122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin

Size: px
Start display at page:

Download "122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin"

Transcription

1 121 6,.,,,,,,. 2, ,.., M, A(2 R)., Oxy ( ' ' ), f Oxy, O 1 x 1 y 1 ( ' ' ). A (p q), A 0 (p q). y q A q q 0 y 1 q A O 1 p x 1 O p p 0 p x 6.1: ( ), 6.1,

2 122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin ; q cos + q ,,,. 31, ( x 0 = ax + by + x 0 (6.3) y 0 = cx + dy + y 0, (x y) (x 0 y 0 ). 6.3 a, b, c, d. (1 1) )., c d (1 0) (0 1), 6.3, (a c) (b d), 2 ad ; bc.,,.,. a b, 6.2 = 1 1=2. c d 0 1, ab ; bc 6= 0 (ad ; bc a b 6.2: 32, ad ; bc 6= 0. A(2 R).

3 O, GL(2 R). 33 ( x 0 = ax + by (6.4) y 0 = cx + dy. GL(2 R) ad ; bc 6= R 2., A(2 R)=R 2 = GL(2 R)., (p.13 ). C AB k : l, C C 0 k : l A 0 B 0. A(2 R),,.,.,,,., 1 : 3 1, 2:1 ( 10 )., , 4 (p.15).,, 1. x 7! ax,, x 7! ax + b. a 6= 0, GL(1 R), A(1 R). R,... GL(1 C ), A(1 C ) (6.3 ) (a) G = GL(2 Z 2 )., G. (b) A(1 Z 3 ). 6.2.,,., A AO (O, ), A 0 ( 6.3).,., ` '.

4 :,.,. 34 l, l 0 2, S ( 6.4a)., A 2 l 2 SA, l 0 A 0 p : l! l , 2 S, p : 1! 2 ( 6.4b ). A A B B S a b 6.4: (a) (b) 35,... (, )..,,., 4., 2, 3., 6.4, B A C, B 0 A A 0 C C 0., 4 4 p.

5 A, B, C, D, (A B C D) = AC BC : AD BD :, 4 AC, BC, AD, BD,,. 13,, (A B C D) =(A 0 B 0 C 0 D 0 ). 2, 6.5, S 4SAC = 1 2 h AC = 1 SA SC sin \ASC 2 S 4SBC = 1 2 h BC = 1 SB SC sin \BSC 2 S 4SAD = 1 2 h AD = 1 SA SD sin \ASD 2 S 4SBD = 1 2 h BD = 1 SB SD sin \BSD: 2 6.5:,, (A B C D) = AC BC : AD BD = S 4SAC S 4SBC : S 4SAD = = S 4SBD SA SC sin \ASC SB SD sin \BSD SB SC sin \BSC SA SD sin \ASD sin \ASC sin \BSC : sin \ASD sin \BSD : (A 0 B 0 C 0 D 0 )= sin \A0 SC 0 : sin \A0 SD 0 sin \B 0 SC 0 sin \B 0 SD 0., (A B C D) =(A 0 B 0 C 0 D 0 ).

6 A, B, C, D, ( ) 4, A 0, B 0, C 0, D 0 A, B, C, D., A 0 B 0 =6cm, B 0 C 0 =2 cm., C 0 D 0.. C 0 D 0 = x (A B C D) = AC BC : AD BD = 2 1 : 3 2 = 4 3 : (A 0 B 0 C 0 D 0 )= A0 C 0 : A0 D 0 = 8 B 0 C 0 B 0 D 0 2 : x +8 x +2 : (A B C D) =(A B 0 C 0 D 0 ),, x =1. 8(x +2) 2(x +8) = 4 3 :,. p : l! l 0 l l 0, x l M, p M M 0 2 l 0 x 0., l 3 A B C, a, b, c.,, (A B C M) =(A B 0 C 0 M 0 ) c ; a c ; b : x ; a x ; b = c0 ; a 0 c 0 ; b 0 : x0 ; a 0 x 0 ; b 0 :, p(a) =a 0, p(b) =b 0, p(c) =c 0, p(d) =d 0., x x 0. p. x 0 = mx + n px + q : (6.5), m, n, p, q a, b, c, a 0, b 0, c , mq ; np 6= 0 (mq ; np, m n ). f : x 7! mx + n px + q p q, 1 1., p 6= 0, x = ;q=p f.

7 f. 1 1 ( ),, R = R [1 (p.104 ) a 0 = 1 for 8a 6= 0 ( m 1+ n m p 1+ q = p if p 6= 0, 1 if p =0., mq ; np 6= 0 f(x) = mx+n px+q R , R ff : R! Rjf (x) = mx+n mq; np 6= 0 m n p q 2 Rg, px+q. ( ), PGL(1 R) , R 4. 6:5, 3, 3., 3,., 2 x 7! 1=x, x 7! 1 ; x ( 74, 43 ), x 7! 1=x, x 7! (x ; 1)=(x +1), D ,.,, PGL(2 R)., A(2 R) A(2 R), PGL(2 R).,. 8>< >: x0 = 14, ( ),. a 1 x + b 1 y + c 1 y 0 = a 0 x + b 0 y + c 0 2x + b 2 y + c (6.6) 2 a 0 x + b 0 y + c 0

8 PGL(2 R), 3 4.,.,,,.,.,,.,.. D E F B C A 6.6: Pappus 141. Pappus ( 6.6 ): 3 A, B, C 3 D, E, F, 3 AE \ BD, AF \ CD, BF \ CE , 1.,,. 37,.,.. ;;! 38 A, k 6= 0 HA k, M AM 0 = k ;;! AM M 0 ( 6.7 ).,. z, z 7! kz., k 0., 0 R?.

9 A 6.7: 142. GL(2 R)=R? = PGL(1 R). =.,. 51 ABC.. 3 ABC ( 6.8 KLMN ). 6.8: 6.8, A, KLMN 3 ABC. HA k N, BC E k ABC 3 ABC. 1,., l l..

10 : 52 S 2 M, N. MN 1 g MN S 1, S 2, ( 6:9). A i = S i \ g MN, Bi = S i \ MN, A 1 B 1, A 2 B 2,, 1.. A i B i C., C 6.9, MN, S l. A 1, k = OA 1 : O 1 A 1 h 1. h 1 S 1 ( O 1 ) S., S 1 MN MN, S l. B 1 = S 1 \ MN, h 1 (B 1 )=C., S i , 2 4 A, B, C, D, AB =2BC = CD.,, 2 3, 1. 9 ( ) Euler ABC, 9 ABC (3 ), (3 ), KA, KB, KC (3 ),, K ABC.,. 39, ( 6.10 ).,,. a, jaj, arg a (2.4)..

11 A 6.10: 6.11: ABC 53 ABC, P, Q \AP B = \BQC = 90, \ABP = \CBQ = 4ABC 2 ( 6.11)., 4PQK., K AC.. 2 F P = H k P R d P F Q = H 1=k Q R d Q., d =90 k = PB : PA = QB : QC. F P (A) =B F Q (B) =C, (F Q F P )(A) = C., 2,, ( )., F = F Q F P 180. F (A) =C, K. F (K) = K. F P (K) = K 1, F Q (K 1 ) = K 2 KPK 1, QKK 1 K 1., 2 ( 6.12)., PQ? KK 1, \KPQ = \KQP =., 2, 2,., 2..,.

12 : 16, z, z 7! pz + a (6.7) z 7! pz + a (6.8). p, a, p 6= , 6.8 (i.e. ), (i.e. )., w = pz + a (jpj =1) 2.3., F, F k (, ),, H k., H ;1 F.,, w = pz + a (jpj =1)., F = H (H ;1 F ) w = k(pz + a).., pz + a, k = jpj (, ), j(pz 1 + a) ; (pz 2 + a)j = jpjjz 1 ; z 2 j: z 7! z,. 6.1, 16,, A(1 C )., C., 2 pz + a(, p 6= 1), 1.

13 pz +a, (, )., pz 0 + a = z 0 z 0. p 6= 1, 1 z 0 = a=(1 ; p).,., pz + a = p z ; a 1 ; p + a 1 ; p, 1=(1 ; p), jpj, arg p.,., 53 F 1, F 2, F 1 F 2 (F 1 )(F 2 ), F 1 F 2 (F 1 )+(F 2 )., w = pz + a, u = qw + b 2, u = q(pz + a)+b = pqz +(aq + b):, jpqj = jpjjqj, arg(pq) = arg p + arg q , 1, 1,, ;! ;;! AB 6= CD 4 A, B, C, D, ABE CDE E ABC,. M, N, P AB, BC, CA, NP? CM, jnpj = jcmj S, 2 A, B S 1, S 2., AB, S 1 S 2.. AB O 1 O 2 K ( 6:13 ). K S 1 S 2.,. f, M KM KM 0 = KA KB = const M 0 2 KM,, f(a) =B, f(b) =A.

14 : 3 S, f., (, ) S, K K 2 L, L 0 S l, jkljjkl 0 j, l. M 2 S 2. M 0 = f 0 (M), KM KA KM 0 KB = KM : M 1 S 2 KM., KM KM 1 = C = const KM 0 = KA KB C KM 1 :, M 0 K M 1!, f S 2,. S 0. S 2 2 B, B S, S 0 2 A A S. S 0 = S 2 1., S 1 S 2, K., 54 f. 40 O, R T, M OMOM 0 = R 2 OM M 0., T, T., T T. H. Petard A contribution to the mathematical theory of big game hunting.,

15 : (H. Petard )..,.,., 1 1., O, 1 1. M O, M M 0 O., p.127, 1 1 (\ ")., 1 1.., z z zz = jzj 2., 0, r z 7! r 2 =z O. 54, f, f ,.,. ( )., a, 4 2., 4 1.

16 : 4. A( 1 ) ( ) f.,. S 0 i = f(s i)(n = ). S 0 1 S0 2, S0 3 S0 4. S 0 i, S i., S 0 1 S0 2, S 0 2 S0 3, S0 3 S0 4, S0 4 0 S 1., S 0 1 S0 2., S 1 S 2 1,., f 6.15a, 6.15b., 3 B 0, C 0, D 0, 3 B 0, C 0, D 0 B, C, D A. 3 B 0, C 0, D 0. S 3 S 4 S 0 1 S 0, 2 S0 1 S0 2 M, N, MC 0 D 0 NC 0 B 0 2 (i.e. MD 0 = MC 0 NB 0 = NC 0 ), \M = \L., \D 0 C 0 M = 1=2(180 ; \D 0 MC) = 1=2(180 \C 0 NB) = \B 0 C 0 N:, 3 B 0, C 0, D , 55, 2, , 2., ,.., 2 :

17 PGL(1 C )(p.127 ),.. 56 C O OB, A OB., 2 C, A.,,,.. 2. O 0, B 1., A 1=2. A, f 1 (z) =1; z:, z w jzjjwj =1,argz = arg w., C, f 2 (z) =1=z: 2 f 1, f 2., f 1 f 2, f 1 f 2. z, z f 1, f 2, f 1, z, 1 ; z, 1=(1 ; z), z=(z ; 1), 1 ; 1=z, 1=z, z, 1; z, 1=(1 ; z), z=(z ; 1), 1 ; 1=z, 1=z., 1=z f 2 z,.,, 12 (G ), G ,. G, G. f 1 C C 0, f 2 C 0 MM 0 ( 6.16 ). OB. OB 2 z 7! z (2 G)., 12.,, G. 12, 1 G., G 1.

18 : z 7! 1 ; z z 7! 1=z , G. 12., (1=2 2 ; ) 2 1 (1=2 i p 3=2 M, M 0 ) , 18. G, 6 3., 3., (, PGL(1 C ), z z ). 17 8s, b, c, d 2 C s:t: ad ; bc 6= 0, 1. w = az + b cz + d ( ),. 2. w = az + b cz + d ( ),. c =0, 2 a 1 z + b 1.,. 1 a 1 z + b 1, z, z! z.

19 c 6= 0, az + b cz + d az + b 1 cz + d = p + z z ; 0 + r z 0., z 0 = ; d=c, p =(bc ; ad)c 2, r = a=c ; pz 0., z 7! z + z 0 ( O, 1 ).,, z 0, 1., z 7! pz + r,. (az + b)=(cz + d), z 7! z,.,.,,.,, ( ) G,., H, G, G=H. 17,., ( ).,.. 1,.,.,,., P (z)=q(z)., P, Q. 156., w az = + b cz + d a b c d 2 R ad ; bc > 0 (6.9) w az = + b cz + d a b c d 2 R ad ; bc < 0: (6.10) , 6.10 w, y>0. z = x + iy, w = u + iv, 6.9, u = v = (ax + b)(cx + d)+acy2 (cx + d) 2 + y 2 (ad ; bc)y (cx + d) 2 + y : 2

20 140 6, v y L H = f(x y)jy >0g 6.9, H Lobachevsky, L H.., L, (, ). H, L., ( ) Ox ( ) ( 6.17 ). H 2 1, L-, Euclid. 6.17: L; L, Euclid.,., L- (L- ) L,., Euclid,. Euclid, 2,. a a A, A a L- l L- A. A 4 a 1 ( l), a 3 ( k, n, m)., Lobachevsky,,. Lobachevsky. 2 L- Euclid (, L- L- ) , 3 A, B, C (0 7), (4 3), (0 5)., Lobachevsky ABK., L; BK O, L; AB M.

21 : 2 L; 6.19:. L; ABK AK Oy. KB O. AB M M. K., \K =90 : 2 B., \B = \OBM: \A = \OMA: M tan \OMA = 7 3 tan \OBM = tan(\bob 1 ; \BMB 1 )= 9 37 tan(\a + \B) = ; = :

22 142 6 tan \A + \B > 0, \A + \B < 90., L- ABK 180. i.e. \A + \B + \K < 180., Lobachevsky ( ),., ABC ABK 2, ABC ABK., 1 - U U = az + b cz + d j a b c d 2 Z : U, 2 S : z 7! ;1=z, T : z 7! 1+z: 158. S 2 = ST 3 = id. 6.20, U =fz = x + yijjzj1 jxj 1 2 g T, S, T ;1, TS, ST. 6.20:, L- ( Lobachevsky, )., U.,, U Lobachevsky.,.

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7

繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7 30キ36ヲ0 7 7 ュ6 70キ3 ョ6ァ8056 50キ300 縺6 5 ッ05 7 07 ッ 7 ュ ッ04 ュ03 ー 0キ36ヲ06 7 繖 70キ306 6 5 0 タ0503070060 08 ョ0303 縺0 ァ090609 0403 閨0303 003 ァ 0060503 陦ァ 06 タ09 ァ タ04 縺06 閨06-0006003 ァ ァ 04 罍ァ006 縺03 0403

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

学習の手順

学習の手順 NAVI 2 MAP 3 ABCD EFGH D F ABCD EFGH CD EH A ABC A BC AD ABC DBA BC//DE x 4 a //b // c x BC//DE EC AD//EF//BC x y AD DB AE EC DE//BC 5 D E AB AC BC 12cm DE 10 AP=PB=BR AQ=CQ BS CS 11 ABCD 1 C AB M BD P

More information

案内(最終2).indd

案内(最終2).indd 1 2 3 4 5 6 7 8 9 Y01a K01a Q01a T01a N01a S01a Y02b - Y04b K02a Q02a T02a N02a S02a Y05b - Y07b K03a Q03a T03a N03a S03a A01r Y10a Y11a K04a K05a Q04a Q05a T04b - T06b T08a N04a N05a S04a S05a Y12b -

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a [] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

000 001

000 001 all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic

More information

48 * *2

48 * *2 374-1- 17 2 1 1 B A C A C 48 *2 49-2- 2 176 176 *2 -3- B A A B B C A B A C 1 B C B C 2 B C 94 2 B C 3 1 6 2 8 1 177 C B C C C A D A A B A 7 B C C A 3 C A 187 187 C B 10 AC 187-4- 10 C C B B B B A B 2 BC

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

10K1A NASA () SPACE ATLAS Freedom H2A NASA 1

10K1A NASA () SPACE ATLAS Freedom H2A NASA 1 10O1A 10 10 1 10K1A NASA () SPACE ATLAS 40 1957 1969 10 1986 1990 Freedom 20 000 H2A NASA 1 10K1A 100 10 21 40 1996 ( 200 () 2 10S1A 10 8 57 250 1 10S1A 20 200mmm 2 10S1B 18 18 1 10S1B 40 10 20 2 10S1C

More information

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e No. 1 1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e I X e Cs Ba F Ra Hf Ta W Re Os I Rf Db Sg Bh

More information

13ィェィ 0002ィェィ 00ィヲ1 702ィョ ィーィ ィイ071 7ィ 06ィヲ02, ISSN

13ィェィ 0002ィェィ 00ィヲ1 702ィョ ィーィ ィイ071 7ィ 06ィヲ02, ISSN 13 13ィェィ 0002ィェィ 00ィヲ1 702ィョ050702 0709ィーィ ィイ071 7ィ 06ィヲ02, ISSN 1992-6138 1 70306070302071 70307090303 07030209020703 1 7 03000009070807 01090803010908071 7030709030503 0300060903031 709020705 ィヲ0302090803001

More information

05秋案内.indd

05秋案内.indd 1 2 3 4 5 6 7 R01a U01a Q01a L01a M01b - M03b Y01a R02a U02a Q02a L02a M04b - M06b Y02a R03a U03a Q03a L03a M08a Y03a R04a U04a Q04a L04a M09a Y04a A01a L05b, L07b, R05a U05a Q05a M10a Y05b - Y07b L08b

More information

ab c d 6 12 1:25,000 28 3 2-1-3 18 2-1-10 25000 3120 10 14 15 16 7 2-1-4 1000ha 10100ha 110ha ha ha km 200ha 100m 0.3 ha 100m 1m 2-1-11 2-1-5 20cm 2-1-12 20cm 2003 1 05 12 2-1-13 1968 10 7 1968 7 1897

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

13)) *.+ ****&" P(. 1 7(DQR 1 7R1 71 7'SE TUVWXOY X /' Z6C[ ]^_ R1 71 7' `1 7abc Z

13)) *.+ ****& P(. 1 7(DQR 1 7R1 71 7'SE TUVWXOY X /' Z6C[ ]^_ R1 71 7' `1 7abc Z 13***9*)-+ 1 7* 1 7*.*+9))9-- 1 71 71 71 71 71 7! 1 7 1 71 7 1 71 7 1 7 1 71 71 71 71 71 7 1 71 71 71 71 71 7!1 7"1 7#1 7 $%&1 71 7 '1 7%1 71 71 7 1 71 71 71 71 7 "1 71 7 1 7$%&1 71 71 7 (1 71 71 71 71

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

y a y y b e

y a y y b e DIGITAL CAMERA FINEPIX F1000EXR BL01893-100 JA http://fujifilm.jp/personal/digitalcamera/index.html y a y y b e 1 2 P 3 y P y P y P y P y P Q R P R E E E E Adv. SP P S A M d F N h Fn R I P O X Y b I A

More information

取扱説明書 [F-04F]

取扱説明書 [F-04F] F-04F 3.2 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 a b c d a b c d 8 a b cd e a b c d e 9 20 2 a b a b 22 23 a c b d 24 25 a b c d e f j klmn o u p v q w r x g h s t i a b c d e f g B h i j k l m n o p q r s t

More information

21 1 1 1 2 2 5 7 9 11 13 13 14 18 18 20 28 28 29 31 31 34 35 35 36 37 37 38 39 40 56 66 74 89 99 - ------ ------ -------------- ---------------- 1 10 2-2 8 5 26 ( ) 15 3 4 19 62 2,000 26 26 5 3 30 1 13

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

道路施設基本データ作成入力書式マニュアル(中国地方整備局版)平成20年10月

道路施設基本データ作成入力書式マニュアル(中国地方整備局版)平成20年10月 道 路 BOX 等 に 関 する 調 査 表 記 入 マニュアル D080 D080 道 路 B O X 基 本 この 調 査 表 は 道 路 BOX 等 に 関 する 基 本 的 データを 登 録 するためのものであ る なお ここで 取 扱 う 道 路 BOX 等 とは 管 理 する 道 路 に 対 し 平 行 ( 縦 断 方 向 ) しているアンダーパス 等 の 箇 所 などに 設 けられたボックスカルバート

More information

17 18 2

17 18 2 17 18 2 18 2 8 17 4 1 8 1 2 16 16 4 1 17 3 31 16 2 1 2 3 17 6 16 18 1 11 4 1 5 21 26 2 6 37 43 11 58 69 5 252 28 3 1 1 3 1 3 2 3 3 4 4 4 5 5 6 5 2 6 1 6 2 16 28 3 29 3 30 30 1 30 2 32 3 36 4 38 5 43 6

More information

取扱説明書 [F-12C]

取扱説明書 [F-12C] F-12C 11.7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 a bc b c d d a 15 a b cd e a b c d e 16 17 18 de a b 19 c d 20 a b a b c a d e k l m e b c d f g h i j p q r c d e f g h i j n o s 21 k l m n o p q r s a X

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

取扱説明書 [F-08D]

取扱説明書 [F-08D] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 a bc d a b c d 17 a b cd e a b c d e 18 19 20 21 22 a c b d 23 24 a b c a b c d e f g a b j k l m n o p q r s t u v h i c d e w 25 d e f g h i j k l m n o p q r s

More information

EOS 5D MarkIII 使用説明書

EOS 5D MarkIII 使用説明書 J J 2 3 6 5 9 0 0 9 7 8 3 M M Md s f a F A 1R 4 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 Q 3 6 2 3 4 A A f S i j i A A A B O P u 7 8 5 6 d s f a q h A F w P 2 F R D 7 8 9 A k x B HI u X b Q 9 10 11 12 k

More information

取扱説明書 [F-02F]

取扱説明書 [F-02F] F-02F 4. 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 a b c d a b c d a b cd 9 e a b c d e 20 2 22 ab a b 23 a b 24 c d e 25 26 o a b c p q r s t u v w d h i j k l e f g d m n a b c d e f g h i j k l m n x 27 o

More information

04年度LS民法Ⅰ教材改訂版.PDF

04年度LS民法Ⅰ教材改訂版.PDF ?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B

More information

030801調査結果速報版.PDF

030801調査結果速報版.PDF 15 8 1 15 7 26 1. 2. 15 7 27 15 7 28 1 2 7:13 16:56 0:13 3km 45 346 108 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3. 3.1 26 7 10 1 20cm 2 1 2 45 1/15 3 4 5,6 3 4 3 5 6 ( ) 7,8 8 7 8 2 55 9 10 9 10

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

1 2 3

1 2 3 BL01604-103 JA DIGITAL CAMERA X-S1 http://fujifilm.jp/personal/digitalcamera/index.html 1 2 3 y y y y y c a b P S A M C1/C2/C3 E E E B Adv. SP F N h I P O W X Y d ISO Fn1 Fn2 b S I A b X F a K A E A Adv.

More information

vol.31_H1-H4.ai

vol.31_H1-H4.ai http://www.jmdp.or.jp/ http://www.donorsnet.jp/ CONTENTS 29 8,715 Vol. 31 2 3 ac ad bc bd ab cd 4 Point! Point! Point! 5 Point! Point! 6 7 314 611 122 4 125 2 72 2 102 3 2 260 312 0 3 14 3 14 18 14 60

More information

1 1 1 11 25 2 28 2 2 6 10 8 30 4 26 1 38 5 1 2 25 57ha 25 3 24ha 3 4 83km2 15cm 5 8ha 30km2 8ha 30km2 4 14

1 1 1 11 25 2 28 2 2 6 10 8 30 4 26 1 38 5 1 2 25 57ha 25 3 24ha 3 4 83km2 15cm 5 8ha 30km2 8ha 30km2 4 14 3 9 11 25 1 2 2 3 3 6 7 1 2 4 2 1 1 1 11 25 2 28 2 2 6 10 8 30 4 26 1 38 5 1 2 25 57ha 25 3 24ha 3 4 83km2 15cm 5 8ha 30km2 8ha 30km2 4 14 60 m3 60 m3 4 1 11 26 30 2 3 15 50 2 1 4 7 110 2 4 21 180 1 38

More information

1 6 2011 3 2011 3 7 1 2 1.1....................................... 2 1.2................................. 3 1.3............................................. 4 6 2.1................................................

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

12~

12~ R A C D B F E H I J K A A A A A A A A A A AD B C BD AD E A DB DB ADB D D DB BD A C D B F E AD B B B B BF AD B B DB B B B B DB B DB D D ADB D D D D D AB AD D DB AB B B B F D D B B D D BF DBF B B B FD

More information

BL01622-100 JA DIGITAL CAMERA FINEPIX F770EXR http://fujifilm.jp/personal/digitalcamera/index.html y a y y b e y DISP/BACK 1 2 P 3 y P y P y P y P y P Q R P R E d F N h Fn b R I P O X Y n E E E I Adv.

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

BL01479-100 JA DIGITAL CAMERA FINEPIX F600EXR http://fujifilm.jp/personal/digitalcamera/index.html y a y y b 6 y DISP/BACK 1 2 3 P y P y P y P y P y P Q R P R E O E E Adv. SP M A S P d F N h b R I P O

More information

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2 1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn

More information

<95F18D908F91967B95B62E696E6464>

<95F18D908F91967B95B62E696E6464> 1.. (1-1)? 1. 2.,,.. (1-2)? 1. 2. 3. 4. 5. 6. 7. (1-3)?. (() ().) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. (: ) (1-4). 1. 2. 3. 4. 5. 6. 7. ( ) (1-5)?. 1. 2. 3. (1-6)?. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. - 0

More information

表1-表4_No78_念校.indd

表1-表4_No78_念校.indd mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm Fs = tan + tan. sin(1.5) tan sin. cos Fs ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

新たな基礎年金制度の構築に向けて

新たな基礎年金制度の構築に向けて [ ] 1 1 4 60 1 ( 1 ) 1 1 1 4 1 1 1 1 1 4 1 2 1 1 1 ( ) 2 1 1 1 1 1 1 1996 1 3 4.3(2) 1997 1 65 1 1 2 1/3 ( )2/3 1 1/3 ( ) 1 1 2 3 2 4 6 2.1 1 2 1 ( ) 13 1 1 1 1 2 2 ( ) ( ) 1 ( ) 60 1 1 2.2 (1) (3) ( 9

More information

5 5.1 35

5 5.1 35 C: PC H19 A5 3.BUN 19 8 6 5 35 5.1............................ 35 5.2 1...................... 38 5.3 2...................... 39 5.4............................. 41 5.5 Thevenin................. 46 5.6.....................

More information

A

A SKR A A A A A A PE = PR (PL) + PT A A A A A A A A A A A C0 fs = Pmax C0a fs = Fmax A L = 3 fc C 50 fw PC A A A Pm = K M Pm = KC MC 2 PE = Pm + P L 10 6 Lh = 2 l S n1 60 l A 3 Ca L = 10 6 fw Fa A L l Lh

More information

2008 (2008/09/30) 1 ISBN 7 1.1 ISBN................................ 7 1.2.......................... 8 1.3................................ 9 1.4 ISBN.............................. 12 2 13 2.1.....................

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

Taro10-目次.PDF

Taro10-目次.PDF -1- -73 - bc/ ac+bc km ha ha - - bc/ ac+bc km bc/ ac+bc ha ha ha - - bc/ ac+bc km km ha ha - - bc/ ac+bc mm ha ha - - -78 - km

More information

社会学部紀要 44☆/表紙(44)記念号(多い)

社会学部紀要 44☆/表紙(44)記念号(多い) 2013 25 52 1961 36 6 26 28 6 27 27 325 mm 26 28 2 500 mm 5 29 9 10 2011 50 3 11 1 1455 m 52 36 6 18 98 133 164 297 1392 20 1 1964 11 2 27 21 3 6 27 7 9 3 1964 39 36 20 1980 55 6 24 36 8 14 36 20 1981 56

More information

<90CE90EC88E290D55F955C8E862E656336>

<90CE90EC88E290D55F955C8E862E656336> 5 5 9 9 7 7 5 5 6 6 7 7 8 8 9 9 8 8 8 8 79 79 78 78 76 76 77 77 7 7 6 7 7 5 68 68 67 67 66 66 65 65 6 6 6 6 6 6 6 6 6 6 59 59 58 58 57 57 56 56 55 55 5 5 8 8 5 5 9 9 9 8 7 9 9 8 8 7 7 6 6 5 5 5 5 69 69

More information

140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

取扱説明書 [F-10D]

取扱説明書 [F-10D] F-10D 13.9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 a bc d a b c d 17 a b cd e a b c d e 18 19 20 21 a b 22 c d 23 a b a b c d e f a b k l m n o p q r s t u v w x y g h i j c d e 24 c d e f g h i j k l

More information

Nikon SB-800 使用説明書

Nikon SB-800 使用説明書 Jp SB-800 2! $ ' $ % & " " " " " 3 ' ( # # # # # # & " " "! " " # ' # $ # " " " " " 4 " " " " ( # " " " " 5 6 " " " " # # # ( $ " " " 7 " " " " " " " # # # ( $ ' 8 9 k k k k k k k k k k u 10 k k k k k

More information

エラーコード 一 覧 コード 名 称 : 審 査 チェックエラーコード => 返 戻 事 由 と 共 有 する コード 概 要 : 審 査 において 一 次 チェック 資 格 チェックを 行 ったときにエラーとなった 項 目 に 設 定 するコード 及 び 返 戻 一 覧 に 出 力 する 返 戻

エラーコード 一 覧 コード 名 称 : 審 査 チェックエラーコード => 返 戻 事 由 と 共 有 する コード 概 要 : 審 査 において 一 次 チェック 資 格 チェックを 行 ったときにエラーとなった 項 目 に 設 定 するコード 及 び 返 戻 一 覧 に 出 力 する 返 戻 12.エラーコード 一 覧 表 エラーコードは 随 時 更 新 されます 最 新 のエラーコード 表 については 本 会 ホームページより ダウンロードできます エラーコード 一 覧 コード 名 称 : 審 査 チェックエラーコード => 返 戻 事 由 と 共 有 する コード 概 要 : 審 査 において 一 次 チェック 資 格 チェックを 行 ったときにエラーとなった 項 目 に 設 定 するコード

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

15...1-1...1-1...1-1...1-1...1-1...1-1...1-2...1-2...1-2...1-3...1-3...1-3...1-4...1-5...1-5...1-6...1-8...1-10...1-11 ...1-15...1-18...1-18...1-18...1-19...1-22...1-28...1-35...1-45...1-56...1-72...1-117...1-127...1-127...1-130...1-135...1-137

More information

出力168759-北斗17

出力168759-北斗17 17191225 27202724 920-0293 1-1 TEL076286-2211 FAX076286-8214 10 2 910 3 8 18 9 20 9 24 9 30 9 30 10 8 1018 1021 1021 1021 1025 1025 1026 1026 1030 11 1 1112 1118 1119 1125 1125 1128 1129 1129 1130 12 1

More information

取扱説明書 [F-02F]

取扱説明書 [F-02F] F-02F 3. 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 a b c d a b c d 9 a b cd e a b c d e 20 2 22 ab a b 23 24 a c b 25 d e 26 o a b c p q r s t u d h i j k l e f g d m n a b c d e f g h i j k l m n v 27 o P P

More information

F8302D_1目次_160527.doc

F8302D_1目次_160527.doc N D F 830D.. 3. 4. 4. 4.. 4.. 4..3 4..4 4..5 4..6 3 4..7 3 4..8 3 4..9 3 4..0 3 4. 3 4.. 3 4.. 3 4.3 3 4.4 3 5. 3 5. 3 5. 3 5.3 3 5.4 3 5.5 4 6. 4 7. 4 7. 4 7. 4 8. 4 3. 3. 3. 3. 4.3 7.4 0 3. 3 3. 3 3.

More information

PSCHG000.PS

PSCHG000.PS a b c a ac bc ab bc a b c a c a b bc a b c a ac bc ab bc a b c a ac bc ab bc a b c a ac bc ab bc de df d d d d df d d d d d d d a a b c a b b a b c a b c b a a a a b a b a

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

untitled

untitled 1 1 11 12 2 21 22 23 3 31 32 33 34 4 41 42 5 2 1 2 2 3 3 1 4 5 3 111 43 142 32.8km 27.3km 600.972 15 10 1 7 112 11 4 1m 23 11 6.8 34.125.5 1,418 1,192mm 2 3 7 9 200 00 113 4 11 12 16 26,252 25,452 12,528

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

A R & B A % % z z z z c c z A B c C jc jc LC LC R s A c c & zz % & & A A c c B & % & A R B z z z A B c c c c c c c c A B A B c C c c D A % B z z c j c z z A c B c z A % B c cc cc cc % % z c c z c cc 19

More information

ver 0.3 Chapter 0 0.1 () 0( ) 0.2 3 4 CHAPTER 0. http://www.jaist.ac.jp/~t-yama/k116 0.3 50% ( Wikipedia ) ( ) 0.4! 2006 0.4. 5 MIT OCW ( ) MIT Open Courseware MIT (Massachusetts Institute of Technology)

More information

補足情報

補足情報 1 危 険 警 告 注 意 2 3 4 5 6 7 8 1 2 3 4 5 9 6 7 8 9 10 10 1 2 11 1 12 1 2 13 3 4 14 1 2 15 3 4 5 16 1 2 3 17 1 2 3 4 18 19 20 21 22 23 1 2 3 4 5 24 6 7 8 9 10 25 26 27 28 6 1 2 7 8 9 3 4 5 29 1 2 警 告 3 4 5

More information

untitled

untitled 1 2 3 4 5 (1834) 1834 200 6 7 8 9 10 11 (1791) (17511764) (1824) 1843 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 (1791) (1791) (17511764) (17511764) (1824)1843

More information

... - 1 -... - 1 -... - 1 -... - 1 -... - 1 -... - 1 -... - 1 -... - 1 -... - 3 -... - 4 -... - 4 -... - 4 -... - 5 -... - 6 -... - 6 -... - 6 -... - 6 -... - 6 -... - 7 -... - 7 -... - 7 -... - 7 -...

More information

14 88 7 1 3 4 75 14 9 13 51 16 22 16 69 22 134 54 40 27 5 29 29 3 31 11 2-1 - 12 22 20 150 200 4.1993 22 22 250 400 2011 576 2011 2 2010 2 3 3 4 77 1990 448 1,298 3 2-2 - 1990 7 5,000 100 5 8 1996 75 85

More information

FinePix F70EXR 使用説明書

FinePix F70EXR 使用説明書 BL00966-100 JA http://fujifilm.jp/ 1 2 3 O O rp P s t u G F g g g g g g g C A B k H r P s t u P k B 5 L K J k O P P A B H M A D r v v v n o W T U C E B F v v v q a N O R j P Q p m a b g g o c m 1 2 n

More information

取扱説明書 [F-01F]

取扱説明書 [F-01F] F-0F 3.0 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 20 a b c d a b c 2 d 22 a b cd e a b c d e 23 24 25 26 a b a b 27 28 b a 29 c d 30 r s t u v w x a b c e f g d h n i j k l m a b o c d p e f g h i j k q l

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

取扱説明書<詳細版>

取扱説明書<詳細版> B5FK-4681-01 1 2 3 4 5 6 7 8 危 険 警 告 注 意 9 10 11 警 告 注 意 12 警 告 13 注 意 14 注 意 警 告 警 告 15 注 意 注 意 16 17 18 19 20 21 22 23 1 24 2 25 26 27 28 1 2 3 4 29 5 30 6 7 8 31 9 10 32 11 33 12 13 34 14 35 15 16

More information

2! $ ' $ % & " " " " "

2! $ ' $ % &     Jp SB-600 SB-600 (Jp) 2! $ ' $ % & " " " " " 3 ' ( # # # # # # & " " "! " " # ' # $ # " " " " " 4 " " " " ( # " " " " 5 6 " " " " # # # ( $ " " " 7 " " " " " " " # # # ( $ ' 8 9 k k k k k k k k k u 10

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

9 3 12 17 15 19 10 19 13 16 16 17 11 17 14 16 17 19

9 3 12 17 15 19 10 19 13 16 16 17 11 17 14 16 17 19 9 3 12 17 15 19 10 19 13 16 16 17 11 17 14 16 17 19 4 4 5 11 11 13 1,739m 1,722m 25km 17km 6,817 1,052m 1,018m 14 1,858,070 668,446 35 1,101,872 59 4 5 6 22 1889 7 20 52 228 1619 5.3.17 32.5 130.6

More information

X-FUNX ワークシート関数リファレンス

X-FUNX ワークシート関数リファレンス X-FUNX Level.4a xn n pt 1+ 1 sd npt Bxn3 cin + si + sa ( sd xn) 3 n t1 + n pt xn sd ( t1+ n pt) Bt t t cin + xn si sa ( sd xn) n 1 + +

More information

ap0 ap1 ap2 ap3 ap4 ap5 ap6 ap7 ap8 ap9 aq0 aq1 aq2 aq3 aq4 aq5 aq6 aq7 aq8 aq9 aw0 aw1 aw2 aw3 aw4 aw5 aw6 aw7 aw8 aw9 ae0 ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 ae9 ar0 ar1 ar2 ar3 ar4 ar5 ar6 ar7 ar8 ar9 at0

More information

36.fx82MS_Dtype_J-c_SA0311C.p65

36.fx82MS_Dtype_J-c_SA0311C.p65 P fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms J http://www.casio.co.jp/edu/ AB2Mode =... COMP... Deg... Norm 1... a b /c... Dot 1 2...1...2 1 2 u u u 3 5 fx-82ms... 23 fx-83ms85ms270ms300ms 350MS...

More information

1 3 20 5 20 7 9 19 20 23 27 29 20 31 33 20 63 20 78 85 85 88 90 91 92 93 104 105

1 3 20 5 20 7 9 19 20 23 27 29 20 31 33 20 63 20 78 85 85 88 90 91 92 93 104 105 1 3 20 5 20 7 9 19 20 23 27 29 20 31 33 20 63 20 78 85 85 88 90 91 92 93 104 105 1 1 20 10 1 18 10 1 20 5 5 48 6 29 7 6 49 5 1 7 16 1 56 421 43 45 1 7 8 46 2 20 1910 43. 24f 1012 1913 2

More information

untitled

untitled 1 2 3 LCC LCC LCC 1 (1) (2)LCM (3) (4) (5) (6)LCC (7) 2 - - - - 3 1. 1 2. 4 2.1 4 2.2 5 2.3 6 3. 8 3.1 8 3.2 9 4. LCM 11 4.1 LCM 11 4.2 LCM 12 4.3 15 4.4 23 4.5 43 5. LCM 50 5.1 50 5.2 LCM 50 5.3 LCC

More information

1 1 2 1 3 1 4 2 4.1 AKB............................................... 2 4.2......................................... 6 4.3...........................

1 1 2 1 3 1 4 2 4.1 AKB............................................... 2 4.2......................................... 6 4.3........................... 24 3 28 : 1 1 2 1 3 1 4 2 4.1 AKB............................................... 2 4.2......................................... 6 4.3............................................. 9 5 9 5.1.........................................

More information