Ⅰ.市場リスクの計測手法

Size: px
Start display at page:

Download "Ⅰ.市場リスクの計測手法"

Transcription

1 1

2 2

3 3

4 4

5 { } n n 5

6 R R R R 1 6

7 7

8 8

9 9

10 , 10

11 11

12 12

13 13

14 14

15 15

16 T 16

17 T 17

18 18

19 19

20 20

21 21

22 22

23 23

24 99VaR 99 24

25 25

26 26

27

28 99 28

29

30 30

31 31

32 t-1 t-1 t-1 t-1 t-10 t-10 t-10 t-10 32

33 33

34 2 T 2 34

35

36 36

37 37

38

39 39

40 40

41 41

42 99 42

43 43

44 44

45 45

46 99 46

47 47

48 HS 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56

57 57

58 58

59 59

60 60

61 61

62 62

63 2=250, = 63

64 250 99% 1% NC K p K (1-p) N-K 8.11% % % 91.89% % 71.42% % 45.68% % 24.19% % 10.78% % 4.12% % 1.37% % 0.40% % 0.11% % 0.03% % 0.01% % 0.00% % 0.00% % 0.00% % 0.00% 64

65 65

66 66

67 67

68 68

69 69

70 70

71 71

72 72

73 73

74 74

,798 14, kg ,560 10, kg ,650 2, kg ,400 19, kg ,

,798 14, kg ,560 10, kg ,650 2, kg ,400 19, kg , / HS / TEL FAX 2007 1 18,000 9,540.00 0.53 kg 2007 1 99,000 38,518.00 0.39 kg 2007 1 30,200 11,778.00 0.39 kg 2007 1 15,000 5,565.00 0.37 kg 2007 1 21,000 7,400.00 0.35 kg 2007 1 40,000 20,579.00 0.51

More information

36

36 36 37 38 P r R P 39 (1+r ) P =R+P g P r g P = R r g r g == == 40 41 42 τ R P = r g+τ 43 τ (1+r ) P τ ( P P ) = R+P τ ( P P ) n P P r P P g P 44 R τ P P = (1 τ )(r g) (1 τ )P R τ 45 R R σ u R= R +u u~ (0,σ

More information

KAGA City Waterworks Vision 1.00 0.90 0.80 0.98 0.79 0.78 0.70 0.60 0.66 0.67 0.69 0.72 0.67 0.50 H21 H22 H23 H24 H25 14.0 12.0 10.0 8.0 6.0 4.0 11.7 11.8 11.8 11.9 10.0 7.7 6.8 5.2 H21 H22

More information

Annual Report 2015 アリアンツ生命保険の現状

Annual Report 2015 アリアンツ生命保険の現状 Annual Report 215 [21441215331] Annual Report 215 Content 1 2 214 3 4 214 6 6 1 13 14 5 17 18 32 52 56 64 Annual Report 215 189125 78,5 284 2157 1 Annual Report 215 2153 URL Allianz Life Insurance Japan

More information

デンソー製インスパック冷媒充填量一覧 型式 10H 10H 10H 10H 10H 10H 10H 10H 10H 10H 10H-C 10H-C 10H-E 10H-K 10H-K 10H-K 12HC 12HC 12HC 15H 15H 15H-K 15H-K 15H-TU 20H 20H 20

デンソー製インスパック冷媒充填量一覧 型式 10H 10H 10H 10H 10H 10H 10H 10H 10H 10H 10H-C 10H-C 10H-E 10H-K 10H-K 10H-K 12HC 12HC 12HC 15H 15H 15H-K 15H-K 15H-TU 20H 20H 20 -C -C -E -K -K -K 15H 15H 15H-K 15H-K 15H-TU 20H 20H 20H-C 20H-K 20H-KC 20H-TU 20L 0.510 83 85 天吊り 据置き 単相 100V 0.470 83 83 天吊り 据置き 0.470 84 86 天吊り 据置き 0.510 86 86 天吊り 据置き 単相 100V 0.510 87 89 天吊り 据置き 単相

More information

橡訂版.PDF

橡訂版.PDF 1 3 5 6 7 8 1 8 100km 3 5 EV 2000 10 RAV4 1 EV 1998 1 EV EV EV 80% 100% 6 7 8 LPG LPG (kg) (kg) 6.8 km/kwh 50.8 1,700 17.0 km/l 38.3 1,200 14.0 km/l 33.2 1,000 15.0 km/l 33.2 1,000 *1 *2 ( ) 36.0

More information

c a a ca c c% c11 c12 % s & %

c a a ca c c% c11 c12 % s & % c a a ca c c% c11 c12 % s & % c13 c14 cc c15 %s & % c16 c211 c21% c212 c21% c213 c21% c214 c21% c215 c21% c216 c21% c23 & & % c24 c25 c311 c312 % c31 c315 c32 c33 c34 % c35 c36 c37 c411 c N N c413 c c414c

More information

09 P107〜118/木下 〃 芦塚 〃 稲

09 P107〜118/木下 〃 芦塚 〃 稲 NK NK NK NK NK NK NK KT M NK NK KT M NK KT VTR SR SR SR SR SR SR KT NK NK FU M M A B C D E NK F G H I J I K M I I S R L L C C NKCL F C J J F M I J NK M M DY NK E E NK D D C D SR E D C C M NK NK SJ KK NK

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

untitled

untitled 11 10 267 6 129 48.3 6 63 2 1 2JIS ME JIS T 1005JIS 1994 1 11 A 10 1999 5 3 13 ME 4 2 11 B B 1999 4 10 267 6 B 7 9 6 10 12 3 11 Excel MODE Excel STANDARDIZE STANDARDIZE(X,)X AVERAGE STDEVP Excel VAR 0.5

More information

1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge

1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge Edwrd Wring Lgrnge n {(x i, y i )} n x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) () n j= x x j x i x j (2) Runge [] [2] = ξ 0 < ξ < ξ n = b [, b] [ξ i, ξ i ] y = /( + 25x 2 ) 5 2,, 0,,

More information

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T 2.6 FFT(Fast Fourier Transform 2.6. T g(t g(t 2 a 0 + { a m b m 2 T T 0 2 T T 0 (a m cos( 2π T mt + b m sin( 2π mt ( T m 2π g(t cos( T mtdt m 0,, 2,... 2π g(t sin( T mtdt m, 2, 3... (2 g(t T 0 < t < T

More information

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2 1.500 m X Y 0.200 m 0.200 m 0.200 m 0.200 m 0.200 m 0.000 m 1.200 m m 0.150 m 0.150 m m m 2 24.5 N/ 3 18.0 N/ 3 30.0 0.60 ( ) qa 50.79 N/ 2 0.0 N/ 2 20.000 20.000 15.000 15.000 X(m) Y(m) (kn/m 2 ) 10.000

More information

,552,510 3,580,796 1,591,338 1,521,728 1,167,622 1,145, , ,396 4,040 7,095 2,542 3, ,687

,552,510 3,580,796 1,591,338 1,521,728 1,167,622 1,145, , ,396 4,040 7,095 2,542 3, ,687 193 2 15 16 16 3 31 17 3 31 5,328,950 4,989,814 360,509 1,004,512 152,070 124,856 1,009,328 568,340 480,847 606,032 3,306,780 3,769,073 3,749 3,832 27,049,901 24,233,701 55,382,800 54,799,805 743,957 895,586

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

<4D F736F F D B BA908593B98AC782AB82E593E082CC88C091538AC7979D82C98AD682B782E992868AD495F18D908F912E646F63>

<4D F736F F D B BA908593B98AC782AB82E593E082CC88C091538AC7979D82C98AD682B782E992868AD495F18D908F912E646F63> 12 62 1800 14 3 11 14 4 14 4 30 ... 1... 1... 1... 2... 5... 6... 7... 10... 13... 18... 19 21 22 24 27 28 31 32 33... 34... 35... 37 2 1,650mm () H=2,500W=2,000 460m 750m 500m 42.1m 1.15m () 100% 80%

More information

sg_hs23_7875.xlsx

sg_hs23_7875.xlsx IBM BladeCenter HS23 (7875) http://www.ibm.com/systems/jp/x/guide_errata.shtml System Guide IBM BladeCenter HS23 (7875) IBM BladeCenter HS23 Express Spec System Guide 1/23 IBM BladeCenter HS23 (7875) IBM

More information

弓削商船だより(77号)/本文

弓削商船だより(77号)/本文 Change Nakhon Phanom NC NC NC M I TV PR PR PR JFE NTT KYB e OCED PHAM THANH SON A I S M I B S M A I S M I B S M I I M H M M H M I S S M I S S M I M I I M S S M I S H M M H M M M mr M I I I M I S S I S

More information

第6回ストックリーグ入賞レポート 部門賞・大学 (PDF)

第6回ストックリーグ入賞レポート 部門賞・大学 (PDF) 3 1 IPO IPO IPO 1 2 3 2 Initial Public Offerings Firms IPO IPO 2 IR 11 2 IPO 2 IPO 3 2004 4 2005 3 173 10 10 IPO 1 2 3 3 IPO IPO IPO 4 1. 2. 3. 4. 5. 6. 7. 8. 1. 2. 3. 4. 5 1 EDINET http://info.edinet.go.jp

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

「韓国模倣対策マニュアル」

「韓国模倣対策マニュアル」 * * ** ** ** ** ** * * * ** * * () ** ** ** * * YES NO YES NO ** ** ** * * * * * * * ** ** ** * * * * * () ** Classification of Goods and Services for Trademark Registration

More information

(30 ) (30 )

(30 ) (30 ) 10.1.1 15 10 10 15 10 122 10.2.1 100 5 60 100 25 100 40 50 16 (30 ) 3540 25 (30 ) 35 14 35 27 27 27 120 123 10.2.2 F24F80 F100 320 400 800 800 1500 () 10.2.3 40 40 3.2 (3.0) 40 4.0 3.2 20 4.0 25 () 3.0m

More information

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) 1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) X α α 1 : I X α 1 (s) = α(1 s) ( )α 1 1.1 X p X Ω(p)

More information

<837D835683938372835783878393977083438393835E5B837483465B83589557808B4B8A692E706466>

<837D835683938372835783878393977083438393835E5B837483465B83589557808B4B8A692E706466> www.visiononline.org www.emva.org jiia.org 3 4 5 6 IEEE1394 USB 2.0 7 8 1 2Base : 2Gbps : 2Gbps Base2 DIGITAL HARDWARE STANDARD SPECIFICATIONS CAMERA LINK 9 10 DIGITAL HARDWARE STANDARD SPECIFICATIONS

More information

13 3 21 11 60 11 3 10 13 3 21 11 3 10 38 11 7 23 1 11 11 12 39 12 2 29 2 12 3 15 40 12 8 30 3 12 11 2 41 13 2 20 4 13 3 15 42 13 3 15 10 14 16 1900 1945 1985 ( ) ( ) 1 2 6 2 Thiobacillus SO 2-4 H 2 S

More information

コロイド化学と界面化学

コロイド化学と界面化学 x 25 1 kg 1 kg = 1 l mmol dm -3 ----- 1000 mg CO 2 -------------------------------------250 mg Li + --------------------------------1 mg Sr 2+ -------------------- 10

More information

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1 sup inf (ε-δ 4) 2018 1 9 ε-δ,,,, sup inf,,,,,, 1 1 2 3 3 4 4 6 5 7 6 10 6.1............................................. 11 6.2............................... 13 1 R R 5 4 3 2 1 0 1 2 3 4 5 π( R) 2 1 0

More information

CONTENTS 1 7 8 89 9 1011 111 1 1 114 1516 160 01 1 4 4 45 56 6 67 7 79 9 0 0 1 1 6 6 1 4 5 6 7 8 1 H55 A6 A4 4 A51 5 S5 6 I 7 H 8 I81 9 H1 10 11 1 1 14 I1 I1 I14 I15 I16 15 H6 16 H8 17 H7 18 I86 19 A 0

More information

2 3 4 5 SMBC 6 SMBC 7 SMBC 8 9 10 11 12 13 SMBC 14 SMBC 15 SMBC 16 17 18 19 20 21 22

2 3 4 5 SMBC 6 SMBC 7 SMBC 8 9 10 11 12 13 SMBC 14 SMBC 15 SMBC 16 17 18 19 20 21 22 20052 20051028 2005 2 20051028 2 3 4 5 SMBC 6 SMBC 7 SMBC 8 9 10 11 12 13 SMBC 14 SMBC 15 SMBC 16 17 18 19 20 21 22 '05.1Q 2Q 1Q 4Q 3Q 2Q 1H 1H '04.1H 26,301 17,964 46.4% 22,498 16,791 16,873 44,266 44,596-0.7%

More information

t VaR ( vs 5 t ) t ( ) / 16

t VaR ( vs 5 t ) t ( ) / 16 2016 3 11 ( ) 2016 3 11 1 / 16 t VaR ( vs 5 t ) t ( ) 2016 3 11 2 / 16 () Crouhy (2008) Table: ( ) 2016 3 11 3 / 16 VaR (2010) Table: ( ) 2016 3 11 4 / 16 Tang and Valdez(2006) 5 t Brockmann and Kaklbrener(2010)

More information

01

01 c o n t e n t s 03 29 06 30 18 32 22 33 24 34 26 36 ecojin interview 03 04 Click!! http://www.t-voice.com http://www.shortshorts.org/2010/ 05 06 Click!! http://www.herb.or.jp 07 08 09 Photo:awa-awa-buku-buku

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T 3 3.1 [ ]< 85, 86 > ( ) ds > 0. (1) dt ds dt =0, S = S max. (2) ( δq 1 = TdS 1 =0) (δw 1 < 0) (du 1 < 0) (δq 2 > 0) (ds = ds 2 = TδQ 2 > 0) 39 3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3)

More information

(1) 1.1

(1) 1.1 1 1 1.1 1.1.1 1.1 ( ) ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) ( ) ( ) ( ) 2 1 1.1.2 (1) 1.1 1.1 3 (2) 1.2 4 1 (3) 1.3 ( ) ( ) (4) 1.1 5 (5) ( ) 1.4 6 1 (6) 1.5 (7) ( ) (8) 1.1 7 1.1.3

More information

09-12-15_1203new

09-12-15_1203new 12 15 12/15 1/14 E _ GC DC Y FB GA BF Y 2 g g a f Y b b d b b c c b b g a c e b f b - Y b b c a c C A C C Y f g a b c d e - g a b c d c ab ab b g bb fbbd 3 4 1 F B 1 DF C A A A 6 G F A B 5 GA 6 E BF G

More information

1

1 I II II 1 dw = pd = 0 1 U = Q (4.10) 1K (heat capacity) (mole heat capacity) ( dq / d ) = ( du d C = / ) (4.11) du = C d U = C d (4.1) 1 1 du = dq + dw dw = pd dq = du + pd (4.13) p dq = d( U + p ) p (4.14)

More information