:20 6:21 6:25 6:29 6:31 6:34 6:38 6:40 6:45 6:52 6:56 7:01 7:07 7:11 7:32 7:34 7:50 7:58 8:03 8:17 8:36 8:44 5:50 5:54 6:15 6:38 6:39 6:51 6:59 6:59 7:03 7:08 7:08 7:11 7:15

More information

2009 4

2009 4 2009 4 LU QR Cholesky A: n n A : A = IEEE 754 10 100 = : 1 / 36 A A κ(a) := A A 1. = κ(a) = Ax = b x := A 1 b Ay = b + b y := A 1 (b + b) x = y x x x κ(a) b b 2 / 36 IEEE 754 = 1 : u 1.11 10 16 = 10 16

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

P05.ppt

P05.ppt 2 1 list0415.c forfor #include int i, j; for (i = 1; i

More information

26 () () (1) (350ml ) (4 ) (2) 10 (3) RC

26 () () (1) (350ml ) (4 ) (2) 10 (3) RC 27 2015 27 2 3 ( 1.0 ) 1. 2. 2015 6 13 ( ) 2015 6 14 ( ) : (URL: http://www.kagakukan.sendai-c.ed.jp) 981 0903 4 1 Tel: 022-276-2201, Fax: 022-276-2204 3. : : : 2015 5 6 ( ) (ID ) 2015 5 11 ( ) () 2015

More information

ï ñ ö ò ô ó õ ú ù n n ú ù ö ò ô ñ ó õ ï

ï ñ ö ò ô ó õ ú ù n n ú ù ö ò ô ñ ó õ ï ï ñ ö ò ô ó õ ú ù n n ú ù ö ò ô ñ ó õ ï B A C Z E ^ N U M G F Q T H L Y D V R I J [ R _ T Z S Y ^ X ] [ V \ W U D E F G H I J K O _ K W ] \ L M N X P S O P Q @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ r r @ @

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

1 2 1.1............................................ 3 1.2.................................... 7 1.3........................................... 9 1.4..

1 2 1.1............................................ 3 1.2.................................... 7 1.3........................................... 9 1.4.. 2010 8 3 ( ) 1 2 1.1............................................ 3 1.2.................................... 7 1.3........................................... 9 1.4........................................

More information

平成18年度 第1回 海域ワーキンググループ 議事録 [PDF]

平成18年度 第1回 海域ワーキンググループ 議事録 [PDF] - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - adjacent area - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 - - 27 - - 28 -

More information

2017 02 18 1 3 1.1............................... 4 1.2............................. 5 1.3 Minimum Output Entropy /........ 7 2 10 2.1 Asymptotic Geometric Analysis......... 11 2.2.................. 17

More information

., White-Box, White-Box. White-Box.,, White-Box., Maple [11], 2. 1, QE, QE, 1 Redlog [7], QEPCAD [9], SyNRAC [8] 3 QE., 2 Brown White-Box. 3 White-Box

., White-Box, White-Box. White-Box.,, White-Box., Maple [11], 2. 1, QE, QE, 1 Redlog [7], QEPCAD [9], SyNRAC [8] 3 QE., 2 Brown White-Box. 3 White-Box White-Box Takayuki Kunihiro Graduate School of Pure and Applied Sciences, University of Tsukuba Hidenao Iwane ( ) / Fujitsu Laboratories Ltd. / National Institute of Informatics. Yumi Wada Graduate School

More information

三石貴志.indd

三石貴志.indd 流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

Contents P. P. 1

Contents P. P. 1 Contents P. P. 1 P. 2 TOP MESSAGE 3 4 P. P. 5 P. 6 7 8 9 P. P. P. P. P. 10 11 12 Economy P. P. 13 14 Economy P. 1,078 1,000 966 888 800 787 716 672 600 574 546 556 500 417 373 449 470 400 315 336 218 223

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

G H J(g, τ G g G J(g, τ τ J(g 1 g, τ = J(g 1, g τj(g, τ J J(1, τ = 1 k g = ( a b c d J(g, τ = (cτ + dk G = SL (R SL (R G G α, β C α = α iθ (θ R

G H J(g, τ G g G J(g, τ τ J(g 1 g, τ = J(g 1, g τj(g, τ J J(1, τ = 1 k g = ( a b c d J(g, τ = (cτ + dk G = SL (R SL (R G G α, β C α = α iθ (θ R 1 1.1 SL (R 1.1.1 SL (R H SL (R SL (R H H H = {z = x + iy C; x, y R, y > 0}, SL (R = {g M (R; dt(g = 1}, gτ = aτ + b a b g = SL (R cτ + d c d 1.1. Γ H H SL (R f(τ f(gτ G SL (R G H J(g, τ τ g G Hol f(τ

More information

Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu University 1 Erdös-Rényi Erdös-Rényi 1959 Erdös-Rényi [4] 2006 Linial-Meshulam [14] 2000

Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu University 1 Erdös-Rényi Erdös-Rényi 1959 Erdös-Rényi [4] 2006 Linial-Meshulam [14] 2000 Tomoyuki Shirai Istitute of Mathematics for Idustry, Kyushu Uiversity Erdös-Réyi Erdös-Réyi 959 Erdös-Réyi [] 6 Liial-Meshulam [] (cf. [, 7,, 8]) Kruskal-Katoa Erdös- Réyi ( ) Liial-Meshulam ( ) [8]. Kruskal

More information